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Abstract

While work in recent years has demonstrated that wavelets can be efficiently used to compress
large quantities of data and provide fast and fairly accurate answers to queries, little emphasis
has been placed on using wavelets in approximating datasets containing multiple measures.
Existing decomposition approaches will either operate on each measure individually, or treat all
measures as a vector of values and process them simultaneously. We show in this paper that
the resulting individual or combined storage approaches for the wavelet coefficients of different
measures that stem from these existing algorithms may lead to suboptimal storage utilization,
which results to reduced accuracy to queries. To alleviate this problem, we introduce in this
work the notion of an extended wavelet coefficient as a flexible storage method for the wavelet
coefficients, and propose novel algorithms for selecting which extended wavelet coefficients to
retain under a given storage constraint. Experimental results with both real and synthetic
datasets demonstrate that our approach achieves improved accuracy to queries when compared
to existing techniques.

1 Introduction

Decision Support Systems (DSS ) require processing huge quantities of data to produce exact an-
swers to posed queries. Due to the sheer size of the processed data, queries in DSS systems are
typically slow. However, many situations arise when an exact answer to a query is not necessary,
and the user would be more satisfied by getting a fast and fairly accurate answer to his query,
perhaps with some error guarantees, than by waiting for a long time to receive an answer accurate
up to the last digit. This is often the case in OLAP applications, where the user first poses gen-
eral queries while searching for interesting trends on the dataset, and then drills down to areas of
interest.

Approximate query processing techniques have been proposed recently as methods for providing
fast and fairly accurate answers to complex queries over large quantities of data. The most popular
approximate processing techniques include histograms, random sampling and wavelets. In recent
years there has been a flurry of research on the application of these techniques to such areas as
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selectivity estimation and approximate query processing. The work in [4, 10, 18] demonstrated
that wavelets can achieve increased accuracy to queries over histograms and random sampling.

However, one of the shortcomings of wavelets is that they cannot easily extend to datasets
containing multiple measures. Such datasets are very common in many database applications. For
example, a sales database could contain information on the number of items sold, the revenues and
profits for each product, and costs associated with each product, such as the production, shipping
and storage costs. Moreover, in order to be able to answer types of queries other than Range-Sum
queries, it would be necessary to also store some auxiliary measures. For example, if it is desirable
to answer Average queries, then the count for each combination of dimension values also needs to
be stored.

Surprisingly, there has not been much work in adapting wavelets to deal with such datasets.
Two algorithms, which we will term as Individual and Combined, have been suggested for multi-
measure datasets. The Individual algorithm performs an individual wavelet decomposition on each
of the measures, and stores the coefficients for each measure separately. On the other hand, the
Combined algorithm performs a joint wavelet decomposition by treating all the dataset measures
as a vector of values, and at the end determines which vectors of coefficient values to retain.

As we will show in this paper, this individual or combined storage method can lead to suboptimal
solutions even in very simple cases. Due to the nature of the wavelet decomposition, there are many
cases in which multiple -but not necessarily all- coefficient values with the same coordinates have
large values, and are thus beneficial to retain. The Individual algorithm will in such cases duplicate
the storage of these shared coordinates multiple times, thus not optimizing storage utilization. On
the other hand, the Combined algorithm stores all coefficient values that share the same coefficient
coordinates, thus wasting space by also storing some very small coefficient values.

In this work we propose a novel approach on extending wavelets to deal with multiple measures
through the use of extended wavelet coefficients. Each extended wavelet coefficient stores multiple
coefficient values for different -but not necessarily for all- measures. This flexible storage technique
can eliminate the disadvantages of the Individual and Combined algorithms discussed above. We
then provide a dynamic programming algorithm for selecting the optimal extended wavelet coef-
ficients to retain such that the weighted sum of squared L2 error norms for all the measures is
minimized. This is a natural extension to the commonly used single-measure optimization prob-
lem. Given the high complexity and mainly the memory requirements of our dynamic programming
algorithm, we also propose a greedy algorithm that provides near-optimal solutions. The greedy
algorithm’s decisions on which extended wavelet coefficients to retain are based on a defined per
space benefit metric. While both of these algorithms can be directly applied to the dataset at hand,
in some cases it might be desirable to first normalize the values of the dataset’s measures before
their application. We also demonstrate that both of the presented algorithms can be easily modified
to provide some minimal guarantees on the quality of the L2 error norm for each measure. To the
best of our knowledge this is the first work that utilizes a flexible storage method for multi-measure
wavelets. The key contributions of our work are as follows:
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1. We provide a qualitative and quantitative demonstration of the sub-optimal choices made by the
existing algorithms for the wavelet decomposition of multi-measure datasets.

2. We provide a formal definition of an extended wavelet coefficient, the first wavelet-based com-
pression method that utilizes a flexible storage approach to store the wavelet coefficients.

3. We provide an optimal dynamic programming algorithm that selects which extended wavelet
coefficients to retain, in order to minimize the weighted sum of the squared L2 error norms of all
measures, under a given storage constraint.

4. We present an alternative greedy algorithm with reduced memory requirements and running
time that produces near-optimal results to the above optimization problem. We also prove that
the solution of the greedy algorithm is within an approximation ratio bound of 2 from the optimal
solution.

5. We demonstrate that both the dynamic programming and the greedy algorithm can be easily
modified to provide some minimal guarantees on the L2 error norm of individual measures.

6. We present extensive experimental results with both synthetic and real datasets to demonstrate
how the performance of the our proposed algorithms is influenced by multiple parameters. We first
show that our greedy algorithm performs closely in accuracy to the optimal dynamic programming
algorithm. We then demonstrate that our technique significantly outperforms random sampling
and both of the existing multi-measure wavelet decomposition algorithms in terms of accuracy.
To our knowledge, this is the first work that compares the performance of wavelets and random
sampling in datasets with multiple measures.

This paper proceeds as follows: Section 2 presents the related work on approximate processing
techniques. Section 3 describes the wavelet decomposition, along with the two existing techniques
for wavelet decomposition of datasets with multiple measures and presents their advantages and
shortcomings. In Section 4 we formally define the notion of an extended wavelet coefficient and
our optimization problem, and then present an optimal dynamic programming algorithm for it.
Section 5 presents a near-optimal greedy algorithm for the optimization problem with provable
approximation ratio, while Section 6 presents some interesting modifications to both algorithms
to provide some guarantees on the L2 error norm of each measure and to further improve storage
utilization. In Section 7 we validate the performance of our proposed method with an extensive
experimental study, and Section 8 summarizes our conclusions.

2 Related Work

The main data reduction mechanisms studied so far include histograms, random sampling and
wavelets.

Histograms is the most extensively studied data reduction technique with wide use in query
optimizers to estimate the selectivity of queries, and recently in tools for providing fast approximate
answers to queries [8, 13]. A classification of the types of histograms proposed in literature is
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presented in [14]. The main challenge for histograms is to be able to capture the correlation among
different attributes in high-dimensional datasets. Recent work in [16] addresses the problem of
constructing accurate high-dimensional histograms with the use of sketching techniques, which were
first introduced in [2]. The construction of accurate high-dimensional histograms is also addressed
in [5], where statistical interaction models are employed to identify and exploit dependency patterns
in the data.

Random Sampling is based on the idea that a small random sample of the data often represents
well the entire dataset. The result to an aggregate query is given by appropriately scaling the result
obtained by using the random sample. Random sampling possesses several desirable characteristics
as a reduction method: the estimator for answering count, sum and average aggregate queries is
unbiased, confidence intervals for the answer can be given, construction and update operations
are easy and have low overhead, and the method naturally extends to multiple dimensions and
measures. In [17] the reservoir sampling algorithm was introduced, which can be used to create
and maintain a random sample of a fixed size with very low overhead. This method was further
refined in [7] for datasets containing duplicate tuples.

Wavelets are a mathematical tool for the hierarchical decomposition of functions, with extensive
use in image and signal processing applications [9, 12, 15]. [15] describes how the two existing
wavelet decomposition algorithms for multiple measures, to which we refer to as the Individual and
Combined algorithms, can be used for compression of colored images.

More recently, wavelets have been applied successfully in answering range-sum aggregate queries
over data cubes [18, 19], in selectivity estimation [10] and in approximate query processing [4]. In
the aforementioned work, wavelets were shown to produce results with increased accuracy to queries
when compared to histograms and random sampling. The work in [4, 10, 18] clearly demonstrated
that wavelets can be accurate even in high-dimensional datasets, while at the same time exhibiting
small construction times. The problem of dynamically maintaining a wavelet-based synopsis was
addressed in [11].

A method for providing error guarantees on the relative error of the wavelet decomposition was
described in [6]. In this work, the relative error of the approximation is viewed as a more important
metric than the L2 error norm, and the criterion on which wavelet coefficients to retain differs
from previous approaches. Extending this work to datasets with multiple measures would be very
interesting.

3 Basics

We begin by giving an introduction to wavelets. We then describe the Individual and the Combined
wavelet decomposition algorithms and present some of their advantages and shortcomings.
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3.1 Wavelets

Wavelets are a mathematical tool for the hierarchical decomposition of functions in a space-efficient
manner. The wavelet decomposition represents a function in terms of a coarse overall shape and de-
tails that range from coarse to fine [15]. In this work we will focus on the multi-dimensional Haar [15]
wavelets, which are the easiest wavelet type conceptually. To illustrate how Haar wavelets work,
we present a simple example of the one-dimensional dataset: [2 8 3 3]. The wavelet decomposition
first performs a pair-wise averaging to get a lower-resolution signal of two values: [5 3]. During this
down-sampling process, some information is obviously lost. We can reconstruct the original data
values by also storing some detail coefficients, which in Haar wavelets are the pair-wise differences
of the data values divided by 2. In our example, the values of the first detail coefficient will be
(2 − 8)/2 = −3, and similarly the value of the second detail coefficient is (3 − 3)/2 = 0. At this
point no information has been lost: the original data values can be calculated precisely given the
two average values and the detail coefficients. This pair-wise averaging and differencing process
is then repeated recursively at the lower-resolution data array containing the averages of the data
elements. The entire procedure is illustrated below:

Resolution Level Average Detail Coefficients
0 [4] [1]
1 [5 3] [-3 0]
2 [2 8 3 3]

The detail coefficients produced by the above procedure, along with the overall average value,
constitute the wavelet coefficients of the signal. Each coefficient is associated with a coordinate
value, which helps determine the resolution level of the coefficient, along with its position within
this level. For example, the coefficient value 0 of the above table corresponds to position 1 of
resolution level 1. One desirable characteristic of the decomposition is that often several of the
coefficients are either zero (for example, the coefficient [-3 0]), or have small values, and their
omission only introduces small errors in the results.

Not all coefficients have the same importance for reconstructing the original data values. In
the above example, the overall average value 4 is used to reconstruct the value of any data point,
while the detailed coefficient −3 is used only for the first two data points. To account for this, in
the wavelet decomposition the wavelets are normalized by dividing their value by a normalization
factor which is equal to

√
2l, where l is the resolution level of the coefficient. Retaining the

coefficients with the largest normalized values has been shown to be optimal [15] for minimizing
the L2 error norm of a signal. The L2 error norm is defined as: L2 =

√∑N
i=1 e2

i , where ei denotes the
approximation error of the signal’s i-th data value. When the desired metric involves minimizing the
relative error, selecting the optimal coefficients to store is more difficult, but recently [6] provided
an optimal algorithm for this problem.

Finally, each coefficient in the above example can be represented as a tuple < Ci, NVi >, where
Ci is the coordinate of the i-th coefficient, and NVi is its normalized value. For multi-dimensional
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Coordinate Value Normalized Value Stored Tuple
0 4 4 [0 4]
1 1 1 [1 1]
2 -3 −3/

√
2 [2 −3/

√
2]

3 0 0 [3 0]

Table 1: Wavelet Coefficients for Sample Dataset

Resolution Average Detail Coefficients

0 [
[

4
4.5

]
] [

[
1

0.5

]
]

1 [
[

5
5

] [
3
4

]
] [

[
−3
−1

] [
0
−1

]
]

2 [
[

2
4

] [
8
6

] [
3
3

] [
3
5

]
]

Table 2: An Example of the Combined Wavelet Decomposition Method

datasets, the corresponding representation of each coefficient is: < Ci1, Ci2, ..., CiD, NVi >, where
Cij is the coordinate of the i-th coefficient across the j-th dimension. Table 1 shows the tuples that
constitute the wavelet coefficients of our original signal.

3.2 Existing Approaches for Multiple Measures

Two approaches [15] have been suggested for dealing with datasets containing multiple measures.
In the first approach, an individual wavelet decomposition is performed for each measure, and the
decision on which coefficients to retain is done independently for each measure. In the second
approach, both the original data values and the produced coefficients are treated as M × 1 vec-
tors, where M is the number of the dataset’s measures. The pair-wise averaging and differencing
procedure described above is performed between vector elements belonging to the same row (thus
corresponding to the same measure). The thresholding procedure used in this approach is not much
different than the one where only one measure is included in the dataset: the retained vectors are
the ones having the largest values of the L2 norm. We will refer to these two different approaches
as the Individual and the Combined decomposition algorithms, and use the terms individual and
combined coefficient to refer to the storage methods of coefficient values that stem from these two
algorithms. A combined coefficient thus stores coefficient values for all measures of the dataset.
An example of the Combined decomposition algorithm is shown in Table 2. The dataset contains
two measures: the first one is identical to the one of our first example, and the second measure has
the values: [4 6 3 5]. Thus, the first row of each vector corresponds to either data or coefficient
values of the first measure and, similarly, the second row of each vector corresponds to either data
or coefficient values of the second measure.
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Case A Case B
Coordinate Values

Available 0 100 0 0
Coefficients: 1 0 100 0

Coordinate Values
Available 0 100 100 100

Coefficients: 1 0 100 0
Coordinate Values

Combined
Retains: 0 100 0 0

Coordinate Values
Combined
Retains: 0 100 100 100

Coordinate Value Measure
Individual 0 100 1
Retains: 1 100 2

Coordinate Value Measure
Individual 0 100 3
Retains: 0 100 2

Combined Benefit = 1002 = 10000

Individual Benefit = 1002 + 1002 = 20000

Combined Benefit
Individual Benefit

= 10000
20000 = 50%

Combined Benefit = 1002 + 1002 + 1002 = 30000

Individual Benefit = 1002 + 1002 = 20000

Individual Benefit
Combined Benefit

= 20000
30000 ≈ 66.7%

Table 3: Sub-optimality of the Combined and Individual decomposition methods

The Combined decomposition algorithm is expected to achieve better storage utilization than
the Individual algorithm in datasets where multiple coefficient values corresponding to the same
coordinates contain large values.1 In such cases, the coordinates of the coefficients are stored only
once, thus allowing for a more compact representation. The more compact the representation,
the larger the number of coefficients values that can be stored, and the better the accuracy of the
produced results. On the other hand, in many cases a combined coefficient might help reduce signif-
icantly the error in only one, or few, measures. In such cases, some of the space that the combined
coefficient occupies is wasted, without improving the overall quality of the results. Examples of the
two cases are depicted in Table 3.

In Table 3, we present only two combined coefficients of an one-dimensional dataset with three
measures. The actual data that helped construct these two coefficients, or the remaining set of
coefficients is not important, since the sole purpose of this example is to show that both of the
existing decomposition algorithms can make sub-optimal choices, even when choosing between just
two coefficients. For this example we have assumed that each dimension coordinate and each
coefficient value require one unit of space. Under this scenario, each input tuple or combined
coefficient occupies four space units, while each individual coefficient occupies two space units. For
a storage constraint of four units of space, the Combined algorithm can thus select only one tuple
to store, while the Individual algorithm can store up to two individual coefficients. Due to the
nature of the Haar transform, the benefit of retaining any single coefficient value is equal to the
its squared value. As it can be seen from Table 3, in case A the Combined algorithm selects under
this storage constraint a solution with only half the benefit of the one picked by the Individual
algorithm. The roles are reversed in case B, as the Individual algorithm selects a solution with only
two thirds of the benefit achieved by the Combined algorithm. In case B, the ties on the retained

1Each time we use the adjective ”large” for a coefficient value, we will be referring to its absolute normalized
value.
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coefficients for the Individual algorithm were broken arbitrarily, as four individual coefficients had
the same benefit. By increasing in case A the number of measures in the dataset, and in case B
the number of dimensions one can easily create examples where the difference in the quality of
the optimal from the sub-optimal solution is significantly larger. For example, by expanding our
one-dimensional dataset of Table 3 to a dataset with M measures and considering which of M+1

2

candidate coefficients to retain under a storage constraint of M + 1 space units, it can be shown
that in case A: IndividualBenefit

CombinedBenefit = 2
M+1 , while in case B: CombinedBenefit

IndividualBenefit = M+1
2×M .

Another disadvantage of the Combined decomposition algorithm is that in cannot be easily
adapted for cases when one would like to weight differently the quality of the answers for different
measures. In such a case, it would clearly not be advantageous to use the Combined algorithm,
since it cannot devote different fractions of the available space to the measures, even though the
coefficient values within each vector can be weighted differently. Moreover, for datasets with several
measures, it would seem unlikely that all the coefficient values of each combined coefficient would
be large. Thus, in such datasets it is expected that the Combined algorithm would waste storage
space, without significantly improving the accuracy of the produced answers for all measures.

However, there are cases when one would expect that multiple coefficient values of a combined
coefficient have large values. As we described in Section 3.1, the coefficient values are normalized,
based on the resolution level they correspond to. Due to this normalization process, coefficient
values at the top resolution levels, will tend to have larger values, and this will happen for all
measures.

Another situation when multiple coefficient values might have large values at the same time
arises in sparse datasets, as it is the case in many real life high-dimensional datasets. In such
datasets, it is often the case that within a region of the data space, only one input tuple is present.
As we have mentioned, the wavelet decomposition considers the data values as a signal and tries
to approximate it. The presence of large spikes in the signal, such as the ones that can arise by the
data values of a sole tuple in a sparse area, will possibly generate large coefficient values for many
measures.2

4 Problem Definition and Optimal Solution

4.1 Extended Wavelet Coefficients

Given the shortcomings of the existing wavelet decomposition algorithms in dealing with multiple
measures, we now introduce the notion of an extended wavelet coefficient.

Definition: An extended wavelet coefficient of a D-dimensional dataset with M measures is a triplet
< Bit, C, V > consisting of:

• A bitmap Bit of size M , where the i-th bit denotes the existence, or not, of a coefficient value
for the i-th measure
2Depending on the size of the region this tuple belongs to and the data values of the tuple.
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• The coordinates C of the coefficient

• The stored coefficient values V

The bitmap of an extended wavelet coefficient can be used to determine how many and which
coefficient values have actually been stored. An extended wavelet coefficient can be used to combine
the benefits of the Combined and the Individual decomposition algorithms, as it provides a flexible
storage method that can be used to store from one to M coefficient values corresponding to each
combination of wavelet coordinates. This flexible storage method bridges the gap between the two
extreme hypotheses that these two algorithms represent, namely that only one or all coefficient
values sharing the same coordinate values are important. Since our concern is selecting which
coefficient values to store, our algorithms will only influence the final thresholding step of the
wavelet decomposition process. The decomposition step of either the Individual or the Combined
algorithm can be used to create the input to our algorithms.

The selection of which extended wavelet coefficients to store is based on the optimization problem
we are trying to solve. Since in the case of datasets with one measure, the most common objective
involves minimizing the L2 error norm of the approximation, a natural extension, and interesting
problem, for datasets with multiple measures is how to minimize the weighted sum of the squared
L2 error norms for all measures. More formally, the optimization problem can be posed as follows:

Problem Definition: Given a set T of candidate combined wavelet coefficients of a D-dimensional
dataset with M measures, a storage constraint B, and a set of weights W, select the extended wavelet
coefficients to retain in order to minimize the weighted sum

∑M
i=1 Wi ∗ (L2

i )
2 of the squared L2 error

norms for all the measures.

For the single-measure wavelet decomposition, it can be shown ([15]) that the square of the L2

error norm is equal to the sum of squared normalized values of the coefficients that have not been
stored. Utilizing this result, and using the symbol NVij to denote the normalized coefficient value
for the j-th measure of the i-th candidate combined wavelet coefficient, one can easily transform
the above optimization problem to an equivalent, and also more easy to process form:

Problem Definition 2: Given a set T of candidate combined wavelet coefficients of a D-dimensional
dataset with M measures, a storage constraint B, and a set of weights W, select the extended wavelet
coefficients to retain in order to maximize the weighted sum

∑|T |
i=1 Wi ∗

∑M
j=1 NV 2

ij of the squared
retained normalized coefficient values for all the measures

Note that any set of individual coefficients sharing the same coordinates can be transformed
into a combined coefficient by setting the coefficient values of the non-stored measures to zero.
Thus, the requirement that the input to our algorithm be a set of combined wavelet coefficients
does not pose any restrictions on the decomposition method being used.
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Symbol Description
D Number of dataset’s dimensions
M Number of dataset’s measures
W Measure weights
InCoeffs Set of input combined coefficients
N = | InCoeffs | Number of input coefficients
Items = N ×M Number of candidate subitems
MS Storage space for a coefficient value

H
Storage space for the coordinates,
along with the bitmap

S = H + MS
Storage space for the first coefficient
value of an extended wavelet coefficient

B The storage constraint

Opt[K,SP].ben
The optimal benefit acquired when
using at most the first K subitems
and at most SP units of space

Force[K,SP].ben

The optimal benefit acquired when
using at most the first K subitems
and at most SP units of space, but
forcing at least one subitem of the
last candidate combined coefficient
to be included in the solution

Table 4: Notation used in our algorithms and discussion

4.2 The Optimal DynL2 Algorithm

We now provide a dynamic programming algorithm that optimally solves the optimization problem
of Section 4.1. The DynL2 algorithm takes as input a set of combined coefficients, a space threshold,
and a set of weights which will be used to weight the benefit of the coefficient values for each
measure. The coefficient values of each combined coefficient are then treated as subitems in our
problem. An implicit mapping being used maps the j-th coefficient value of the i-th combined
coefficient to the value (i − 1) ∗ M + j, where M is the number of dataset’s measures. Thus, for
each combined coefficient, its coefficient values have consecutive mappings. We will use this fact
later in the algorithm to simplify our problem. Table 4 summarizes some of the notation that we
will use in our discussion.

By including any subitem Q corresponding to measure j and having a normalized value of VQ to
the optimal solution, we get a weighted benefit equal to Wj ×V 2

Q. However, the space overhead for
storing it will depend on whether this is the first coefficient value being stored from the extended
wavelet coefficient it belongs to, or not. In the former case, the space needed to store this coefficient
value will be equal to the size needed to store the coordinates of the coefficient, along with the
bitmap, and the coefficient value. In the latter case, since the bitmap and the coordinates of the
coefficient have already been stored, the required space is just equal to the space that the coefficient
value takes. This difference in the storage cost of a coefficient value makes the problem harder to
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solve.3

We now try to formulate a recursion to solve our optimization problem. One requirement of
the algorithm is that all subitems occupy an integer number of space units. This can be easily be
done if we consider the space unit to be equal to 1 bit and express all space quantities in this unit.4

For the optimal solution using space at most SP , and considering the first Q subitems, three cases
may arise:

1. The optimal solution is the same as using Q− 1 subitems and the same space SP

2. The optimal solution is achieved by including subitem Q, and Q is the first subitem of its
combined coefficient included in the optimal solution

3. The optimal solution is achieved by including subitem Q, and Q is not the first subitem of
its combined coefficient included in the optimal solution

An important thing to note is that in the third case, subitem Q is combined with the optimal
solution SubOpt using at most the first Q − 1 subitems, and space at most equal to SP − MS

and which includes at least one more subitem of the combined coefficient Q belongs to. The
last requirement results in a perhaps surprising observation: the SubOpt solution is not always
an optimal solution for our optimization problem when using only the first Q − 1 subitems, and
space up to SP − MS units. An example is presented in Table 5. This Table includes just two
coefficients, corresponding to a three-dimensional dataset with three measures. To keep things
simple, let’s assume that the storage bound B is equal to the size of one tuple, augmented by
a bitmap of three bits, and that each measure has a weight of 1. Under this storage bound, two
coefficient values from different coefficients cannot be stored. The unpredictable behavior described
above is observed when considering the optimal solution containing at most the first five subitems
and space bound S + MS. It is easy to see that the optimal solution at this point would be to
store subitems 4 and 5, both corresponding to the second combined coefficient. It is also easy to
observe however, that subitem 4 is not part of any optimal solution involving only the first four
subitems and using any storage space less than B, since subitem 1 can be used at its place and get
a solution with a larger benefit.

An encouraging observation is that we only need to store for each cell [Q,SP ] just one sub-
optimal solution, the one which forces at least one subitem of the combined coefficient Q belongs
to, to be included in the optimal solution. The Force array described in Table 4 will store these
suboptimal solutions.

The algorithm is presented in Algorithm 1, and includes the notation described in Table 4.
Our dynamic programming algorithm utilizes two arrays, named Opt and Force, both with sizes
{1..Items} × {0..B}. Each cell in these two arrays contains two fields. The first field is described

3Otherwise the solution would have been a simple modification of the dynamic programming algorithm for the
knapsack problem.

4Some techniques, like encoding the bitmap within some coordinate of the coefficient for small number of measures,
can help increase the size of the space unit and decrease the memory requirements, but without reducing the space
complexity of the problem.
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Candidate Coefficients
Coordinates Values
0 0 1 100 1 2
1 2 0 99 98 97

SubItems in Optimal Solution
Considered For Space Bound
SubItems S S+MS S+2MS
First 1 1 1 1
First 2 1 1,2 1,2
First 3 1 1,3 1,2,3
First 4 1 1,3 1,2,3
First 5 1 4,5 4,5
First 6 1 4,5 4,5,6

Table 5: Unexpected Optimal Solution Arises for Space Bound S+MS

in Table 4. The second field is used to code the choice made to decide the benefit of the cell. We
will clarify this point in a while.

The algorithm begins by initializing some entries of both arrays. Line 1 depicts the fact that no
coefficient value can be stored in space less than S. The optimal solution for space at least equal
to S and while using only the first subitem will obviously only include this subitem (Line 2). The
algorithm then iteratively fills the values of the remaining cells (Lines 3-12). For the Opt array, the
optimal solution using space at most SP , and considering the first Q subitems, can be generated
by one of the three cases described above (Line 7). For the corresponding optimal solution for the
Force array (Line 9), the choices are similar. Note that some of the three cases are valid only if
the current subitem satisfies some conditions, namely that it does not correspond to a coefficient
value of the first measure (y > 1). The second field of the cells, which contains the choice made
for assigning the benefit of the cell, is assigned the values 2, 3, or 4 correspondingly, depending on
which of the three described cases produced the optimal solution. Cells that correspond to cases
when no subitem can be stored in the specified space have the value of the second field set to 1
(Line 1).

At the end, the optimal benefit is the benefit achieved when considering all the subitems and
using space at most equal to the given space constraint. The optimal solution can be reconstructed,
starting from that cell, and moving depending on the second field of the current cell. If at some
point we are at cell [i,j], the action that we will perform will depend on the value of the second
field of the cell:

1. End of traversal

2. Move to cell [i-1,j] of the same array.

3. Move to cell [i-1, j - S] of the Opt array. This movement will always result in the addition of
an extended wavelet coefficient (the one that includes the current subitem) to the solution.

4. Move to cell [i-1, j - MS] of the array Force. Add the current subitem to the corresponding
extended coefficient (create one if needed).
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Algorithm 1 DynL2 Dynamic Programming Algorithm
Input: InCoeffs, B, W
1: Set entries of both arrays corresponding to space less than S to have a benefit of 0 and a choice

of 1.
2: Initialize first row of both arrays for space at least S. Set benefit to: W [1]× V alue2[1, 1], and

choice = 3.
3: for i in 2..Items do
4: let x = 1 + (i-1) div M {Combined coefficient index}
5: let y = 1 + (i-1) mod M {Measure index}
6: for j in S..B do

7: Opt[i,j].ben = max



Opt[i-1,j].ben

Opt[i-1,j-S].ben+
W[y]× V alue2[x, y]

Force[i-1, j-MS].ben+ y > 1
W[y]× V alue2[x, y]

8: Depending on which of the three choices listed above produced the maximum value, set
Opt[i,j].choice to the value 2, 3 or 4, respectively.

9: Force[i,j].ben = max



Force[i-1,j].ben y > 1

Opt[i-1,j-S].ben+
W[y]× V alue2[x, y]

Force[i-1, j-MS].ben+ y > 1
W[y]× V alue2[x, y]

10: Depending on which of the three choices listed above produced the maximum value, set
Force[i,j].choice to the value 2, 3 or 4, respectively.

11: end for
12: end for
13: Reconstruct optimum solution by doing a reverse traversal starting from the entry

Opt[Items,B], and moving based on the choice field of the current entry.
14: Return as maximum benefit Opt[Items,B].ben

4.3 Space and Time Complexity

The space needed for the DynL2 algorithm is essentially the size of Opt and Force arrays, which is
O(NMB). Running the algorithm makes sense only when all the combined coefficients need more
space to be stored than the space bound. This implies that B < N × (D + M), which means that
the space requirements for the algorithm are bound by O(N2M(D + M)). However, at each step
of the algorithm, the part of the Opt and Force arrays that need to be memory resident is only
O(NM(D + M)).

Given that the value of each cell can be calculated in O(1) time for both arrays, the time
complexity of the algorithm is also O(NMB) and is bound by O(N2M(D + M)). The reverse
traversal procedure that is used to identify the coefficient values that are part of the optimal
solution takes O(NM) time, since at each step of the procedure we are checking whether a subitem
Q belongs in the result, and then proceed to subitem Q− 1.
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5 Greedy Algorithm

5.1 Greedy Algorithm

We now present a greedy solution to the optimization problem of Section 4.1. Our algorithm, to
which we will refer as GreedyL2, is based on transforming the optimization problem to match the
0-1 Knapsack Problem, and then selecting which coefficient values to store based on a per space
benefit metric. The notation used in this section is consistent with the one described in Table 4.

Similar to the dynamic programming algorithm presented in the previous section, GreedyL2
receives as input a set of candidate combined wavelet coefficients, a set of weights, and a storage
constraint. Instead of considering the benefit of each coefficient value individually, GreedyL2 con-
siders at each step the optimal benefit achieved by selecting a set of K (1 ≤ K ≤ M) coefficient
values of the same combined coefficient that have not already been stored. It easy to see that
the optimal selection will include the non-stored coefficient values that have one of the K largest
benefits: Wj × V 2

ij , where Wj is the weight corresponding to the coefficient value, and Vij is its
normalized value. The storage space for these K values will be equal to H + K ×MS, if no value
of this combined coefficient has been stored before, and K ×MS otherwise. GreedyL2 maintains
a structure with all the optimal sets of size K (1 ≤ K ≤ M) of all the combined coefficients, and
selects the set with the largest per space benefit. The coefficient values belonging to the selected
set are stored, and the benefits of the optimal sets for the chosen combined coefficient have to be
recalculated to only consider values that have not already been stored. The algorithm is presented
in Algorithm 2.

For each input combined coefficient, the first step is to decide the sort order of its coefficient
values based on their weighted benefit (Line 4). For each combined coefficient we also maintain
the number of its coefficient values that have been selected for storage in the Stored variable which
at the beginning of the algorithm is initialized to 0 (Line 5). Due to the way our algorithm is
formulated, we do not need to remember which of the coefficient’s values have been selected for
storage, since these will always be the ones with the Stored maximum weighted benefits. We then
calculate the optimal benefits of sets containing K coefficient values, 1 ≤ K ≤ M (Line 6). The
maximum number of such sets is at most M, but not always equal to M, since we do not need to
create any sets that include any coefficient values with zero benefit. The space needed to store each
of these K sets is H + K ×MS. The per space benefit of each set, along with its occupied space
and the identifier of the coefficient it belongs to, are then inserted in an AVL tree. We chose to
use such a structure, since each of the insert, delete and finding the maximum value operations has
logarithmic cost. However, any other data structure with similar characteristics can be used in its
place.

The algorithm then repeatedly (Lines 9-15) picks the set with the maximum per space benefit
that can fit in the remaining space. The values corresponding to this set are uniquely identified
by the identifier of the corresponding combined coefficient Coeff, its Stored variable, and the size
of the picked set. For the Coeff coefficient, the optimal benefits of its sets have to recalculated

14



Algorithm 2 GreedyL2 Algorithm
Input: InCoeffs, B, W
1: An AVL tree structure is used to maintain the optimal benefits of the candidate sets of coefficient

values
2: For each combined coefficient, a variable Stored maintains the number of its coefficient values

that have already been selected to be stored
3: for i in 1..N do
4: Determine sort order of coefficient values, based on their weighted benefit
5: For the current combined coefficient, Stored = 0
6: Calculate the optimal benefit of each set of size K (1 ≤ K ≤ M) and insert it into the AVL

tree.
7: end for
8: SpaceLeft = B
9: while SpaceLeft > 0 AND candidate sets exist do

10: Select set PickedSet of combined coefficient Coeff with maximum per space benefit and that
needs space less than SpaceLeft

11: Adjust value of SpaceLeft, based on value of Coeff ’s Stored variable and size of PickedSet
12: Coeff.Stored += number of values in PickedSet
13: Remove from AVL tree all sets belonging to Coeff
14: Calculate new benefits of Coeff ’s sets of non-stored coefficient values and insert them in the

AVL tree
15: end while
16: For each combined coefficient store the Stored coefficient values with the largest weighted benefit

to include only non-stored coefficient values. At most M − Stored such sets can be created. The
previous sets of Coeff are removed from the tree and the newly calculated ones are then inserted.
Note that the space required for the newly inserted sets does not include the size of the header,
since this has already been taken into account. The entire procedure terminates when no set can be
stored without violating the storage constraint. In order to create the output extended coefficients,
we simply have to parse the list of the combined coefficients, and for any coefficient C that has
a Stored value greater than 0, create an extended wavelet coefficient and store in it the Stored
coefficient values of C with the largest weighted benefits.

Theorem 1 The GreedyL2 algorithm has an approximation ratio bound of 2

Proof: The proof is similar to the corresponding proof for the 0-1 knapsack problem. A significant
observation is that whenever we select a set pickedSet of coefficient values from a combined coef-
ficient Coeff for storage, any candidate set subOpt of Coeff that will later be inserted in the AVL
tree for consideration cannot have a larger per space benefit than the one of pickedSet. We will
prove this by contradiction. Assume that subOpt has a larger per space benefit than pickedSet.
By the way the candidate sets are formed, the following observations hold:

1. The sets pickedSet and subOpt can not share any coefficient values

2. The largest benefit of a coefficient value of subOpt cannot be larger than the smallest benefit
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of a coefficient value of pickedSet

3. The space overhead of subOpt does not include the size of the header, while for pickedSet

this depends on whether it is the first set of Coeff selected for storage.

If we depict the benefits of the coefficient values of pickedSet as v1, v2, . . . , vk and the benefits
of the coefficient values of subOpt as v′1, v

′
2, . . . , v

′
p, then the per space benefits of the two sets are,

correspondingly,
∑k

i=1
vi

δ×H+k×MS and
∑p

i=1
v′

i

p×MS , where δ has a value of 1 or 0, depending on whether
pickedSet is the first set of Coeff selected for storage. Since by hypothesis subOpt has a larger per
space benefit than pickedSet:

∑p
i=1 v′i

p×MS
>

∑k
i=1 vi

δ ×H + k ×MS
=⇒

p∑
i=1

v′i × (δ ×H + k ×MS) >
k∑

i=1

vi × p×MS (1)

At the time pickedSet was selected, a candidate set notP icked of Coeff with k + p subitems
existed, having a benefit which is at least equal to the set union containing all subitems in pickedSet

and subOpt. Comparing the per space benefit of notP icked and pickedSet, we have:

benefit(notP icked)− benefit(pickedSet) ≥ benefit(union)− benefit(pickedSet) =∑k

i=1
vi+

∑p

i=1
v′

i

δ×H+(k+p)×MS −
∑k

i=1
vi

δ×H+k×MS =
∑p

i=1
v′

i×(δ×H+k×MS)−
∑k

i=1
vi×p×MS

(δ×H+(k+p)×MS)×δ×H+k×MS > 0
(2)

The last part of formula (2) follows immediately from the inequality of formula (1). At this
point we have reached a contradiction, since pickedSet should not have a smaller per space benefit
than the set notP icked. Therefore, subOpt cannot have a larger per space benefit than pickedSet.

The above observation also implies that each candidate set inserted in the AVL-tree after the
first set selection made by the algorithm cannot have a larger per space benefit than the ones that
have already been selected. To prove this, consider any such set nowInserted that is inserted in
the AVL tree following the selection for storage of another set nowStored, of the same candidate
combined coefficient Coeff, and consider the following two observations:

1. Following the preceeding proof, the set nowInserted cannot have a larger per space benefit
than any set already picked for storage from the same candidate combined coefficient Coeff.

2. Consider any candidate set otherSet already selected for storage, which corresponds to a
candidate combined coefficient other than Coeff. At the moment otherSet was selected for
storage, the candidate set of Coeff with the largest per space benefit that was at that time
in the AVL tree could not have a larger per space benefit than otherSet, since it would have
been selected for storage instead of it, and cannot have a smaller per space benefit than
nowStored.

Now, consider that GreedyL2 solution has selected to store the sets S1, S2, ..., Sl, and that Sl+1

is the set with the largest per space benefit that cannot be stored due to space constraints.5 Let
5For simplicity, consider that Sl+1 could fit by itself within the original storage constraint.
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BenStored denote the sum of benefits of the l sets included in the solution, BenFraction de-
note the benefit of set Sl+1, and BenOptimal denote the benefit of the optimal solution. If the
space needed for Sl+1 was Bl+1, and the remaining storage space at that point of our algorithm
was SpaceLeft, it can easily be shown 6 that the optimal solution has at most benefit equal to:
BenStored + BenFraction × SpaceLeft

Bl+1
≤ BenStored + BenFraction. At this point, the solution

Z = max{BenFraction, BenStored} has at least half the benefit of the optimal solution, since:

BenOptimal ≤ BenFraction + BenStored ≤ 2×max{BenFraction, BenStored}

5.2 Space and Time Complexity

Each of the N input combined coefficients creates at most M candidate sets. Therefore, the space
for the AVL tree is O(NM). For each combined coefficient, maintaining the sort order requires
O(M) space. The size of the input combined coefficients is O(N(D+M)), making the overall space
complexity of the algorithm O(N(D+M)).

Determining the sort order for the values of each combined coefficient requires time O(MlogM).
Calculating the benefits of the sets produced by each coefficient then takes only O(M) time. The
original construction of the AVL-tree can be done in O(NMlog(NM)) time. Each time a set is
picked for inclusion in the result, the search requires O(log(NM)) time. Then, we need to make
O(M) deletions from the AVL tree, corresponding to all the sets of the chosen combined coefficient.
Finding all such nodes on the tree requires O(M) time, if they are connected by a cyclic list. Note
that all the sets of the same combined coefficient are created at the same time, thus making it easy
to create such a list. Each of the O(M) insertion and deletion operation then requires O(log(NM))
time. Since at most O(NM) sets can be picked, the total time complexity is O(NM2log(NM)).

6 Related Issues

6.1 Providing Fairness and Error Guarantees

While the optimization problem of Section 4.1 might be a desirable objective in many problems,
certain cases may arise when both the greedy and the dynamic programming algorithms presented
will significantly favor certain measures at the expense of other measures. This usually happens
when two or more measures with significantly different magnitude of coefficient values occur within
the same dataset. In such cases, both algorithms will almost exclusively store coefficient values
corresponding to the measure with the largest coefficient values. This might not be desirable in
certain applications, since it would introduce very large errors for some measures.

In such cases, a plausible solution to this problem would be to normalize the values of all
measures such that all measures have the same energy. The energy of a measure is defined to be
the sum of its squared values. Normalization can be achieved by either preprocessing the dataset,

6The proof is identical to the optimal proof for the fractional knapsack problem.
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or by dividing the weighted benefit of each coefficient value by the energy of the corresponding
measure.

Another solution involves adapting our proposed algorithms to provide certain guarantees on
the quality of the produced solution. It turns out that both algorithms can be modified such
that the resulting benefit for each measure be at least equal to the one produced by the Individual
algorithm when the storage allocated to each measure is proportional to the measure’s weight. This
requires first computing the actual solution that the Individual algorithm would produce by using
the aforementioned space allocation policy among the measures. Then, the solution produced by
either the GreedyL2 or the DynL2 algorithm can be tested to verify whether for each measure the
benefit criterion has been met. If this is not the case for all measures, the algorithm can proceed
by splitting the measures into two sets: the ones where the benefit criteria has been satisfied, and
those measures where it has not been satisfied. The algorithms can then be called recursively for
each of these two sets, with the storage constraint allocated to each set being proportional to the
weights of its measures. If at some point an input set contains just one measure, then the algorithm
may store the coefficients in the same format as the Individual algorithm does. Thus, in the worst
case, for any measure we can guarantee that the benefit we achieve for each measure is at least the
same as the one produced by the Individual algorithm.

6.2 Improving Space Utilization

The space utilization of the GreedyL2 and DynL2 algorithms can be further improved at the expense
of the query response time. For a dataset with M measures, we can split the produced coefficients
into M + 2 groups of coefficients. One group will be created for each measure and will include
all the extended wavelet coefficients that have stored a coefficient value only for the corresponding
measure. Another group will contain the extended coefficients that have stored coefficient values
for all M measures, while the final group will include extended coefficients that have stored from
2 to M − 1 coefficient values. From these M + 2 groups, the bitmap is necessary only for the last
group. In the other groups we can simply store the coefficients in the same way that the Individual
and the Combined algorithms would, without the bitmap. The proposed algorithms then only
require a slight modification when calculating the size needed to store a coefficient value (for the
DynL2 algorithm) or the size of a candidate set (for the GreedyL2 algorithm). A query involving
X measures would then have to probe X + 2 groups of coefficients in search for coefficient values
that influence the query result. This overhead in response time is in most cases negligible, given
the small response times that queries exhibit when using wavelet synopses [4].

7 Experiments

We performed a series of experiments to validate the performance of the GreedyL2 and the DynL2
algorithms against the existing approaches. In our experiments we used both synthetic and real
datasets. The experiments were performed on a personal computer using an Athlon 1800+ processor
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with 512 MB of RAM memory. We compared the performance of the GreedyL2 and the DynL2
algorithms to the following four algorithms:

Random Sampling (RS): In all experiments we used the Reservoir algorithm described in [17], since
the datasets that we used did not contain duplicate tuples.

Ind: The space allocated to each measure is proportional to its weight. Then the Individual
algorithm is run for each measure.

IndSorted: Similar to Ind, but no limit is imposed to the size allocated to each measure. The
individual coefficients from all measures are sorted according to their weighted benefit, and the
ones with the highest benefits are retained.

Combined: The combined coefficients are sorted according to their overall weighted benefit, and
the ones with the highest benefits are retained.

Histograms were not included in the performance evaluation, due to their inability to extend
to datasets with multiple measures. Creating a separate histogram for each measure might be an
alternative, but the work in [4, 18] leads us to expect that they would perform worse than the Ind
algorithm.

In the experiments presented below we did not incorporate the storage utilization improvements
discussed in Section 6.2. As input to our algorithms we used the output of the decomposition step of
the Combined algorithm, which we found to produce better results than the corresponding output
of the Individual algorithm.

7.1 Synthetic Datasets

For our synthetic datasets we created a data generator similar to the one used in [18, 4]. The
input parameters of the generator along with their default values are described in Table 6. The
generator begins by populating n regions rectangular regions of a D-dimensional array, whose
size is determined by the number of the dataset’s dimensions and the cardinalities Cardi of each
dimension. The number of cells within each region is bound by the values Vmin and Vmax. The total
sum Sumi of values for each measure is partitioned across the n regions rectangular regions through
the use of a Zipf function with parameter Z. Then, within each region each measure’s values are
distributed by using one of the four distributions described in Table 7, with the parameter’s values
ranging from zmini to zmaxi . Notice the use of the Altered-X 7 distribution, which helps create
pairs of measures with similar, but not identical, data distributions. The data generator then also
populates a number of cells in the remaining D-dimensional space, outside the dense regions. The
fraction of such cells over the total number of populated cells is defined by the spCount parameter,
and the total sum of the values of these cells by the spSumi parameter.

We first investigate how close the weighted benefit achieved by the GreedyL2 algorithm is to the
one achieved by the DynL2 algorithm. We created a synthetic dataset with 4 measures, following

7X can be either one of the Center, Middle or Reverse distributions.
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Parameter Description
Default
Value

N Number of dimensions 2
M Number of measures 6
Cardi Cardinality of dimension i 1024
n regions Number of dense regions 10
Vmin,
Vmax

Minimum and maximum
volume of regions

4900,
4900

Z Skew across regions 0.5

zmini , zmaxi

Minimum and maximum skew
within region i

1, 1

Sumi Sum of values for measure i 1,000,000

spCount
Fraction of populated
cells in sparse areas

0.05

spSumi
Sum of values of populated
cells in sparse area i

0.05

Table 6: Data Generator Input Parameters

the Center, Altered-Center, Middle and Reverse distributions, and set the remaining parameters
to the default values of Table 6. We modified the storage constraint from 1200 to 6000 bytes
and present the results in Table 8. The deviation factor presented in this table is defined as:
1 − GreedyL2Benefit

DynL2Benefit . The GreedyL2 algorithm produced solutions with benefit very close to the
optimal one. Due to the large amount of memory required by the DynL2 algorithm, we were
unable to execute it for the remaining experiments, and is thus omitted from the presented results.

We now evaluate the impact that several parameters have on the performance of our method.
In each experiment, unless specified otherwise, the data generator parameters were set to their
default values. For the default number of measures (6), the data distributions were: Center,
Altered-Center, Reverse, Altered-Reverse, Middle and Altered-Middle. The query workload always
consisted of 100 range queries, with the width of the range on each dimension being equal to 10.
The queries targeted the dense areas with greater probability, since most of the data is stored
there. The default storage bound was set to 5% of the dataset’s size. For each performed query,
the weighted absolute error is calculated from the formula:

(
M∑
i=1

Wi)−1 ×
M∑
i=1

(Wi × |actualresulti − estimatedresulti|)

The variables actualresulti and estimatedresulti denote the exact and the estimated values of the
result for measure i, correspondingly. The weighted sum squared and relative errors are defined
similarly.

Storage Space: In Figures 1, 2, 3 we present the average weighted sum squared, absolute and
relative errors, respectively, for all the algorithms as the storage space is varied from 2 to 10%
of the dataset’s size. The skew of the data distributions within each region was set to 1.5. Note
that the y-axis of Figure 1 is logarithmic, due to the large errors exhibited by Random Sampling.
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Distribution Description

Center
Cells with smaller L1-distance from
center have larger values

Reverse
Cells with smaller L1-distance from
center have smaller values

Middle

Consider a hyper-rectangle centered at
the region’s center, and having for
each dimension, half the length of the
corresponding region length. Cells
with smaller L1-distance from this
hyper-rectangle have larger values

Altered-X
This measure follows the same distribu-
tion as X distribution, but its values
are randomly altered by up to 50%

Table 7: Data Generator Value Distributions
Storage Constraint (Bytes)

1200 2400 3600 4800 6000
Deviation

Factor
3× 10−5 5× 10−4 10−6 10−4 10−6

Table 8: Deviation Factor of GreedyL2 Benefit when Compared to the DynL2 Benefit

The GreedyL2 algorithm produced results with considerably smaller errors than the ones of the
other algorithm. In particular, the average weighted sum squared error of GreedyL2 was in most
cases about one third of the closest competitor’s error, and as low as 28.5% (6105.25 vs 21399.2
for 8% space). For the average weighted absolute error case, the error of GreedyL2 was typically
about 67-70% of the one produced by the closest competitor (51.85 vs 91.19 for 9% space, a ratio
of 64.5%). Finally, for the average weighted relative error, GreedyL2 produced results that were
up to 39% less (31.13% vs 50.36% for 2% space) than the ones of the closest competitor. From the
remaining methods, the Combined algorithm produced the best results.

We will present for the remaining experiments with the synthetic datasets only the results for the
average weighted sum squared and absolute errors. We will also omit from the graphs the results
for the Random Sampling algorithm and only summarize its errors, since they were consistently
much larger than the ones of the other algorithms.

Skew within Regions: We modified the zipfian parameter controlling the skew of the measure’s data
distributions within each region from 0.5 to 4. Figures 4 and 5 present the obtained results for the
weighted average sum squared and absolute errors. As the skew increases, for each distribution the
coefficients with large values are limited to an increasingly smaller area. This results on one hand
in the reduction of the sum squared error of the results, as the number of coefficient values that
greatly influence it becomes smaller. On the other hand, the probability that coefficient values from
multiple measures be important simultaneously is decreased. These two factors justify the relative
improvement of the performance of IndSorted over the Combined algorithm for larger skew values.
While the Combined algorithm performs closely to the GreedyL2 algorithm for small skews, the
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difference becomes very large as the skew increases. For large skews, GreedyL2 exhibits about one
third of the errors observed by the closest competitive algorithm (22.79 vs 62.21 absolute errors for
skew parameter = 4). The random sampling technique produced results with 7 to 343 times larger
errors than the ones of GreedyL2. As the skew parameter increases, the performance of Random
Sampling deteriorated significantly, which is consistent with the findings in [4].

Variance in Weights: We varied the weight of the first measure from 0.5 to 4 to identify the impact
on the accuracy of the produced result. Figures 6 and 7 present the results. GreedyL2 exhibits
errors that are consistently about two thirds of the closest competitor’s errors (97.36 vs 147.15
absolute errors for weight = 3.5, a factor of 66.2%). The improvements are even larger for the case
of sum squared error. It is interesting to note that the GreedyL2 and the IndSorted methods exhibit
the greatest improvement in accuracy when the weights are varied significantly, both reducing their
errors by about 19%. In this experiment Random Sampling produced errors that were from 6 to
10 times larger than the ones of GreedyL2.
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It is interesting to see for this experiment how well each measure is approximated by the different
algorithms. Figure 8 presents the average error for each measure, for the case when the first measure
is assigned a weight value of 4. To calculate the average weighted error for all measures, the error
of Measure 1 (M1) needs to be multiplied by a factor of 4, and the resulting quantity to be divided
by the value 9, which is the sum of the measures’ weights. As Figure 8 shows, the Ind algorithm
exhibits the smallest error for the measure with the largest weight, about half of the error that
GreedyL2 achieves, while the Combined algorithm performs the worst for this measure. However,
GreedyL2 achieves the lowest errors for the remaining five measures thus displaying that even
though it can adjust its choices in cases of measures with large weights, it does so without without
severely impacting the accuracy of the remaining measures. Another interesting observation is
that the second measure, which follows a distribution similar to the heavily weighted Measure 1,
benefited significantly in the GreedyL2 algorithm, a behavior that was not observed in the other
algorithms.

Number of Measures: In Figures 9, 10 we present the average weighted sum squared and absolute
errors as the number of measures is varied from 2 to 6. The initial two measures are the ones with
distributions Center and Middle, and the measures that are later added are: Reverse, Altered-
Center, Altered-Reverse, Altered-Middle. As the number of measures increases, the improvement
on accuracy of GreedyL2 over the competitive methods increases. Random Sampling produced
errors that were from 6 to 13 times larger than the ones of GreedyL2.
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7.2 Real Dataset

For our real dataset we used weather measurements from the state of Washington [1]. The measures
that we used were solar irradiance, wind speed, wind peak, air temperature, dewpoint temperature
and relative humidity for the station in the university of Washington, and for the last one year.
To simulate enhanced interest to specific measures, we assigned a weight value of 3 to the first
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measure, a weight value of 2 to the next two measures, and a weight value of 1 to the remaining
measures. The measurements were taken on a per minute basis8, and the dataset contained two
dimensions, the day and the time of the measurement and a total of 521817 tuples. We performed
1000 range queries, where each range for the two dimensions was a random number with maximum
value 30 and 180, respectively. Thus, the maximum selectivity of a query was about 1%. From the
results of each query, we calculated average values for the stored measures over the queried day
and time periods. The average values for each query were calculated by using the number of cells
that each query accessed.

All measures were normalized, according to the following process: We first calculated for each
measure i its average value xi and its energy (sum if its squared values) Energyi. We then modified
each value v of measure i according to the formula (T is the number of input tuples):

v = 100 ∗ (v − xi)×
√

T√
Energyi − T × x2

i

With the above proceedure, each signal is modified to have an average value of 0, and an energy
equal to T × 1002. We found out that removing the influence of the average value, which in this
dataset carried a large part of the signals’ energies, and then setting the energy of each signal to a
common value produced better results.

In Figures 11, 12, 13 we present the results for the average weighted sum squared, absolute and
relative errors, as the storage bound was varied from 1KB to 10KB. The errors for all wavelet
methods decreases with the increase of the space bound. As it can be seen from the three figures,
the GreedyL2 algorithm consistently produced the smallest errors for all error metrics. The average
weighted sum squared and absolute errors of Random Sampling were 2 and 1 orders of magnitude
larger, respectively, than the corresponding errors of GreedyL2, while the average weighted relative
errors of Random Sampling were about 3-4 times larger than the errors of GreedyL2. Even though
the optimization problem of Section 4.1 is directly linked only to the average weighted sum squared

8Measurements corresponding to a small number of minutes were missing.
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Figure 11: Average Weighted Figure 12: Average Weighted Figure 13: Average Weighted
Sum Squared Error Absolute Error Relative Error

metric, the improved storage utilization of GreedyL2 resulted in improvements in the accuracy of
the average weighted absolute and relative error metrics as well.

Varying the Query Selectivity

In our experiments so far we have used a small query selectivity (1%). We now perform the
same experiment as above, but try medium and large query selectivities. In Figures 14, 15, 16
we present the results when the performed queries had a maximum selectivity of 4.4% (maximum
query rectangle of 62 × 372). The corresponding results for a maximum query selectivity of 26%
(maximum query rectangle of 183 × 745) are presented in Figures 17, 18, 19. With the increase of
the query selectivity, the errors decrease for all methods. However, GreedyL2 still outperforms all
the other techniques.

7.2.1 Non-Normalized Dataset

In this experiment we do not normalize the measures of the dataset. We now use a different assign-
ment of weights, assigning a weight value of 3 to the two measures involving temperatures, a weight
value of 1 to the two measures involving the wind, and a weight value of 2 to the remaining two
measures. The query workload had a maximum query selectivity of 1%, as above. In Figures 20, 21
we present the results for the average weighted sum squared and absolute errors, as the storage
bound was varied from 1KB to 10KB. The corresponding results for the average weighted relative
error are presented in Table 9. Again we observe that the errors for all wavelet methods decreases
with the increase of the space bound. The large relative errors for all methods for smaller storage
bounds is mainly due to the solar irradiance measure, which was the hardest to approximate. As
it can be seen from the two figures and the presented table, the GreedyL2 algorithm consistently
produced the smallest errors for all error metrics, with the exception of three cases for the aver-
age weighted relative error. The average weighted sum squared and absolute errors of Random
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Figure 14: Selectivity 4.4%: Figure 15: Selectivity 4.4%: Figure 16: Selectivity 4.4%:
Average Sum Squared Error Average Absolute Error Average Relative Error
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Figure 17: Selectivity 26%: Figure 18: Selectivity 26%: Figure 19: Selectivity 26%:
Average Sum Squared Error Average Absolute Error Average Relative Error

Sampling were 2 and 1 orders of magnitude larger, respectively, than the corresponding errors of
GreedyL2.

8 Conclusions

In this paper we introduced the notion of an extended wavelet coefficient as a flexible storage method
for maintaining wavelet coefficients for datasets containing multiple measures. This flexible storage
method bridges the gap between the two extreme storage hypotheses that the existing algorithms
represent, and achieves better storage utilization, which results in improved accuracy to queries.
We presented an optimal algorithm for selecting which extended wavelet coefficients to retain under
a storage constraint such that the weighted sum of the squared L2 error norms is minimized. We
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Figure 20: Sum Squared Errors Figure 21: Absolute Errors
for Non-Normalized Real Dataset for Non-Normalized Real Dataset

Space Average Weighted Relative Error (%)
(KB) GreedyL2 Combined Ind IndSorted RS

1 57.5 161.7 202.9 59.5 154.2
2 52.3 62.4 148.1 51.2 167.4
3 37.2 61.5 59.6 49.3 136.7
4 35.8 59.9 39.9 43.3 124.6
5 32.2 26.9 39.3 40.7 125.4
6 29.6 26.2 39.0 35.5 115.8
7 20.7 25.5 38.5 34.4 108.7
8 18.3 25.1 38.3 28.9 115.9
9 16.6 21.4 32.3 28.0 109.8
10 16.7 21.3 43.5 26.8 112.6

Table 9: Relative Errors for Non-Normalized Real Dataset

then proposed an alternative greedy algorithm with reduced memory requirements and running
time, which produces near optimal solutions for the same optimization problem. The results from
our extensive experimental study validate the effectiveness of our approach.
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