
Data Reduction Techniques for Sensor Networks

Antonios Deligiannakis

�

University of Maryland

adeli@cs.umd.edu

Yannis Kotidis

AT&T Labs-Research

kotidis@research.att.com

Nick Roussopoulos

University of Maryland

nick@cs.umd.edu

July 16, 2003

Abstract

We are inevitably moving into a realm where small and inexpensive wireless devices would

be seamlessly embedded in the physical world and form a wireless sensor network in order to

perform complex monitoring and computational tasks. Such networks pose new challenges in

data processing and dissemination due to the conict between (i) the abundance of information

that can be collected and processed in a distributed fashion among thousands of nodes and (ii)

the limited resources (bandwidth, energy) that such devices possess. In this paper we propose

a new data reduction technique that exploits the correlation and redundancy among multiple

measurements on the same sensor and achieves high degree of data reduction while managing

to capture even the smallest details of the recorded measurements. The key to our technique

is the base signal, a series of values extracted from the real measurements, used for encoding

piece-wise linear correlations among the collected data values. We provide e�cient algorithms

for extracting the base signal features from the data and for encoding the measurements using

these features. Our experiments demonstrate that our method by far outperforms standard

approximation techniques like Wavelets, Histograms and the Discrete Cosine Transform, on a

variety of error metrics and for real datasets from di�erent domains.

1 Introduction

Technological advances in the development of low-power embedded communication devices have

made possible scenarios in which thousands of sensor nodes could be seamlessly embedded in the

�

Work partially performed while author was visiting AT&T-Labs Research

1



physical world and form a wireless sensor network. These sensors would monitor various quantities

such as temperature, pressure, humidity, movement, noise levels, chemicals, etc, that would then be

periodically transmitted to a base-station

1

for further processing and analysis. Applications of such

networks span a large variety of domains from collaborative environments to military command

and control systems and even home networks.

Large-scale sensor networks require tight data handling and data dissemination techniques.

Transmitting a full-resolution data feed from each sensor back to the base-station, is often pro-

hibitive due to (i) limited bandwidth that may not be su�cient to sustain a continuous feed from

all sensors and (ii) increased power consumption due to wireless multi-hop communication.

In order to minimize the volume of data transmitted, we can apply two well known ideas:

aggregation and approximation. Aggregation works by summarizing the measured information in

the form of simple statistics like average, maximum, minimum etc that are then transmitted to

the base-station over regular intervals. Aggregation is an e�ective mean to reduce the volume

of data, but can be rather crude for applications that need detailed historical information, e.g.

military surveillance. When data feeds exhibit a large degree of redundancy, approximation is a

less intrusive form of data reduction in which the underlying data feed is replaced by an approximate

signal tailored to the application needs. The tradeo� is then between the size of the approximate

signal and its precision compared to the real-time information monitored by the sensor.

In this paper we present a new data reduction algorithm for the dissemination of approximate

measurements over sensor networks. Our techniques build on the observation that the values of

the collected measurements exhibit similar patterns over time, or that di�erent measurements are

naturally correlated, as is the case between pressure and humidity. At the core of our approximation

lies the notion of a base signal, a set of values from the collected measurements that capture

prominent features of the data. Following the construction of the base signal, the collected data is

partitioned into intervals that can be e�ciently approximated as linear projections of some part of

the base signal. As we will show in this paper, our techniques provide:

� Increased accuracy when compared to other approximation techniques for the same reduction

factor.

1

A base-station may represent any node of the network with increased storage, battery and processing capabilities.

2



� Adaptability to di�erent error metrics: Our algorithms can be adapted with only minor modi�-

cations, which do not alter their time complexity, to minimize di�erent error metrics, such as the

sum squared error, sum squared relative error, and maximum error of the approximation.

Our contributions are summarized as follows:

1. We introduce a new approximation scheme that encodes piece-wise correlations among the data

values. Such correlations are often linear in nature and can be easily captured by standard tech-

niques like linear regression. We exploit correlations both within the values of a single measurement

(ex: periodicity, self-similarity) as well as among values of di�erent quantities (ex: pressure and

humidity).

2. We introduce the concept of the base signal that is analogous to a carrier-wave in radio-frequency

transmissions and is used for encoding the measurements. We explore the technical challenges of (i)

constructing the base signal, (ii) approximating the recorded measurements by exploring piece-wise

correlations amongst them and the base signal, and (iii) dynamically updating the base signal to

capture new data trends in subsequent transmissions.

3. We provide an e�cient algorithm (Self-Based Regression or SBR) that answers all questions

above, while balancing the cost of transmitting new (or updated) base signal values with the gains

of using them for approximating the data values. For a dataset containing n measurements to

approximate, the SBR algorithm takes O(n

1:5

) time and requires linear space, while its running

time scales linearly to the size of both the transmitted data and the base signal.

4. We provide an extensive experimental study of our framework using real datasets from di�erent

application domains and make direct comparisons against previously studied approximation tech-

niques like the Wavelet and Discrete Cosine transforms and Histograms. In all datasets our method

achieves substantially lower approximation errors for the same data reduction factor.

5. We have adapted ideas from the Singular Value Decomposition and the Discrete Cosine transform

for constructing alternative base signals. Our experiments demonstrate that the base signal features

selected by SBR outperform these techniques. Furthermore, we show that SBR makes near-optimal

choices when selecting the number of features to include in the base signal.

The rest of the paper is organized as follows. Section 2 presents related work. In Section 3

3



we state our problem and sketch the basics of our techniques, while in Section 4 we describe our

framework in more details. Section 5 contains our experiments, while Section 6 contains concluding

remarks and future directions.

2 Related Work

In recent years there has been a urry of research in the area of sensor networks. Some of the

most important issues addressed include network self-con�guration [4], data discovery [9, 12] and

in-network query processing [14, 10, 30, 17].

The bene�ts of in-network data aggregation are investigated in [14, 17, 30]. The main idea is

to build an aggregation tree which the results will follow. Non-leaf nodes of the tree aggregate the

values of their children before transmitting the aggregate result to their parents. In [17] additional

issues are also addressed, such as determining when a node becomes active

2

and designing query

processing techniques for aggregates with di�erent characteristics.

Sensor nodes are small devices that \measure" their environment and communicate streams of

low-level values to a base station for further processing and archiving. These streams are then used

to construct a higher-level model of the environment. This process makes historical data equally

important to current values [8]. In this paper we propose approximation as a less intrusive data

reduction method that is more suited for applications in which a long-term historical record of

measurements from each sensor is required.

Recently, there has been increasing interest in studying the general principles over continuous

queries in data streams [6, 13, 20, 28, 31]. Olston et. al in [21, 2] study the tradeo� between precision

and performance when querying replicated, cached data. In [3] the users register continuous queries

with strict precision constraints at a central stream processor, which, in turn installs �lters at the

remote data sources. These �lters adapt to changes in the streams to minimize update rates. An

online algorithm for minimizing the update cost while the query can be answered within an error

bound is presented in [26]. The authors of [25] study a probabilistic query evaluation method that

places appropriate con�dence in the query answer to quantify the uncertainty of the recorded data

values.

2

An active node can receive, process and transmit data. At this mode the sensor drains signi�cantly more energy

than when it is idle.

4



Approximate processing techniques have been widely studied. Histograms (e.g. [22, 24]) have

been extensively used by query optimizers to estimate the selectivity of queries, and recently in

tools for providing fast approximate answers to queries. Wavelets are a mathematical tool for the

hierarchical decomposition of functions, with applications in image and signal processing. More

recently, Wavelets have been applied successfully in answering range-sum aggregate queries over

data cubes [29], in selectivity estimation [19] and in approximate query processing [5]. The Discrete

Cosine Transform (DCT) [1] constitutes the basis of the mpeg encoding algorithm and has also

been used to construct compressed multi-dimensional histograms [16]. Linear regression has been

recently used in [7] for on-line multidimensional analysis of data streams.

3 Preliminaries

3.1 Characteristics of Sensor Networks

Recent technological advances have made possible the development of low-cost sensor nodes with

heavily integrated sensing, processing and communication capabilities. Networked together in an

ad-hoc fashion, hundreds of such nodes can be used for a variety of monitoring applications such

as military surveillance, equipment monitoring or medical sensing.

Information about the environment is gathered using a series of sensing elements connected to

an analog-to-digital converter. Examples include microphones for acoustic sensing, accelerometers,

temperature sensors etc. Once enough data is collected, it is processed locally and periodically

forwarded to a base station, using a multi-hop routing protocol [27].

The processing subsystem on the nodes depends on the nature of the application. Applications

such as military reconnaissance that require signi�cant processing to be performed at the nodes

use sensor nodes with signi�cant processing power. As an example, an improved model of the

commonly used StrongARM 1100 processor (�AMPS [27] and HiDRA nodes) reaches a frequency

of 400 MHz and can support up to 64 MB of memory.

As the processing and storage capabilities of sensor nodes tend to follow Moore's Law their

communication and power subsystems become the major bottleneck of their design. For example,

over the last years, the energy capacity of the batteries used in such nodes has exhibited a mere

5



2-3% annual growth.

3

The main source of energy consumption in a node is the data transmission

process. There are several reasons for this:

1. The energy drain during transmission is much larger than the consumption during processing [9].

As an example, on a Berkeley MICA Mote sending one bit of data costs as much energy as 1,000

CPU instructions [18].

2. Transmission ranges between nodes are fairly short. The transmitted data may thus require to

traverse multiple hops to reach the base station. This retransmission process at each intermediate

node is very costly.

3. Nodes often use broadcast protocols over radio frequencies [17]. Due to the high density of nodes,

transmitted messages are not only received by the intended node, but by all nodes in the vicinity

of the sender, thus increasing the overall power consumption.

Even on applications where battery lifetime is not a concern (ex: military surveillance sensing

nodes attached to moving vehicles with practically in�nite power supply) available bandwidth may

not sustain a continuous feed of measurements for all sensors deployed in the terrain. The design

of data reduction protocols that e�ectively reduce the amount of data transmitted in the network

is thus essential when the goal is to meet the application's bandwidth constraints or to increase the

network's lifetime.

3.2 Data Model and Processing

In order not to deplete their power supply (and to conserve bandwidth), the sensors do not contin-

uously transmit every new measurement they take but rather wait till enough data is collected and

then forward it to the base station [27]. This form of batch processing allows them to power-down

their radio transmitter and prolong their lifetime in a way analogous to [17].

Within a sensor, the recorded data is depicted in a two dimensional array where each row i

stores sampled values of a distinct quantity. Informally, each row i is a time series

~

Y

i

of samples

from quantity i collected by the sensor. The array has N rows, N being the number of recorded

quantities and M columns, where M depends on the available memory.

4

3

http://nesl.ee.ucla.edu/courses/ee202a/2002f/lectures/L07.ppt

4

We here assume that all quantities are sampled with the same frequency. This simpli�es notation, however, our

framework also applies when each quantity is recorded on a di�erent schedule.

6



1

2

N

Base Signal

BaseM

M

Measurements Compressed Sensor Data Updates Sensor Data Update Log

Base Signal Updates Base Signal Update Log

Sensor Base Station

Figure 1: Transfer of approximate data values and of the base signal from each sensor to the base

station

As more measurements are obtained, the sensor's memory bu�ers become full. At this point the

latest NxM values are processed and each row i (of length M) is approximated by a much smaller

set of B

i

values, i.e. B

i

� M . The resulting \compressed" representation, of total size equal to

B =

P

N

i=1

B

i

, is then transmitted to the base station. The base station maintains the data in this

compact representation by appending the latest \chunk" to a log �le. A separate �le exists for each

sensor that is in contact with the base station. The entire process is illustrated in Figure 1.

Each sensor allocates a small amount of memory of size M

base

for what we call the base sig-

nal. This is a compact ordered collection of values of prominent features that we extract from

the recorded values and are used as a base reference in the approximate representation that is

transmitted to the base station (details will be given in the next section). The data values that

the sensor transmits to the base station are encoded using the in-memory values of the base signal

at the time of the transmission. The base signal may be updated at each transmission to ensure

that it will be able to capture newly observed data features and that the obtained approximation

will be of good quality. When such updates occur they are transmitted along with the data values

and appended in a special log �le that is unique for each sensor. This allows the base station to

reconstruct (approximately) the series

~

Y

i

at any given point in the past.

3.3 Our Optimization Problem

We can think of the base signal as a dictionary of features used to describe the data values. The

richer the pool of features we store in the base signal the better the approximation. On the other

7



Con�guration Parameters

N Number of input signals

M Measurements per input signal

Input Parameters

TotalBand Total bandwidth per transmission

M

base

Bu�er size for base signal values

Derived/Calculated Parameters

n = N � M Size of in-memory data

W =

p

n Size of each base interval

B Compressed Data Size

maxIns Maximum number of base intervals

inserted in current transmission

Ins Number of base intervals actually

inserted in the current transmission

Table 1: Con�guration, input and derived parameters of our algorithms

hand, these features have to be (i) kept in the memory of the sensor to be used as a reference by

the reduction algorithm and (ii) sent to the base station in order for it to be able to reconstruct

the values. Thus, for a target bandwidth constraint (number of values that can be transmitted)

the more insert and update operations on the base signal that we perform, the less bandwidth

that is left available for approximating the data values. Moreover, the time to perform the data

approximation increases, in our algorithms, linearly with the size of the base signal.

In the next section we present an e�cient algorithm that decides (i) how large the base signal

needs to be at each transmission (ii) what new features to be included in it (iii) which older features

are not relevant any more and (iv) how to best approximate the data measurements using these

features. The only user input needed by the algorithm is the target bandwidth constraint and the

maximum bu�er size of the base signal values.

4 The SBR Data Reduction Framework

We now describe our framework in more detail. We start with a motivational example that demon-

strates the intuition behind our techniques. Subsection 4.2 presents the primitive operations re-

quired by our framework while the SBR algorithm is presented in subsection 4.3. Table 1 contains

a brief description of the parameters used in our algorithms.

8



380

400

420

440

460

480

500

520

540

560

580

600

0 20 40 60 80 100 120

 

"Industrial"
"Insurance"

420

440

460

480

500

520

540

560

580

600

380 400 420 440 460 480 500 520 540 560 580

 

"Industrial_vs_Insurance"

Figure 2: Example of two Figure 3: XY scatter plot of

correlated signals (Stock Market) Industrial (X axis) vs Insurance (Y axis)

4.1 Motivational Example

Many real signals are correlated. We expect this to be particularly true for measurements taken

by a sensor, especially if they are physical quantities like temperature, dew-point, pressure etc.

The same is often true in other domains. For example, in Figure 2 we plot the average Industrial

and Insurance indexes from the New York stock market for 128 consecutive days.

5

Both signals

show similar trends, i.e. they go up and down together. Figure 3 depicts a XY scatter plot of

the same values. This is created by pairing values of the Industrial (X-coordinate) and Insurance

(Y-coordinate) indexes, of the same day, and plotting these points in a two-dimensional plane. The

strong correlation among these values makes most points lie on a straight line. This observation

motivates our work. Assuming that the Industrial index (call it

~

X) is given to us in a time-series

of 128 values, we can approximate the other time-series (Insurance:

~

Y ) as:

~

Y

0

= a �

~

X + b

The coe�cients a and b are determined by the condition that the sum of the square residuals,

or equivalently the L

2

error norm jj

~

Y

0

�

~

Y jj

2

, is minimized. This is nothing more than standard

linear regression. However, unlike previous methods, we will not attempt to approximate each

time-series independently using regression. In Figure 2 we see that the series themselves are not

linear, i.e. they would be poorly approximated with a linear model. Instead, we will use regression

5

Data at http://www.marketdata.nasdaq.com/mr4b.html

9



to approximate piece-wise correlations of each series to a base signal that we will choose accordingly.

In the example of Figure 3 the base signal can be the Industrial index (

~

X) and the approximation

of the Insurance index will be just two values (a, b). In practice the base signal may be much

smaller than the complete time series, since it only needs to contain the \important" trends of the

target signal

~

Y . For instance, in case

~

Y is periodic, a sample of the period would su�ce. Our

algorithm breaks the latest measurements obtained by the sensor into small intervals (of varying

sizes) and looks for intervals of the same length in the base signal that are linearly correlated. At

the same time, the base signal values are evaluated and may get updated with features from the

newly collected measurements when necessary.

4.2 Primitives of our Implementation

Piece-wise Approximation of Measurements

We here assume that the base signal

~

X is given to us. We will approximate the latest N �M

measurements in

~

Y

1

; : : : ;

~

Y

N

using B � 4�N values. We later describe how to construct the base

signal.

To simplify notation, we model the collected data as a single series

~

Y that is simply the concate-

nation of the N series

~

Y

i

. Our technique relies on breaking

~

Y into B=4 intervals and \mapping"

each one to an interval of the base signal of equal length.

6

The algorithm works recursively. It

starts with a single interval for each row of the collected data. In each iteration, the interval with

the largest error in the approximation is selected and divided in two halves, until the \budget" of

B=4 intervals is exhausted. An interval I is a data structure with six entries:

� start, length: these de�ne the scope of the interval; i.e. I represents values of Y [i], with i in

[start; start+ length).

� shift: it de�nes the part of the base signal that is used to approximate the values of I; the

interval I is mapped to segment [shift; shift+ length) in

~

X.

� a, b, err: the �rst two are the regression parameters, while err is the sum squared error (sse) of

the approximation.

Subroutine Regression() shown in Algorithm 1 lies in the core of our method. This function

6

This mapping requires 4 values per interval, thus the division by 4.

10



Algorithm 1 Regression Subroutine

Require:

~

X ,

~

Y , start x, start y, length

1: fCompute Regression Parametersg

2: sum x =

P

0�i<length

X[i+ start x]

3: sum y =

P

0�i<length

Y [i+ start y]

4: sum xy =

P

0�i<length

X[i + start x]Y [i+ start y]

5: sum x2 =

P

0�i<length

X[i+ start x]

2

6: a =

length�sum x y�sum x�sum y

length�sum x2�sum x�sum x

7: b =

sum y�a�sum x

length

fCompute sse of approximate signal

~

Y

0

= a

~

X + bg

fin range [start y; start y + length)g

8: err =

P

length�1

i=0

(Y [i+ start y]� (aX [i+ start x] + b))

2

9: return (a,b,err)

Algorithm 2 BestMap Subroutine

Require:

~

X ,

~

Y , Interval I, W

1: I:shift = �1

2: Perform standard linear regression on I and set the values of I:a, I:b and I:err

3: if I:length � 2�W then

4: fShift I over

~

X and �nd segment for whichg

5: fregression error is minimizedg

6: for shift in 0::length(

~

X)� I:length� 1 do

7: (a,b,err) = Regression(

~

X,

~

Y , shift, I:start, I:length)

8: if err is minimum error so far then

9: Update values of I:a, I:b, I:err and I:shift

10: end if

11: end for

12: end if

pairs a segment of the base signal between values [start x; start x + length) with values of Y

between [start y; start y+ length), as in Figure 3, and computes the regression parameters a, b as

well as the (sse) error of the approximation

~

Y

0

= a

~

X + b in this range. Each value Y [i] with index

i in [start y; start y + length) is approximated as aX[start x+ i� start y] + b.

It should be noted that the Regression() subroutine calculates the optimal a,b values that

minimize the sum squared error of the approximation. If the desired error metric is di�erent,

then the formulas need to be appropriately modi�ed. In the Appendix we present the necessary

modi�cations for two interesting optimization problems: minimizing the sum squared relative error,

and minimizing the maximum absolute error of the approximation. The modi�ed algorithms run

in O(length) time and require O(1) and O(length) space, respectively.

Subroutine BestMap() of Algorithm 2 looks for the best way to approximate an interval I.

11



It shifts I over

~

X and calculates the regression parameters and the approximation error for the

shift parameter that produces the smallest error. This algorithm contains two deviations from

our previous discussion. First, it also considers approximating each interval I using standard

linear regression, and uses a negative value for the I:shift parameter to denote this. Second, it

performs the shifting process over the base signal only for intervals with a maximum length of

2 �W , where W is a parameter that denotes the length of the intervals that constitute the base

signal.

7

The last modi�cation is performed both to reduce the time complexity of the algorithm

to O(I:length +W �M

base

), and because of the reduced likelihood that large intervals will be

accurately mapped to multiple consecutive intervals of the base signal.

The core approximation algorithm GetIntervals() is given in Algorithm 3. The approximation

obtained is returned as a list of B=4 intervals in i list. This list is maintained sorted (priority queue)

based on the sse of each interval.

~

X is the current base signal. The complete algorithm runs in

O(NMlog(

B

N

) + B �M

base

�W ) time. The logarithmic factor in the above formula is produced

because the size of the intervals in the algorithm is repeatedly halved.

For each interval in i list a record with four values (I:start, I:shift, I:a, I:b) is transmitted to

the base station. The base station will sort the intervals based on I:start and, thus, there is no

need to transmit their length. It is interesting to note that the GetIntervals() algorithm decides

dynamically how many intervals it will use to approximate each of the N rows of the collected data,

allocating more intervals to signals that are harder to approximate accurately.

Selecting Data Features for Inclusion in the Base Signal

We focus on the time when the sensor's memory is �lled with NxM values, as depicted in Figure 1.

We assume that the bu�er allocated to the base signal is of size M

base

. This bu�er is organized as

a list of intervals (called base intervals) of the same length W . For simplicity, we assume that both

M and M

base

are multiples of W . We note here that in Algorithm 3 the base signal is presented

as a series of M

base

values, which is simply the concatenation of the base intervals in the bu�ers.

The GetBase() algorithm (Algorithm 4) lies in the core of the initialization and update pro-

cedure of the base signal. The algorithm receives as inputs the N signals, each of size M , the

size W of each base interval, and the maximum number of intervals maxIns that can be inserted

7

This will become more clear later in our discussion.

12



Algorithm 3 GetIntervals Algorithm

Require:

~

X ,

~

Y

1

,. . . ,

~

Y

N

, B, W

1: i list = ()

2:

~

Y = concat(

~

Y

1

; : : : ;

~

Y

N

) fVirtual assignmentg

3: fCreate an interval for each row

~

Y

i

(M values each)g

4: for i in 1..N do

5: (I:start, I:length) = ((i-1) � M , M)

6: BestMap(

~

X ,

~

Y , I, W )

7: i list.push(I);

8: end for

9: num intervals = N

10: while num intervals++ < B / 4 do

11: fi list is sorted on decreasing order of I:errg

12: I = i list.pop()

13: fBreak I in 2 piecesg

14: (I

left

:start, I

left

:length) = (I:start, I:length=2)

15: BestMap(

~

X ,

~

Y , I

left

, W )

16: (I

right

:start, I

right

:length) =

(I:start+I:length=2, I:length=2)

17: BestMap(

~

X ,

~

Y , I

right

, W )

18: i list.push(I

left

)

19: i list.push(I

right

)

20: end while

21: return i list

in our base signal, where maxIns =

minfM

base

;T otalBandg

W

. Each input signal

~

Y

i

is broken into

M

W

non-overlapping intervals of size W . This provides a \dictionary" of

N�M

W

candidate base intervals

(CBIs). The algorithm will choose maxIns CBIs out of this dictionary to be inserted into a can-

didate update base signal. We will describe in subsection 4.3 how to determine how many of these

CBIs will ultimately be inserted into the base signal.

Each CBI Cand

i

can be used to approximate any other CBI Cand

j

, which is in-fact part of some

~

Y

k

, using regression. We consider such an approximation to be bene�cial, only if the error of the

approximation is smaller than the error of approximating Cand

j

using standard linear regression.

In Algorithm 4 we denote the latter error as LinearErr(Cand

j

). The bene�t of using Cand

i

to

approximate Cand

j

is the reduction in error that we get compared to LinearErr(Cand

j

).

The CBIs are stored in an unordered list Q. At each step of the algorithm, the CBI in Q with

the largest bene�t is selected for inclusion in the candidate update base signal stored in base list.

After each selection, the bene�ts of the remaining CBIs in Q have to be properly updated. As we

mentioned, the bene�t of using Cand

i

to approximate Cand

j

is originally equal to the reduction

13



Algorithm 4 GetBase() Algorithm

Require:

~

Y

1

; : : : ;

~

Y

N

, W , M , maxIns

1: Create K =

N�M

W

CBIs of width W

2: For each CBI Cand

i

, set its bene�t to 0

3: Maintain unsorted list Q with CBIs

4: Maintain list base list with selected stored intervals

5: LinearErr(Cand

j

) is the error of approximating Cand

j

using standard linear regression

6: for i in 1..K do

7: for j in 1..K do

8: fCalculate error of approximating the j-thg

9: fCBI by using as base the i-th CBIg

10: error=Regression(Cand

i

,Cand

j

,0,0,W )

11: if err � LinearErr(Cand

j

) then

12: Cand

i

:benefit+=LinearErr(Cand

j

)-error

13: end if

14: end for

15: Q.insert(Cand

i

)

16: end for

17: for i in 1..maxIns do

18: C = Q.popBestInterval()

19: base list.insert(C)

20: for j in 1..jQj do

21: adjust(Q[j].bene�t, C)

22: end for

23: end for

24: return base list

in error that we get compared to LinearErr(Cand

j

). However, at an intermediate step of the

algorithm, some CBIs have already been selected for inclusion in the candidate update base signal.

By using these stored CBIs, many of the remaining CBIs can now be better approximated than by

using standard linear regression. Thus, the bene�t of using Cand

i

to approximate Cand

j

has to be

adjusted, to depict the reduction in error that we get when compared to the best approximation

for Cand

j

that we have so far, by using the current candidate update base signal.

An example is presented in Figure 4. In this small example we consider just 3 CBIs, out of

which we need to pick which two to select. In the left part of the �gure, we present the bene�ts of

each of the 3 CBIs. The �rst CBI has the largest total bene�t, and is thus selected. In the right

part of the �gure, the adjusted bene�ts of the remaining CBIs are presented. Notice that now, the

third CBI will be selected, even though initially it had a lower bene�t than the second CBI.

In the GetBase() algorithm, for each of the K =

N�M

W

CBIs, we �rst estimate its bene�t for

14



Approximated CBI Total

CBI 1 2 3 Bene�t

1 1 0.95 0.50 2.45

2 0.8 1 0.55 2.35

3 0.6 0.65 1 2.25

Approximated CBI Total

CBI 2 3 Bene�t

2 0.05 0.05 0.10

3 0 0.5 0.50

Initial Bene�ts of CBIs Adjusted Bene�ts of Non-Stored CBIs

Figure 4: Example of the GetBase() Algorithm

approximating all the other CBIs. Each such approximation requires O(W ) time, thus resulting in

a total complexity of O(

N

2

M

2

W

). Then, for each of themaxIns selected CBIs, detecting the one with

the largest bene�t requires O(K) time (we do not sort the CBIs). After each selection, adjusting

the bene�ts of the remaining CBIs requires time O(K

2

). Thus, the overall running time complexity

of the algorithm is O(

N

2

M

2

W

+maxIns�

N

2

M

2

W

2

), while its space requirements is O(

N

2

M

2

W

2

).

For n = N �M being the size of the data, a value of W =

p

n used by the SBR algorithm

(described in the next subsection) results in a running time of O(n

1:5

) for GetBase() and space of

O(n), since maxIns�W � TotalBand � n. In case of severe memory constraints, we can easily

modify the GetBase() algorithm to only store for each CBI the smallest error of approximating it

using at each step the current base signal. The only modi�cation will be to replace Lines 20-22

of the GetBase() algorithm with a double for-loop similar to the one of Lines 6-16, and alter the

calculation of each CBI's bene�t to take into account the error of the best approximation that we

have for each CBI so far. This modi�ed algorithm requires O(

p

n) space and has a running time

of O(maxIns� n

1:5

).

4.3 The SBR Algorithm

We now present the Self-Based Regression (SBR) algorithm, which performs the approximation of

the data values. The algorithm receives as input the latest n = N �M data values, a bandwidth

constraint TotalBand (number of values to transmit, including any base signal values), the maxi-

mum size of the base signal M

base

and the current base signal

~

X of size j

~

X j �M

base

.

8

From these

parameters the user/application has to provide only TotalBand and M

base

. The SBR algorithm

must then make the following decisions:

1. Decide how many, and which base intervals to insert into the base signal. Recall that any such

8

At the �rst transmission the current base signal will be empty.

15



Algorithm 5 SBR Algorithm

Require:

~

X;

~

Y

1

; : : : ;

~

Y

N

, M , TotalBand, M

base

1: maxIns =

minfM

base

;TotalBandg

W

2: W =

p

N �M

3: base list = GetBase(

~

Y

1

; : : : ;

~

Y

N

;W;M;maxIns)

4: fErrors[i] is the approximation error after insertingg

5: fthe �rst i CBIs of base list in the base signalg

6: Initialize Errors[i] = UNDEFINED 8i 2 [0::maxIns]

7: Ins = Search(

~

X;

~

Y

1

; : : : ;

~

Y

N

;W;M; TotalBand; base list;

Errors; 0;maxIns)

8: Form

~

X

new

by appending the Ins �rst intervals of the base list to

~

X

9: B = TotalBand� Ins� (W + 1)

10: GetIntervals(

~

X

new

;

~

Y

1

; : : : ;

~

Y

N

; B;W )

11: if j

~

X

new

j > M

base

then

12: Evict Repl =

j

~

X

new

j�M

base

W

intervals of

~

X

new

that also belonged to

~

X using a LFU replacement policy

13: Replace evicted intervals with the last Repl intervals of

~

X

new

14: end if

15:

~

X =

~

X

new

16: Transmit the inserted base intervals, their o�sets in the base signal and the regression intervals

Algorithm 6 CalculateError SubRoutine

Require:

~

X;

~

Y

1

; : : : ;

~

Y

N

; B;W;Errors; pos

1: if Errors[pos] == UNDEFINED then

2: list' = GetIntervals(

~

X;

~

Y

1

; : : : ;

~

Y

N

; B � pos�W;W )

3: Errors[pos] = sum of errors in list'

4: end if

base intervals need to be transmitted to the base station.

2. If the above procedure causes the size of the base signal to exceedM

base

, then some base intervals

need to be evicted from the base signal, in order to keep its maximum size at M

base

.

3. Decide how to best approximate the data values given the updated base signal.

We here have to emphasize that it is not always desirable to insert a large number of base

intervals into the base signal. Since any inserted base interval needs to be communicated to the

base station, the larger the number of such intervals, the smaller the number of intervals that can be

used to approximate the N signals by the GetIntervals() algorithm, since the overall bandwidth

consumption is upper-bounded by the TotalBand parameter.

The SBR algorithm is presented in Algorithm 5. It initially calls the GetBase() subroutine to

select a set of maxIns =

minfM

base

;T otalBandg

W

CBIs. It then performs a binary search on this list,

to determine the number of CBIs that will ultimately be inserted into the base signal. This search

terminates when the algorithm determines a number of intervals Ins, such that the error of the

16



Algorithm 7 Search SubRoutine

Require:

~

X;

~

Y

1

; : : : ;

~

Y

N

;W;B; base list; Errors; start; end

1: if end == start then

2: return start

3: end if

4: middle = (start + end) / 2

5: CalculateError(

~

X;

~

Y

1

; : : : ;

~

Y

N

; B;W;middle)

6: CalculateError(

~

X;

~

Y

1

; : : : ;

~

Y

N

; B;W; start)

7: if Errors[middle] > Errors[start] then

8: CalculateError(

~

X;

~

Y

1

; : : : ;

~

Y

N

; B;W; end)

9: if Errors[end] > Errors[start] then

10: return Search(

~

X;

~

Y

1

; : : : ;

~

Y

N

;W;M;B; base list; Errors; start;middle)

11: else

12: return Search(

~

X;

~

Y

1

; : : : ;

~

Y

N

;W;M;B; base list; Errors;middle; end)

13: end if

14: else

15: CalculateError(

~

X;

~

Y

1

; : : : ;

~

Y

N

; B;W;middle+ 1)

16: if Errors[middle + 1] < Errors[middle] then

17: return Search(

~

X;

~

Y

1

; : : : ;

~

Y

N

;W;M;B; base list; Errors;middle+ 1; end)

18: else

19: return Search(

~

X;

~

Y

1

; : : : ;

~

Y

N

;W;M;B; base list; Errors; start;middle)

20: end if

21: end if

approximation when inserting the �rst Ins intervals of the aforementioned list in the base signal

is lower than inserting either the �rst Ins� 1 intervals, or the �rst Ins+ 1 intervals into the base

signal. This is achieved through the call to function Search() at Line 7, which is presented in

Algorithm 7. The approximation of the N signals is then performed by using the concatenation of

the previous base signal with these Ins intervals. After this step, if the size of the base signal now

exceeds M

base

, then enough base intervals of the old base signal are evicted from the base signal

using a Least Frequently Used (LFU) replacement policy. Any newly inserted base interval will

thus either occupy an empty position of the base signal, or replace another base interval. Each

transmission includes exactly TotalBand values:

1. The Ins newly inserted base intervals, and their position in the base signal in which they were

ultimately inserted (Ins� (W + 1) values in total).

2.

TotalBand�Ins�(W+1)

4

intervals of four values each (start, shift plus the two regression parameters).

The running time complexity of the SBR algorithm is O(n

1:5

+(nlog(

TotalBand

N

)+TotalBand�

p

n�M

base

)� log(maxIns)), where maxIns =

minfM

base

;T otalBandg

p

n

. Thus the entire algorithm has

a modest O(n

1:5

) dependency on the data size, while its running time scales linearly with the size

17



of the transmitted data TotalBand and the (maximum) size of the base signal M

base

.

5 Experiments

In this section, we provide a thorough analysis of our techniques. In subsection 5.1 we describe the

datasets we used. In subsection 5.2 we compare the SBR algorithm against standard approximation

techniques (Wavelets, DCT, Histograms). Finally, in subsection 5.3 we compare the GetBase() al-

gorithm against alternative base-signal constructions, while in subsection 5.4 we present an analysis

of the SBR algorithm.

5.1 Dataset Description

For the experiments we used the following real datasets:

� Phone Call Data: Includes the number of long distance calls originating from 15 states (AZ,

CA, CO, CT, FL, GA, IL, IN, MD, MN, MO, NJ, NY, TX, WA). For each state we provide the

number of calls per minute for a period of 19 days (data from AT&T's network).

� Weather Data: Includes the air temperature, dewpoint temperature, wind speed, wind peak,

solar irradiance and relative humidity weather measurements for the station in the university of

Washington, and for year 2002 (http://www-k12.atmos.washington.edu/k12/grayskies).

� Stock Data: Includes information on all trades performed in a minute basis over April 3 and

April 4 of year 2000. The approximated measure in our experiments is the trade value of the

stock.

5.2 Comparison to Alternative Techniques

5.2.1 Experimental Setup

For this experiment we used all three datasets described in Section 5.1. From the Stock data,

we extracted the trade values of the following ten (N=10) stocks: Microsoft, Oracle, Intel, Dell,

Yahoo, Nokia, Cisco, WorldCom, Ariba and Legato Systems. For each stock we created a random

sample of 20480 of its trade values, and then split each sample in ten �les of 2048 values each. The

�rst of these ten �les of each stock was used for the initial creation of our base signal, while the

18



Compression Weather Data Stock Data

Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5% 1.160 2.187 35.835 27.692 0.089 0.123 0.232 0.283

10% 0.403 0.824 20.169 11.294 0.033 0.056 0.208 0.233

15% 0.209 0.514 14.328 5.432 0.017 0.034 0.192 0.214

20% 0.118 0.356 10.774 3.009 0.009 0.022 0.179 0.199

25% 0.069 0.258 8.975 1.507 0.006 0.015 0.166 0.182

30% 0.043 0.191 6.526 0.995 0.003 0.011 0.153 0.169

Table 2: Average SSE Error Varying the Compression for Weather and Stock Datasets

remaining �les were used to simulate nine update operations. For the Weather dataset, we selected

the �rst 40960 records and then split the data measurements of each signal into ten �les of 4096

values each. For the Phone Call dataset, the aggregates for each state (N=15) were broken into

ten �les of 2560 values each.

In our experiments we compared the accuracy of SBR against the approximations obtained by

using the Wavelet decomposition [5, 29], equi-depth Histograms [23] and the DCT. The Fourier

transform was also considered, but produced consistently larger errors than DCT and is thus

omitted. For a fair comparison we set the space used by all methods to the exact same amount.

For all methods we considered both treating each bunch of updates as a group of N series

~

Y

i

, each of length M , and, alternatively, concatenating the signals into a single series Y of length

N �M . For Wavelets, we found out that this produced in most cases signi�cantly more accurate

results than by dividing the space equally among the N signals (by a factor of 5 in many cases)

because some signals needed more wavelet coe�cients than others to be approximated well. For

Wavelets, we also considered a 2-dimensional decomposition of the N �M values, which produced

worse results than the 1-dimensional decomposition. In the tables we present the best results

achieved by each method.

5.2.2 Comparison Varying the Compression Ratio

We varied the compression ratio (size of the transmitted data TotalBand over the data size n)

from 5% to 30%. In this experiment we set M

base

to 2048 values for the Phone Call and the Stocks

datasets and to 3456 values for the Weather dataset. In Tables 2 and 3 we present the results.

In all datasets SBR produces signi�cantly more accurate results than the other approximations.

The di�erence is larger for the Phone Call dataset which contained the largest values. As the size

19



Compression Average SSE Error Total Sum Squared Relative Error

Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5% 9,631 29,938 15,714 165,241 922 38,477 9,019 139,528

10% 5,071 12,349 10,173 45,610 503 19,186 3,002 62,337

15% 3,192 7,998 6,767 23,311 325 12,885 1,400 36,812

20% 2,170 5,821 5,661 15,581 222 10,954 1,192 34,820

25% 1,527 4,468 4,791 11,340 158 6,915 823 33,237

30% 1,091 3,537 4,157 8,689 116 3,865 721 30,010

Table 3: Errors Varying the Compression Ratio for Phone Dataset

of transmitted data increases, the error in our method decreases more sharply, and is up to 4.4

times smaller than the error of Wavelets. The DCT and the Histogram approximations produced

much larger errors is most cases.

We repeated the experiment for the Phone Call dataset, computing this time the sum-squared

relative error. The results are also shown in Table 3. The modi�ed Regression() algorithm is

presented in the Appendix. Depending on the compression ratio, our method was up to 49 times

better than Wavelets, 9.8 times better than DCT and 258 times better than Histograms. We

notice here that for this comparison we used straight-forward Wavelets that are optimal only under

the sum-squared-error. Garofalakis and Gibbons in [11] describe novel algorithms for minimizing,

among other metrics, the relative error of a Wavelet-based approximation. Except for cases of very

skewed datasets, they observe a reduction of the mean relative error up to 3 times over regular

Wavelets. These improvements were seen for very coarse approximations (i.e. for a compression

ratio of 5% or less) where our method already has an advantage of 42-1 over regular Wavelets. For

more space, their techniques are a lot closer to regular Wavelets.

5.2.3 Mixing The Datasets

At this experiment we tried mixing data from di�erent datasets, to reduce the amount of correlation

among the approximated signals. We thus created a dataset that contains phone call data from three

states (AZ, CA and FL), three types of meteorological measurements (air temperature, pressure

and solar irradiance), and data from three stocks (Microsoft, Intel and Oracle). For each of these

data series we created ten �les of 2048 values each. We then varied the compression ratio of all

algorithms from 5% to 30% and set M

base

to 2048 values. In Table 4 we present the average sum

squared and total sum squared relative errors for all methods. The improvements of the SBR

20



Compression Average SSE Error Total Sum Squared Relative Error

Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5% 2,900 8,094 12,677 199,150 113 20,974 29,625 182,027

10% 918 3,020 7,146 46,805 37 11,054 8,653 43,701

15% 364 1,582 4,757 23,711 17 5,481 4,825 26,068

20% 139 894 3,814 14,157 9 5,310 3,339 14,780

25% 46 516 3,120 10,486 5 5,172 6,115 11,118

30% 11 297 2,680 6,894 3 5,109 1,579 9,591

Table 4: Errors for Varying Compression Ratios for the Mixed Dataset

Error over GetBase()

Dataset GetBaseSVD() Linear Regression GetBaseDCT()

Weather 10.55 4.47 6.44

Phone 1.13 1.32 1.19

Stock 2.08 2.77 2.99

Table 5: Comparison to Alternative Base Signals

algorithm were even larger in this case. The SBR algorithm produced up to 27 times smaller

average sum squared errors than the closest competitor, while the improvement reached up to 1034

times for the total sum squared relative error.

5.3 Alternative Base Signal Constructions

In the Appendix we present two alternative algorithms to GetBase(). The �rst, denoted as

GetBaseSVD(), is based on the Singular Value Decomposition. The second algorithm, GetBaseDCT(),

uses the basis of the Discrete Cosine Transform (DCT), which is a collection of cosine functions.

Finally, a third alternative for SBR, is to do standard linear regression without using a specially

constructed base signal. For the later case, no bandwidth is lost for sending base signal values

and we do not need the I:shift pointer. Thus we can send exactly TotalBand/3 intervals for a

bandwidth limit TotalBand. Similarly, the DCT-base consists of cosine functions and its values

are constructed on the y and are thus neither stored in memory, nor are they transmitted to the

base station.

In Table 5 we compare the approximations obtained by using the base signals computed in

algorithm GetBase() with the base signal from the alternative constructions. We need to emphasize

here that for this experiment we modi�ed the BestMap() function not to use linear regression as

an alternative to using the base signal (so that the di�erences among GetBase(), GetBaseSVD(),

21



Transmission

Dataset 1 2 3 4 5 6 7 8 9 10

Weather 7 6 0 3 1 4 0 1 1 1

Phone 8 6 0 1 0 0 2 0 0 0

Stock 6 0 0 2 1 2 0 1 0 0

Table 6: Number of Inserted Base Intervals per Transmission

5 10 15 20 25 30
Transmitted Data (% of data size)

30

40

50

60

70

80

90

100

110

R
u
n
n
in

g
 T

im
e 

(s
ec

)

Stock Data

Figure 5: Average Running Time vs TotalBand

GetBaseDCT() and linear regression are not di�used). Using the BestMap() function as presented

in Section 4.2 would thus further improve the results of our method. The compression ratio was

set to 10%. We notice that GetBase() performs a lot better in the Weather dataset, up to 10 times

better than the alternative algorithms. For the Phone Call and the Stock data the di�erences are

smaller but still signi�cant.

5.4 Analysis of SBR

We now analyze several characteristics of the SBR algorithm, including its running time, the number

of base intervals it selects for inclusion in the base signal and the quality of its decisions.

In Figure 5 we plot the average time of each transmission operation for the Stock dataset, when

the size of the transmitted data is varied from 5% to 30% of the data size, and for an experimental

setup similar to the one of Section 5.2.2. Since we have not yet ported our code to the StrongARM

platform, we executed this experiment on a Irix machine using a 300MHz processor. As expected

(see Section 4.3) the running time scales linearly with the size of the transmitted data. Notice that

SBR is signi�cantly faster when greater reduction is obtained. For many practical applications, we

expect to use a compression ratio of 10% or less.

The SBR algorithm dynamically decides the number of base signal values to use for an upper

bound M

base

. We now compare SBR against a straight-forward implementation that populates all

22



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Base Intervals

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E
rr

o
r 

C
o
m

p
ar

ed
 t

o
 U

si
n
g
 1

 B
as

e 
In

te
rv

al

Stock Data
Phone Data
Weather Data

SBR Selection

Figure 6: SSE error vs base signal size

the available space for the base signal. In Figure 6 we plot the error of only the initial transmission

as the size of the base signal is varied, manually, from 1 to 30 intervals for the Phone, Stock

and Weather datasets. For this initial transmission we populated the entire space of the base

signal using the GetBase() algorithm. For each dataset we also show the selection that the SBR

algorithm made, when deciding how many base intervals to populate. For presentation purposes

the errors for each dataset have been divided by the error of the approximation when using just

one interval. We set the size of each stock, phone and weather data �le to 3072, 2048 and 5120

values, correspondingly, in order for all datasets to have exactly the same size, and the TotalBand

value to 5012, which results to a compression ratio of about 16%.

The �xed value of the compression ratio implies that an increase in the size of the base signal

results in a decrease in the number of intervals used to approximate the data values in order to

keep the total space constant. After some point, the bene�t of storing more intervals for the base

signal is outweighted by the increase in the error that we get due to the reduced number of intervals

used for the approximation. It is interesting to see that the optimal case occurs for a base size of

between 7 (for the Weather dataset) and 9 base intervals (for the Stock dataset), which correspond

to just 2.9% to 3.75% of the data size at the �rst transmission. The SBR algorithm made the

optimal choice for the Phone and Weather datasets and produced a near-optimal solution for the

Stock dataset (it selected to insert 6 base intervals, instead of 9). We remind that the M

base

base

signal values need to be kept in the memory of the sensor in order to perform the approximation.

Our results suggest that a very small fraction of memory needs to be sacri�ced for these values.

For the same data setup, we report in Table 6 the number of inserted base intervals during the 10

23



transmissions. As we can see, most base intervals are inserted during the �rst two transmissions.

We notice that there are many transmissions on which no new base intervals are inserted, and

that the di�erent datasets seem to contain a widely di�erent number of features, with the Weather

dataset containing the most features, and the Stock dataset containing the fewest.

6 Conclusions

We presented a new data reduction technique designed for data disseminated over sensor networks.

Our method splits the recorded series into intervals of variable length and then encodes each of them

using an arti�cially constructed base signal. The values of the base signal are extracted from the

real measurements and maintained dynamically as data changes. In our experiments we used real

datasets from a variety of �elds (weather, stock and phone call data). Using the sum-squared error

and the sum-squared relative error of the approximation, our method signi�cantly outperformed in

accuracy approximations obtained by using Wavelets, DCT and Histograms.

A key to our method is the use of the base signal for encoding piece-wise linear correlations

among the data values. We emphasize here that our method does not only apply to linear datasets;

in fact none of the data we used are linear in nature. Linearity is exploited when encoding the

correlations of the data values and the base signal. An interesting question is to what extent non-

linear encodings over the base signal values would bene�t the approximations obtained without

sacri�cing complexity. We plan to investigate this path in the future.

References

[1] N. Ahmed, T. Natarakan, and K.R. Rao. Discrete cosine transform. In IEEE Trans. on

Computers, C-23, 1974.

[2] B. T. Loo C. Olston and J. Widom. Adaptive Precision Setting for Cached Approximate

Value. In ACM SIGMOD, 2001.

[3] J. Jiang C. Olston and J. Widom. Adaptive Filters for Continuous Queries over Distributed

Data Streams. In ACM SIGMOD Conference, pages 563{574, 2003.

24



[4] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Con�guring sEnsor Network Topologies. In

INFOCOM, 2002.

[5] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate Query Processing

Using Wavelets. In Proc. of the 26th VLDB Conf., 2000.

[6] J. Chen, D.J. Dewitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Continuous Query

System for Internet Databases. In ACM SIGMOD 2000.

[7] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-Dimensional Regression Analysis

of Time-Series Data Streams. In Proc. of VLDB, 2002.

[8] M. Cherniack, M. J. Franklin, and S. B. Zdonik. Data Management for Pervasive Computing.

In VLDB, 2001.

[9] D. Estrin, R. Govindan, J. Heidermann, and S. Kumar. Next Century Challenges: Scalable

Coordination in Sensor Networks. In MobiCOM, 1999.

[10] D. Ganesan, D. Estrin, and J. Heidermann. DIMENSIONS: Why do we need a new Data

Handling architecture for Sensor Networks? In HotNets-I, 2002.

[11] M. Garofalakis and P. B. Gibbons. Wavelet Synopses with Error Guarantees. In ACM SIG-

MOD, 2002.

[12] J. Heidermann, F. Silva, C. Intanagonwiwat, R. Govindanand D. Estrin, and D. Ganesan.

Building E�cient Wireless Sensor Networks with Low-Level Naming. In SOSP, 2001.

[13] J.M. Hellerstein, M.J. Franklin, S. Chandrasekaran, A. Descpande, K.Hildrum, S. Madden,

V. Raman, and M.A. Shah. Adaptive Query Processing: Technology in Evolution. In IEEE

Data Engineering Bulletin 23(2), 2000.

[14] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidermann. Impact of Network Density

on Data Aggregation in Wireless Sensor Networks. In ICDCS, 2002.

[15] F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Quanti�able Data Mining Using Ratio

Rules. VLDB Journal, 8(3-4):254{266, 2000.

25



[16] J. Lee, D. Kim, and C. Chung. Multi-dimensional Selectivity Estimation Using Compressed

Histogram Information. In ACM SIGMOD 1999.

[17] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A Tiny Aggregation Service

for ad hoc Sensor Networks. In OSDI Conf., 2002.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design of an Acquisitional

Query processor for Sensor Networks. In ACM SIGMOD Conf, June 2003.

[19] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based Histograms for Selectivity Estimation.

In ACM SIGMOD 1998.

[20] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,

J. Rosenstein, and R. Varma. Query Processing, Resource Management, and Approximation

in a Data Stream Management System. In CIDR, 2003.

[21] C. Olston and J. Widom. O�ering a Precision-Performance Tradeo� for Aggregation Queries

over Replicated Data. In VLDB Conference, pages 144{155, 2000.

[22] V. Poosala and Y. E. Ioannidis. Selectivity Estimation Without the Attribute Value Indepen-

dence Assumption. In Proc. of the 23th VLDB Conf., 1997.

[23] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved Histograms for Selectivity

Estimation of Range Predicates. In ACM SIGMOD 1996.

[24] L. Qiao, D. Agrawal, and A.E. Abbadi. RHist: Adaptive Summarization over Continuous

Data Streams. In CIKM 2002.

[25] S. Prabhakar R. Cheng, D. V. Kalashnikov. Evaluating Probabilistic Queries over Imprecise

Data. In ACM SIGMOD, 2003.

[26] W. C. Tan S. Khanna. On Computing Functions with Uncertainty. In ACM PODS Conference,

2001.

[27] E. Shih, S.-H. Cho, and N. Ickes et al. Physical Layer Driven Protocol and Algorithm Design

for Energy-E�cient Wireless Sensor Networks. In MOBICOM 2001.

26



[28] S. D. Viglas and J. F. Naughton. Rate-based Query Optimization for Streaming Information

Sources. In ACM SIGMOD Conference, pages 37{48, 2002.

[29] J.S Vitter and M. Wang. Approximate Computation of Multidimensional Aggregates of Sparse

Data Using Wavelets. In Proceedings of ACM SIGMOD, 1999.

[30] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing in Sensor

Networks. SIGMOD Record, 31(3):9{18, 2002.

[31] S. B. Zdonik, M. Stonebraker, M. Cherniack, U. Cetintemel, M. Balazinska, and H. Balakrish-

nan. The Aurora and Medusa Projects. IEEE Data Engineering Bulletin, 2003.

Appendix

Alternative Base Signal Constructions

We here present the two alternative algorithms for obtaining a base-signal from the data in more

details.

Construction Using SVD

SVD involves computing the eigenvectors and eigenvalues of a given N � n matrix R. It can be

proven that any real matrix can be written as:

R = U � �� V

t

where U is a column-orthonormal N � r matrix, r is the rank of matrix R, � is a diagonal r � r

matrix of the eigenvalues �

i

of R and V is a column-orthonormal n � r matrix. By de�nition

U

t

� U = V

t

� V = I, where I is the identity matrix. It can be shown that the columns of V are

the eigenvectors of matrix R

t

�R. Similarly, the eigenvalues of R

t

�R are the squares of �

i

s i.e.

R

t

�R = V � �

2

� V

t

For R=A (our collected measurements), R

t

� R captures the similarities among the columns

of A (each collected sample). SVD can be used for approximating R

t

�R by keeping the �rst few

27



eigenvectors (columns of matrix V ). Informally, each eigenvector captures linear trends among the

rows of A (the

~

Y

i

s), see [15] for an application of this observation in a di�erent context.

We here propose the use of SVD as a competitor to the GetBase() algorithm for generating a

base signal from the data. We sketch the new algorithm (GetBaseSVD()) bellow.

1. For each row of A, list all non-overlapping intervals of length W . This gives us

M

W

intervals

per row and n =

N�M

W

intervals overall.

2. Build an n�W matrix R whose rows are the intervals of the previous step.

3. Compute the SVD of R = U � �� V

t

. Return the �rst Store columns of V .

By de�nition, V is an r�W matrix (r=rank(R)) of the eigenvectors of R

t

�R. The eigenvectors

are ordered from left to right in V . The �rst column of V contains the eigenvector (of lengthW ) that

corresponds to the largest eigenvalue of R

t

�R. The algorithm returns the top-Store eigenvectors

of total size Store�W . These constitute the base signal from GetBaseSVD().

Construction Using DCT

The base signal can be constructed from the basis-vectors of standard mathematical transforms.

As an example we present a base signal construction, motivated by the Discrete Cosine Transform

(DCT). Assuming we are to use base intervals, each of length W , we enumerate all frequencies f

such that 0 � f � W . For each frequency f , we de�ne a base interval with values cos(

(2i+1)�

2W

f),

where 0 � i < W . We call this algorithm GetBaseDCT(). We notice we do not need to store these

intervals implicitly as they can be computed on the y.

Handling Other Error Metrics

We now present the necessary modi�cations to the Regression algorithm of Section 4.2 when the

desired error metric involves minimizing the sum squared relative errors, or the maximum absolute

error of the approximation.

The Regression algorithm approximates the value Y [i+ start y] as a�X[i+ start x] + b. The

28



relative error induced by this approximation is:

jY [i+ start y]� a�X[i + start x]� bj

maxfc; jY [i+ start y]jg

The c value serves as a sanity bound, and helps avoid very large relative error values when the

Y [i + start y] value is either zero, or close to zero. The Regression algorithm that minimizes the

sum squared relative error of the approximation is presented in Algorithm 8.

Algorithm 8 Regression Subroutine that Minimizes the Sum of the Squared Relative Errors

Require:

~

X ,

~

Y , start x, start y, length, sanity

1: fCompute Regression Parametersg

2: sum x=

P

0�i<length

X[i+start x]

maxfsanity;jY [i+start y]jg

3: sum y=

P

0�i<length

Y [i+start y]

maxfsanity;jY [i+start y]jg

4: sum xy=

P

0�i<length

X[i+start x]Y [i+start y]

maxfsanity;jY [i+start y]jg

5: sum x2=

P

0�i<length

X[i+start x]

2

maxfsanity;jY [i+start y]jg

6: sum z=

P

0�i<length

1

maxfsanity;jY [i+start y]jg

7: a=

sum z�sum x y�sum x�sum y

sum z�sum x2�sum x�sum x

8: b=

sum y�a�sum x

sum z

fCompute sum squared relative error of signalg

f

~

Y

0

= a

~

X + b in range [start y : : : start y + length)g

9: err =

P

length�1

i=0

(

Y [i+start y]�(a�X[i+start x]+b)

maxfsanity;jY [i+start y]jg

)

2

10: return (a,b,err)

Calculating the a,b parameters that minimize the maximum absolute error of the approximation

is somewhat harder to accomplish. The solution is based on the well known Chebyshev approxima-

tion problem, which can be solved with a randomized linear programming algorithm in O(length)

randomized expected time and O(length) space.

29


