
Dwarf: Shrinking the PetaCube

Yannis Sismanis Antonios Deligiannakis Nick Roussopoulos Yannis Kotidis
Institute for Advanced Computer Studies AT&T Labs - Research

University of Maryland, College Park

{isis,adeli,nick}@umiacs.umd.edu kotidis@research.att.com

Abstract

Dwarf is a highly compressed structure for computing, storing, and querying data cubes. Dwarf identifies prefix

and suffix structural redundancies and factors them out by coalescing their store. Prefix redundancy is high on dense

areas of cubes but suffix redundancy is significantly higher for sparse areas. Putting the two together fuses the

exponential sizes of high dimensional full cubes into a dramatically condensed data structure. The elimination of

suffix redundancy has an equally dramatic reduction in the computation of the cube because recomputation of the

redundant suffixes is avoided. This effect is multiplied in the presence of correlation amongst attributes in the cube.

A Petabyte 25-dimensional cube was shrunk this way to a 2.3GB Dwarf Cube, in less than 20 minutes, a 1:400000

storage reduction ratio. Still, Dwarf provides 100% precision on cube queries and is a self-sufficient structure which

requires no access to the fact table. What makes Dwarf practical is the automatic discovery, in a single pass over the

fact table, of the prefix and suffix redundancies without user involvement or knowledge of the value distributions.

This paper describes the Dwarf structure and the Dwarf cube construction algorithm. Further optimizations are

then introduced for improving clustering and query performance. Experiments with the current implementation in-

clude comparisons on detailed measurements with real and synthetic datasets against previously published techniques.

The comparisons show that Dwarfs by far outperform these techniques on all counts: storage space, creation time,

query response time, and updates of cubes.

1 Introduction

The data cube operator [GBLP96] performs the computation of one or more aggregate functions for all possible

combinations of grouping attributes. The inherent difficulty with the cube operator is its size, both for computing and

storing it. The number of all possible group-bys increases exponentially with the number of the cube’s dimensions

and a naive store of the cube behaves in a similar way. The authors of [GBLP96] provided some useful hints for cube

computation including the use of parallelism, and mapping string dimension types to integers for reducing the storage.

The problem is exacerbated by the fact that new applications include an increasing number of dimensions and, thus,

the explosion on the size of the cube is a real problem. All methods proposed in the literature try to deal with the space

problem, either by precomputing a subset of the possible group-bys [HRU96, GHRU97, Gup97, BPT97, SDN98],

by estimating the values of the group-bys using approximation [GM98, VWI98, SFB99, AGP00] or by using online

aggregation [HHW97] techniques.

This paper defines Dwarf, a highly compressed structure1 for computing, storing, and querying data cubes. Dwarf

solves the storage space problem, by identifying prefix and suffix redundancies in the structure of the cube and factor-

ing them out of the store.
1The name comes after Dwarf stars that have a very large condensed mass, but occupy very small space. They are so dense, that their mass is

aboutone ton/cm3

1

Prefix redundancycan be easily understood by considering a sample cube with dimensionsa, b andc. Each value

of dimensiona appears in 4 group-bys (a, ab, ac, abc), and possibly many times in each group-by. For example,

for the fact table shown in Table 1 (to which we will keep referring throughout the paper) the valueS1 will appear a

total of 7 times in the corresponding cube, and more specifically in the group-bys:〈S1,C2,P2〉, 〈S1,C3,P1〉, 〈S1,C2〉,
〈S1,C3〉, 〈S1,P2〉, 〈S1,P1〉 and〈S1〉. The same also happens with prefixes of size greater than one -note that each

pair ofa,b values will appear not only in theabgroup-by, but also in theabcgroup-by. Dwarf recognizes this kind of

redundancy, and stores every unique prefix just once.

Store Customer Product Price
S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

Table 1: Fact Table for cube Sales

Suffix redundancyoccurs when two or more group-bys share a common suffix (likeabc andbc). For example,

consider a valueb j of dimensionb that appears in the fact table with a single valueai of dimensiona (such an example

exists in Table 1, where the valueC1 appears with only the valueS2). Then, the group-bys〈ai ,b j ,x〉 and〈b j ,x〉 always

have the same value, for any valuex of dimensionc. This happens because the second group-by aggregates all the

tuples of the fact table that contain the combinations of any value of thea dimension (which here is just the valueai)

with b j andx. Sincex is generally a set of values, this suffix redundancy has a multiplicative effect. Suffix redundancies

are even more apparent in cases of correlated dimension values. Such correlations are often in real datasets, like the

Weather dataset used in one of our experiments. Suffix redundancy is identified during the construction of the Dwarf

cube and eliminated bycoalescingtheir space.

What makes Dwarf practical is the automatic discovery of the prefix and suffix redundancies without requiring

knowledge of the value distributions and without having to use sophisticated sampling techniques to figure them out.

The Dwarf storage savings are spectacular for both dense and sparse cubes. We show that in most cases of very dense

cubes, the size of the Dwarf cube is much less than the size of the fact table. However, while for dense cubes the

savings are almost entirely from prefix redundancies, as the cubes get sparser, the savings from the suffix redundancy

elimination increases, and quickly becomes the dominant factor of the total savings.

Equally, or even more, significant is the reduction of the computation cost. Each redundant suffix is identified

prior to its computation, which results in substantial computational savings during creation. Furthermore, because

of the condensed size of the Dwarf cube, the time needed to query and update is also reduced. Inherently, the Dwarf

structure provides an index mechanism and needs no additional indexing for querying it. It is also self-sufficient in the

sense that it does not need to access or reference the fact table in answering any of the views stored in it.

An additional optimization that we have implemented is to avoid precomputation of certain group-bys that can be

calculated on-the-fly by using fewer than a given constant amount of tuples. The information needed to calculate these

group-bys is stored inside the Dwarf structure in a very compact and clustered way. By modifying the value of the

above constant, the user is able to trade query performance for storage space and creation time. This optimization was

motivated from iceberg cubes [BR99] and may be enabled by the user if a very limited amount of disk space and/or

limited time for computing the Dwarf is available.

To demonstrate the storage savings provided by Dwarf (and what fraction of the savings can be attributed to prefix

and suffix redundancies), we first compare the Dwarf cube sizes against a binary storage footprint (BSF), i.e. as if all

the views of the cube were stored in unindexed binary summary tables. Although this is not an efficient (or sometimes

feasible) store for a cube or sub-cubes, it provides a well understood point of reference and it is useful when comparing

2

different stores.

We also compared the Dwarf cubes withCubetreeswhich were shown in [RKR97, KR98] to exhibit at least

a 10:1 better query response time, a 100:1 better update performance and 1:2 the storage of indexed relations. Our

experiments show that Dwarfs consistently outperform the Cubetrees on all counts: storage space, creation time, query

response time, and updates of full cubes. Dwarf cubes achieve comparable update performance on partial cubes stored

on Cubetrees having the same size with Dwarf cubes. However, byte per byte, Dwarf stores many more materialized

views than the corresponding Cubetree structures and, therefore, can answer a much wider class of queries for the

same footprint.

We used several data sets to compute Dwarf cubes. One of them was a cube of 20 dimensions, each having a

cardinality of 1000, and a fact table containing 100000 tuples. The BSF for its cube is 4.4TB.2 Eliminating the prefix

redundancy, resulted in a Dwarf cube of 1.4 TB (31.8% of the original size). Eliminating the suffix redundancy reduced

the size of the Dwarf cube to just 300 MB3, a 1:14666 reduction over BSF. Following Jim Gray’s spirit of pushing

every idea to its limits, we decided to create a Petacube of 25-dimensions with BSF equal to one Petabyte. The Dwarf

cube for the Petacube is just 2.3 GB and took less than 20 minutes to create. This is a 1:400000 storage reduction

ratio.

The rest of this paper is organized as follows: Section 2 presents the Dwarf structure and its formal properties.

Sections 3 and 4 explain how Dwarf cubes are constructed, queried and updated. Section 5 contains the performance

analysis. The related work is presented in Section 6 and the conclusions are reported in Section 7.

2 The Dwarf Structure

We first describe the Dwarf structure with an example. Then we define the properties of Dwarf formally.

2.1 A Dwarf example

Figure 1 shows the Dwarf Cube for the fact table shown in Table 1 . It is a full cube using the aggregate function

sum. The nodes are numbered according to the order of their creation. The height of the Dwarf is equal to the number

of dimensions, each of which is mapped onto one of the levels shown in the figure. The root node contains cells of

the form[key,pointer], one for each distinct value of the first dimension. The pointer of each cell points to the node

below containing all the distinct values of the next dimension that are associated with the cell’s key. The node pointed

by a cell and all the cells inside it aredominatedby the cell. For example the cellS1 of the root dominates the node

containing the keysC2,C3. Each non-leaf node has a special ALL cell, shown as a small gray area to the right of the

node, holding a pointer and corresponding to all the values of the node.

A path from the root to a leaf such as〈S1,C3,P1〉 corresponds to an instance of the group-by Store, Customer,

Product and leads to a cell[P1 $40] which stores the aggregate of that instance. Some of the path cells can be open

using the ALL cell. For example,〈S2,ALL,P2〉 leads to the cell[P2 $50], and corresponds to the sum of the Prices

paid by any Customer for Product P2 at Store S2. At the leaf level, each cell is of the form[key,aggregate] and holds

the aggregate of all tuples that match a path from the root to it. Each leaf node also has an ALL cell that stores

the aggregates for all the cells in the entire node.〈ALL,ALL,ALL〉 leads to the total Prices (group-by NONE). The

reader can observe that the three paths〈S2,C1,P2〉, 〈S2,ALL,P2〉, and〈ALL,C1,P2〉, whose values are extracted from

processing just the last tuple of the fact-table, all lead to the same cell[P2 $50], which, if stored in different nodes,
2The BSF sizes, and the size of Dwarf cubes without enabling suffix coalescing were accurately measured by first constructing the Dwarf cube,

and then traversing it appropriately.
3All the sizes of Dwarf cubes, unless stated otherwise, correspond to the full Dwarf cubes

3

P1 $40 P2 $70 $110

(1)

(2)

(5)

(4)

(3)

(6)

(7)

(8)

(9)

P2 $70 $70

P1 $40 $40

C2 C3

S1 S2

C1

P1 $90 P2 $50 $140

C1 C2 C3

P1 $130 P2 $120 $250

Store Dimension

Customer Dimension

Product Dimension

Figure 1: The Dwarf Cube for Table 1

would introducesuffix redundancies. By coalescingthese nodes, we avoid such redundancies. In Figure 1 all nodes

pointed by more than one pointer are coalesced nodes.

2.2 Properties of Dwarf

In Dwarf, like previous algorithms proposed for cube computation, we require the dimension attributes to be of integer

type (thus mapping other types, like strings, to integers in required) but, unlike other methods, we do not require

packing the domain of values between zero and the cardinality of the dimension. Any group-by of aD-dimensional

cube can be expressed by a sequence ofD values (one for each dimension), to which we will refer as thecoordinates

of the group-by in a multidimensional space. In SQL queries, the coordinates are typically specified in the WHERE

clause. The group-by’sj-th coordinate can either be a value of the cube’sj-th dimension, or left open to correspond

to the ALL pseudo-value.

The Dwarf data structure has the following properties:

1. It is a directed acyclic graph (DAG) with just one root node and has exactlyD levels, whereD is the number of

cube’s dimensions.

2. Nodes at theD-th level (leaf nodes) contain cells of the form:[key, aggregateValues].

3. Nodes in levels other that theD-th level (non-leaf nodes) contain cells of the form:[key, pointer]. A cell C in

a non-leaf node of leveli points to a node at leveli + 1, which it dominates. Thedominatednode then has the

node ofC as itsparentnode.

4. Each node also contains aspecial cell, which corresponds to the cell with the pseudo-value ALL as its key. This

cell contains either a pointer to a non-leaf node or to the aggregateValues of a leaf node.

5. Cells belonging to nodes at leveli of the structure contain keys that are values of the cube’si-th dimension. No

two cells within the same node contain the same key value.

6. Each cellCi at the i-th level of the structure, corresponds to the sequenceSi of i keys found in a path from

the root to the cell’s key. This sequence corresponds to a group-by with(D− i) dimensions unspecified. All

4

group-bys having sequenceSi as their prefix, will correspond to cells that are descendants ofCi in the Dwarf

structure. For all these group-bys, their common prefix will be stored exactly once in the structure.

7. When two or more nodes (either leaf or non-leaf) generate identical nodes and cells to the structure, their storage

is coalesced, and only one copy of them is stored. In such a case, the coalesced node will be reachable through

more than one paths from the root, all of which will share a common suffix. For example, in the node at the

bottom of the Product level of Figure 1, the first cell of the node corresponds to the sequences〈S1,C2,P2〉 and

〈ALL,C2,P2〉, which share the common suffix〈C2,P2〉. If a nodeN is a coalesced node, then any nodeX which

is a descendant ofN will also be a coalesced node, since it can be reached from multiple paths from the root.

A traversal in the Dwarf structure always follows a path of lengthD, starting from the root to a leaf node. It has

the form〈[Node1.val|ALL], [Node2.val|ALL], ..., [NodeD.val|ALL]〉, meaning that thei-th key found in the path will

either be a valueNodei .val of the i-th dimension, or the pseudo-value ALL. The Dwarf structure itself constitutes an

efficient interlevel indexing method and requires no additional external indexing.

We now define some terms which will help in the description of the algorithms. Thedwarf of a node Nis defined to

be the node itself and all the dwarfs of the nodes dominated by the cells ofN. The dwarf of a nodeX that is dominated

by some cell ofN is called asub-dwarfof N. Since leaf node cells dominate no other nodes, the dwarf of a leaf node

is the node itself. The number of cells in the nodeNj , which a cellCi dominates, is called thebranching factorof Ci .

A sequence ofi keys, followed in any path from the root to a nodeN at leveli +1 of the Dwarf structure, is called

the leading prefixof N. A leading prefixof N, which contains no coordinate with ALL, is called theprimary leading

prefixof N.

The contentof a cellCi , belonging to a nodeN, is either the aggregateValues ofCi if N is a leaf node, or the

sub-dwarf ofCi if N is a non-leaf node.

2.3 Evidence of Structural Redundancy

2.3.1 Prefix Redundancy

A path from the root of the Dwarf structure to a leaf, corresponds to an instance of some group-by. Dwarf creates

the minimum number of cells to accommodate all paths. In the cube presented in Figure 1, for the first level of the

structure (Store), the maximum number of cells required is equal to the cardinality of the Store dimensionCardstore

plus 1 (for the ALL cell).

For the second level (Customer), if the cube was completely dense, we would need a number of cells equal to the

product:(Cardstore+1)× (Cardcustomer+1). Since most cubes are sparse, there is no need to create so many cells.

However, even in the case of dense cubes, the storage required to hold all cells of the structure (including the ALL

cells) is comparable to that required to hold the fact table. A Dwarf for a saturated cube ofD dimensions and the same

cardinalityN for each dimension, is actually a tree with a constant branching factor equal to:b f = N + 1. Therefore,

the number of leaf nodes and non-leaf nodes required to represent this tree is:

nonLea f Nodes=
(N +1)D−1−1

N
, Lea f Nodes= (N +1)D−1 (1)

Each non-leaf node containsN non-leaf cells and one pointer and each leaf node containsN leaf cells and the aggre-

gates. The size of a non-leaf cell is two units (one for the key and one for the pointer), while the size of a leaf-cell is

A+1 (A units for the aggregates and one for the key). The fact table of the saturated cube hasND tuples. The size for

5

each tuple isD+A. The ratio of the size of the Dwarf over the fact table is then approximated4 by:

ratio≈ A(N +1)D +N(N +1)D−1

(D+A)ND (2)

For example for a full dense cube withD = 10 dimension, a cardinality ofN = 1000 for each dimension, and one

aggregate (A = 1), we have a ratio of: 0.18, i.e. the Dwarf representation needs less than 20% of the storage that the

fact table requires. This proves that the fact table itself (and, therefore, certainly the cube) contains redundancy in its

structure.

The above discussion serves to demonstrate that Dwarf provides space savings even in the case of very sparse

cubes. Of course, for such a case a MOLAP representation of the cube would provide a larger cube compression.

However, MOLAP methods for storing the cube require knowledge (or the discovery) of the dense areas of the cube,

and do not perform well for sparse, high-dimensional cubes. On the other hand, Dwarf provides an automatic method

for highly compressing the cube independently of the characteristics (distribution, density, dimensionality...) of the

data.

2.3.2 Suffix Redundancy

Since Dwarf does not store cells that correspond to empty regions of the cube, each node contains at least one cell with

a key value, plus the pointer of the ALL cell. Therefore, the minimum branching factor is 2, while the maximum value

of the branching factor of a cell at levelj is 1+Cardj+1 , whereCardj+1 is the cardinality of dimensionj + 1. The

branching factor decreases as we descend to lower levels of the structure. An approximation of the branching factor at

level j of the structure, assuming uniform distribution for the values of each dimension for the tuples in the fact table,

is:

branch(j) = 1+min

(
Cardj+1, max

(
1, T/

j

∏
i=1

Cardi

))
(3)

whereT is the number of tuples in the fact table. If the cube is not very dense, the branching factor will become equal

to 2 at thek-th level, wherek is the lowest number such thatT/
k
∏
i=1

Cardi ≤ 1. For example, for a sparse cube with the

same cardinalityN = 1000 for all dimensions,D = 10 dimensions andT = 10000000(� ND) tuples, the branching

factor will reach the value 2 at levelk = dlogN Te = 3. This means that in very sparse cubes, the branching factor

close to the root levels deteriorates to 2. A branching factor of 2 guarantees (as we will see in Section 3.2) that suffix

redundancy exists at this level. Therefore, the smaller the value ofk, the larger the benefits from eliminating suffix

redundancy, since the storage of larger dwarfs is avoided.

Correlated areas of the fact table can also be coalesced. Assume for example, that a set of certain customersCs shop

onlyat a specific storeS. The views〈Store,Customer, ...〉 and〈ALL,Customer, ...〉 share the suffix that corresponds to

the setCs. In Table 1, customersC2 andC3 shop only at storeS1 and in Figure 1 we see that the nodes 3 and 4 of the

dwarf of node 2 are also coalesced from node 8.

3 Constructing Dwarf Cubes

The Dwarf construction is governed by two processes: theprefix expansion, and thesuffix coalescing. A non-

interleaved two-pass process would first construct a cube with the prefix redundancy eliminated, and then check in

it for nodes that can be coalesced. However, such an approach would require an enormous amount of temporary space
4The size of all the leaf nodes is much larger than the size of all the non-leaf nodes

6

and time, due to the size of the intermediate cube. It is thus imperative to be able to determine when a node can be

coalesced with another node before actually creating it. By imposing a certain order in the creation of the nodes, suffix

coalescing and prefix expansion can be performed at the same time, without requiring two passes over the structure.

Before we present the algorithm for constructing the Dwarf cube, we present some terms that will be frequently

used in the algorithm’s description. A nodeNans is called anancestorof N iff N is a descendant node ofNans. During

the construction of the Dwarf Cube, a nodeN at level j of the Dwarf structure isclosedif there does not exist an

unprocessed tuple of the fact-table that contains a prefix equal to the primary leading prefix ofN. An existing node of

the Dwarf structure which is notclosedis consideredopen.

The construction of a Dwarf cube is preceded by a single sort on the fact table using one of the cube’s dimensions

as the primary key, and collating the other dimensions in a specific order. The choice of the dimensions’ ordering has

an effect on the total size of the Dwarf Cube. Dimensions with higher cardinalities are more beneficial if they are

placed on the higher levels of the Dwarf cube. This will cause the branching factor to decrease faster, and coalescing

will happen in higher levels of the structure. The ordering used will either be the one given by the user (if one has

been specified), or will be automatically chosen by Dwarf after performing a scan on a sample of the fact table and

collecting statistics on the cardinalities of the dimensions.

3.1 CreateDwarfCube algorithm

The Dwarf construction algorithmCreateDwarfCubeis presented in Algorithm 1. The construction requires just a

single sequential scan over the sorted fact table. For the first tuple of the fact table, the corresponding nodes and cells

are created on all levels of the Dwarf structure. As the scan continues, tuples with common prefixes with the last tuple

will be read. We create the necessary cells to accommodate new key values as we progress through the fact table.

At each step of the algorithm, the common prefixP of the current and the previous tuple is computed. Consider the

path we need to follow to store the aggregates of the current tuple. The first|P|+ 1 nodes (where|P| is the size of

the common prefix) of the path up to a nodeN have already been created because of the previous tuple. Thus, for a

D-dimensional cube,D−|P|−1 new nodes need to be created by expanding the structure downwards from nodeN

(and thus the namePrefix Expansion), and an equal number of nodes have now become closed. When a leaf node is

closed, the ALL cell is produced by aggregating the contents (aggregate values) of the other cells in the node. When a

non-leaf node is closed, the ALL cell is created and the SuffixCoalesce algorithm is called to create the sub-dwarf for

this cell.

For example consider the fact table of Table 1 and the corresponding Dwarf cube of Figure 1. The nodes in the

figure are numbered according to the order of their creation. The first tuple〈S1,C2,P2〉 creates three nodes (Nodes 1,

2 and 3) for the three dimensions (Store, Customer and Product) and inserts one cell to each node. Then the second

tuple 〈S1,C3,P1〉 is read, which shares only the prefixS1 with the previous tuple. This means that cellC3 needs to

be inserted to the same node asC2 (Node 2) and that the node containingP2 (Node 3) is nowclosed. The ALL cell

for Node 3 is now created (the aggregation here is trivial, since only one other cell exists in the node). The third tuple

〈S2,C1,P1〉 is then read and contains no common prefix with the second tuple. Finally, we create the ALL cell for

Node 4 and call SuffixCoalesce for Node 2 to create the sub-dwarf of the node’s ALL cell.

7

Algorithm 1 CreateDwarfCube Algorithm
Input: sorted fact table, D : number of dimensions

1: Create all nodes and cells for the first tuple
2: last tuple = first tuple of fact table
3: while more tuples exist unprocesseddo
4: currenttuple = extract next tuple from sorted fact table
5: P = common prefix of currenttuple , lasttuple
6: if new closed nodes existthen
7: write special cell for the leaf node homeNode where lasttuple was stored
8: For the restD−|P|−2 new closed nodes, starting from homeNode’s parent node

and moving bottom-up, create their ALL cells and call the SuffixCoalesce Algorithm
9: end if

10: Create necessary nodes and cells for currenttuple{ D−|P|−1 new nodes created}
11: last tuple = currenttuple
12: end while
13: write special cell for the leaf node homeNode where lasttuple was stored
14: For the other open nodes, starting from homeNode’s parent node and moving bottom-up,

create their ALL cells and call the SuffixCoalesce Algorithm (Algorithm 2)

3.2 Suffix Coalescing Algorithm

Suffix Coalescingcreates the sub-dwarfs for the ALLcell of a node. Suffix Coalescing tries to identifyidenticaldwarfs

and coalesce their storage. Two, or more, dwarfs areidentical if they are constructed by the same subset of the fact

table’s tuples. Prefix expansion would create a tree if it were not for Suffix Coalescing.

The SuffixCoalesce algorithm is presented in Algorithm 2. It requires as input a set of Dwarfs (inputDwarfs) and

merges them to construct the resulting dwarf. The algorithm makes use of the helping function calculateAggregate,

which aggregates the values passed as its parameter.

Algorithm 2 SuffixCoalesce Algorithm
Input: inputDwarfs = set of Dwarfs

1: if only one dwarf in inputDwarfsthen
2: return dwarf in inputDwarfs{coalescing happens here}
3: end if
4: while unprocessed cells exist in the top nodes of inputDwarfsdo
5: find unprocessed keyKeymin with minimum value in the top nodes of inputDwarfs
6: toMerge = set of Cells of top nodes of inputDwarfs having keys with values equal toKeymin

7: if already in the last level of structurethen
8: write cell [Keymin calculateAggregate(toMerge.aggregateValues)]
9: else

10: write cell [Keymin SuffixCoalesce(toMerge.sub-dwarfs)]
11: end if
12: end while
13: create the ALL cell for this node either by aggregation or by calling SuffixCoalesce
14: return position in disk where resulting dwarf starts

SuffixCoalesce is a recursive algorithm that tries to detect at each stage whether some sub-dwarf of the resulting

dwarf can be coalesced with some sub-dwarf ofinputDwarfs. If there is just one dwarf ininputDwarfs, then coalescing

happens immediately, since the result of merging one dwarf will obviously be the dwarf itself. The algorithm then

repeatedly locates the cellstoMergein the top nodes of inputDwarfs with the smallest keyKeymin which has not been

8

processed yet5. A cell in the resulting dwarf with the same keyKeymin needs to be created, and itscontent(sub-dwarf

or aggregateValues) will be produced by merging thecontentsof all the cells in thetoMergeset. There are two cases:

1. If we are at a leaf node we call the function calculateAggregate to produce the aggregate values for the resulting

cell.

2. Otherwise, coalescing cannot happen at this level. We call SuffixCoalesce recursively to create the dwarf of the

current cell, and check if parts of the structure can be coalesced at one level lower.

At the end, the ALL cell for the resulting node is created, either by aggregating the values of the node’s cells (if this is

a leaf node) or by calling SuffixCoallesce, with the sub-dwarfs of the node’s cells as input.

As an example, consider again the Dwarf cube presented in Figure 1. We will move to the step of the algorithm

after all the tuples of Table 1 have been processed, and the ALL cell for Node 7 has been calculated. SuffixCoalesce

is called to create the sub-dwarf of the ALL cell of Node 6. Since only one sub-dwarf exists in inputDwarfs (the one

where C1 points to), immediate coalescing happens (case in Line 1) and the ALL cell points to Node 7, where C1

points to. Now, the sub-dwarf of the ALL cell for Node 1 must be created. The cell C1 will be added to the resulting

node, and its sub-dwarf will be created by recursively calling SuffixCoalesce, where the only input dwarf will be the

one that has Node 7 as its top node. Therefore, coalescing will happen there. Similarly, cells C2 and C3 will be added

to the resulting node one by one, and coalescing will happen in the next level in both cases, because just one of the

inputDwarfs contains each of these keys. Then the ALL cell for Node 8 must be created (Line 13). The key P1 is

included in the nodes pointed by C1 and C3 (Nodes 7,4), and since we are at a leaf node, we must aggregate the values

in the two cells (Line 8).

3.3 Memory Requirements

The CreateDwarfCube algorithm has no major requirements, since it only needs to remember which was the previously

read tuple. For the SuffixCoalescing algorithm, the priority queue (used to locate in Line 5 the cells with the minimum

key), contains at each step one key from the top node of each dwarf in inputDwarfs. Since in the worst case we will

descend allD levels of the structure when creating the ALL cell for the root node, the memory requirements for the

priority queue (which are the only memory requirements for the algorithm) in the worst case of a fully dense Dwarf

cube are equal to:

MaxMemoryNeeded= c·
D

∑
i=1

Cardi (4)

wherec is the size of the cell. However, since the cube is “always” sparse, the number of cells that must be kept in

main memory will bemuchsmaller than the sum of the dimensions’ cardinalities, and the exact number depends on

the branching factor at each level of the structure.

3.4 Incremental Updates

The ability to refresh data in a modern data warehouse environment is currently more important than ever. As the

data stored increases in complexity, the possibility of incrementally updating the data warehouse/data-mart becomes

essential. The “recompute everything” strategy cannot keep up the pace with the needs of a modern business. The most

common strategy is using semi-periodic bulk updates of the warehouse, at specific intervals or whenever up-to-date

information is essential.
5By using a priority queue. Details are omitted because of space constraints.

9

In this section we describe how the Dwarf structure is incrementally updated, given a set of delta tuples from the

data sources and an earlier version of the Dwarf cube. We assume that the delta updates are much smaller in size

compared to the information already stored. Otherwise, a bulk incremental technique that merges [KR98] the stored

aggregates with the new updates and stores the result in a new Dwarf might be preferable than the in-place method.

The incremental update procedure starts from the root of the structure and recursively updates the underlying nodes

and finishes with the incremental update of the node that corresponds to the special ALL cell. By cross-checking the

keys stored in the cells of the node with the attributes in the delta tuples, the procedure skips cells that do not need

to be updated, expands nodes to accommodate new cells for new attribute values (by using overflow pointers), and

recursively updates those sub-dwarfs which might be affected by one or more of the delta tuples.

Since the delta information is much less compared to the information already stored, the number of the cells that

are skipped is much larger than the number of cells that need to be updated. One case requires special attention: by

descending the structure, we can reach a coalesced node from different paths. Once we get to the coalesced node

we have to check if the coalesced path is still valid, since the insertion of one or more tuples might have caused the

coalesced pointer to become invalid. In this case, the corresponding subdwarf has to be re-evaluated, and any new

nodes have to be written to a different area of the disk. However, it is important to realize that an invalid coalesced

pointer does not mean that the entire subdwarf needs to be copied again. Coalescing to nodes of the old dwarf will

most likely happen just a few levels below in the structure, since only a small fraction of all the aggregate values

calculated is influenced by the update.

An important observation is that frequent incremental update operations slowly deteriorate the original clustering

of the Dwarf structure6, mainly because of the overflow nodes created. This is an expected effect, encountered by all

dynamic data structures as a result to online modifications. Since Dwarf is targeted for data warehousing applications

that typically perform updates in scheduled periodic intervals, we envision running an process in the background

periodically for reorganizing the Dwarf and transferring it into a new file with its clustering restored.

4 Performance issues in Dwarf Cubes

4.1 Query Execution

A point query is a simple traversal on the Dwarf structure from the root to a leaf. At leveli, we search for the cell

having as key thei-th coordinate value in the query and descend to the next level. If thei-th coordinate value is ALL,

we follow the pointer of the ALL cell. A point query is fast simply because it involves exactlyD node visits (whereD

is the number of dimensions).

Range queries differ from point queries in that they contain at least one dimension with a range of values. If a

range is specified for thei-th coordinate, for each key satisfying the specified range we recursively descend to the

corresponding sub-dwarf in a depth-first manner. As a result, queries on the Dwarf structure have trivial memory

requirements (one pointer for each level of the structure).

According to the algorithms for constructing the Dwarf cube, certain views may span large areas of the disk. For

example, for a 4-dimensional cube with dimensionsa,b,c,d, view abcd is not clustered, since all views containing

dimensiona (viewsa,ab,ac,ad,abc,abd,acd) are all interleaved in the disk area that viewabcdoccupies. Therefore,

a query with multiple large ranges on any of these views would fetch nodes that contain data forall these views. For

this reason, we deviate from the construction algorithm, in order to cluster the Dwarf cube more efficiently. This is

described in the following section.
6The query performance of Dwarf still remains far ahead of the closest competitor as shown in our experiments section.

10

4.2 Clustering Dwarf Cubes

The algorithms described in section 3 present the general principles for

none

abc

ba c

acab bc

Figure 2: Data Cube Lattice for

dimensions a, b and c

constructing Dwarf structures. However there is a lot of room for improvement

as far as the clustering of the structure is concerned. As we mentioned, the

algorithms do not cluster views of the cube together and therefore accessing

one view requires accessing nodes that are probably on different disk pages that

are too far apart from each other. In this section we describe how the Dwarf

structure can be created in a very clustered manner. Typically, the clustered

version of the dwarfs decreased the query response time in real datasets by a

factor of 2 to 3.

The lattice representation [HRU96] of the Data Cube is used to represent

the computational dependencies between the group-bys of the cube. An ex-

ample for three dimensions is illustrated in Figure 2. Each node in the lattice

corresponds to a group-by (view) over the node’s dimensions. For example, nodeab represents the group-byabview.

The computational dependencies among group-bys are represented in the lattice using directed edges. For example,

group-bya can be computed from theabgroup-by, while group-byabccan be used to compute any other group-by. In

Figure 2 we show only dependencies between adjacent group-bys, but we refer to the transitive closure of this lattice.

In Table 2 we illustrate an ordering of the views for a three dimensional cube. The second column of the table

contains a binary representation of the view with as many bits as the cube’s dimensions. An aggregated dimension has

the corresponding bit set to true(1). For example viewabcorresponds to 001 since the dimensionc is aggregated. The

views are sorted in increasing order based on their binary representation.

This ordering has the property that whenever a vieww is about to be computed, all the candidate ancestor views

vi with potential for suffix coalescing have already been computed. Note that the binary representation forvi can be

derived from the binary representation ofw by resetting any one true bit (1) to false (0). This essentially means that

the binary representation ofvi is arithmetically less than the binary representation ofw and therefore precedes that in

the sorted ordering. For example, in Table 2, vieww = a(011) has ancestorsv1 = ab(001) andv2 = ac(010). Figure

3 demonstrates the processing tree for the example in Table 2. In this order we have chosen to use the ancestorvi with

the biggest common prefix forw.

View Binary Rep Parents w/
Coalesce

abc 000
ab 001 abc
ac 010 abc
a 011 ab, ac
bc 100 abc
b 101 ab, bc
c 110 ac, bc

none 111 a, b, c none

abc

ba c

acab bc

(1)

(2) (3)

(4)

(5)

(6) (7)

(8)

Table 2: View ordering example Figure 3: Processing tree

By removing the recursion in the algorithms in Section 3 (lines 8,14 in the CreateDwarfCube algorithm, and

line 13 in the SuffixCoalesce algorithm) we are able to create any one view of the cube. More specifically, the most

detailed view (in our exampleabc) can be created with CreateDwarfCube, while any other view can be created with

the SuffixCoalesce algorithm. Therefore it is easy to iterate through all the views of the cube using the described

11

ordering and create each one of them. This procedure clusters nodes of the same view together and the resulting

Dwarf structure behaves much better. For example, consider the structure in Figure 1. If this structure is created

using the algorithms in Section 3 then the nodes will be written in the order: 123456789. Note that node 5 that

belongs to view〈Store,ALL,Product〉 is written between nodes 4 and 6 that belong to view〈Store,Customer,Product〉,
therefore destroying the clustering for both views. However, the procedure described here creates the nodes in the order

123467589, maintaining the clustering of each view. Table 3 describes in more detail the procedure.

View Binary Rep Nodes

Store,Customer,Product 000 create 1,2,3,4,6,7
Store,Customer 001 close 3,4,7
Store,Product 010 create 5, coalesce to 7

Store 011 close 5,7
Customer,Product 100 create 8, coalesce to 7,4,3

Customer 101
Product 110 create 9

none 111 close 9

Table 3: Example of creating a clustered Dwarf

4.3 Optimizing View Iteration

In our implementation we used a hybrid algorithm which does not need to iterate over all views. The hybrid algorithm

takes advantage of the situation encountered while creating view〈Store,Customer〉 or view 〈Store〉 as described in

Table 3. Iterating over these two views did not create any new nodes, but rather closed the nodes by writing theALL

cell.

The situation is more evident in very sparse cubes (usually cubes of high dimensionalities). Assume a five-

dimensional cube with ten thousand tuples where each dimension has a cardinality of one hundred. Let us assume that

data values are uniformly distributed. The Dwarf representation of viewabcde(00000) consists of five levels. The

first level has only one node with one hundred cells. The second level for every cell of the first one has a node with

another one hundred cells. The third level however -since we assumed that the data are uniform and there only ten

thousand tuples- has nodes that consist of only of one cell. Therefore we can close the corresponding cells right away.

Thus we avoid iterating on viewsabcd(00001),abce(00010),abc(00011) andabde(00100).

4.4 Coarse-grained Dwarfs

Even though the Dwarf structure achieves remarkable compression ratios for calculating the entire cube, the Dwarf

size can be, in cases of sparse cubes, quite larger than the fact table. However we can trade query performance for

storage-space by using agranularity Gmin parameter. Whenever at some level of the Dwarf structure (during the Dwarf

construction) the number of tuples that contributes to the subdwarf beneath the currently constructed nodeN of levelL

is less thanGmin, then for that subdwarf we do not compute any ALL cells. All the tuples contributing to thiscoarse-

grainedarea below nodeN can be stored either in a tree-like fashion (thus exploiting prefix redundancy), or as plain

tuples (which is useful if the number of dimensionsD is much larger thanL, to avoid the pointers overhead). Notice

that for all these tuples we need to store only the lastD−L coordinates, since the path to the collapsed area gives as

the missing information. Each query accessing the coarse-grained area below nodeN will require to aggregate at most

Gmin tuples to produce the desired result. The user can modify theGmin parameter to get a Dwarf structure according

to his/her needs.

12

5 Experiments and Performance Analysis

We performed several experiments with different datasets and sizes to validate our storage and performance expec-

tations. All tests in this section were run on a single 700Mhz Celeron processor running Linux 2.4.12 with 256MB

of RAM. We used a 30GB disk rotating at 7200 rpms, able to write at about 8MB/sec and read at about 12MB/sec.

We purposely chose to use a low amount of RAM memory to allow for the effect of disk I/O to become evident and

demonstrate that the performance of Dwarf does not suffer even when limited memory resources are available.

Our implementation reads a binary representation of the fact table, where all values have been mapped to integer

data (4 bytes). Unless specified otherwise, all datasets contained one measure attribute, and the aggregate function

used throughout our experiments was the SUM function. The reported times are actual times and contain CPU and

I/O times for the total construction of Dwarf cubes including the initial sorting of the fact table.

In the experiments we compared Dwarf to Cubetrees, as far as storage space, creation time, queries and update

performance are concerned. In [KR98] Cubetrees were shown to exhibit at least 10 times faster query performance

when compared to indexed relations, half the storage a commercial relational system requires and at least 100 times

faster update performance. Since no system has been shown to outperform the Cubetrees so far, we concluded that

this was the most challenging test for Dwarf.

5.1 Cube construction

5.1.1 Prefix redundancy vs Suffix Coalescing

In this experiment we explore the benefits of eliminating prefix redundancy, and using suffix coalescing when com-

puting the CUBE operator. For the first set of experiments, we used a binary storage footprint (BSF) as a means of

comparison. The BSF representation models the storage required to store the views of the cube in unindexed binary

relations. This representation was also used by [BR99] to estimate the time needed to write out the output of the cube.

uniform 80-20
#Dims BSF Dwarf w/ Prefix only Dwarf(MB) Time(sec) Dwarf(MB) Time(sec)

10 2333 MB 1322 MB 62 26 115 46
15 106 GB 42.65 GB 153 68 366 147
20 4400 GB 1400 GB 300 142 840 351
25 173 TB 44.8 TB 516 258 1788 866
30 6.55 PB 1.43 PB 812 424 3063 1529

Table 4: Storage and creation time vs #Dimensions

In Table 4, we show the storage and the compute time for Dwarf cubes as the number #Dims of dimensions range

from 10 to 30. The fact table contained 100000 tuples and the dimension values were either uniformly distributed over

a cardinality of 1000 or followed a 80-20 Self-Similar distribution over the same cardinality. We did not impose any

correlation among the dimensions. The BSF column shows an estimate of the total size of the cube if its views were

stored in unindexed relational tables. The “Dwarf w/ Prefix only” column shows the storage of the Dwarf with the

suffix coalescing off, and therefore, without suffix redundancy elimination. To measure the BSF size and the “Dwarf w/

Prefix only” size, we generated the Dwarf with the suffix coalescing turned on, and then traversed the Dwarf structure

appropriately. We counted the BSF and the “Dwarf w/ prefix only” storage for both distributions and the results (as

far as the savings are concerned) were almost identical -slightly smaller savings for the 80-20 distribution-, so we just

present the uniform sizes. The remaining four columns show the Dwarf store footprint and the time to construct it

for each of the two distributions. Figure 4 shows the compression over the BSF size as the number of dimensions

13

10 15 20 25 30
#Dimensions

10
0

10
2

10
4

10
6

St
or

ag
e

sa
vi

ng
s

ov
er

 B
SF

Dwarf w/ Prefix only
Dwarf -Uniform
Dwarf - 80/20

Figure 4: Dwarf Compression Ratio over BSF (log scale) vs #Dimensions

increases. Observe that, as the cube becomes sparser, the savings increase exponentially due to suffix coalescing.

We observe the following:

• Elimination of prefix redundancy saves a great deal, but suffix redundancy is clearly the dominant factor in the

overall performance.

• The creation time is proportional to the Dwarf size.

• The uniform distribution posts the highest savings. The effect of skew on the cube is that most tuples from the

fact table contribute to a small part of the whole cube while leaving other parts empty. The denser areas benefit

from prefix elimination which is smaller, and sparser areas have less suffix redundancy to eliminate (since fewer

tuples exist there).

Table 5 gives the Dwarf storage and computation time for a 10-dimensional cube when the number of tuples in the

fact table varies from 100000 to 1000000. The cardinalities of each dimension are 30000 , 5000, 5000, 2000, 1000,

1000, 100, 100, 100 and 10. The distribution of the dimension values were either all uniform or all 80-20 self-similar.

This set of experiments shows that the store size and computation time grow linearly in the size of the fact table (i.e.

doubling the input tuples results in a little more than twice the construction time and storage required).

uniform 80-20
#Tuples Dwarf(MB) Time(sec) Dwarf(MB) Time(sec)

100,000 62 27 72 31
200,000 133 58 159 69
400,000 287 127 351 156
600,000 451 202 553 250
800,000 622 289 762 357

1,000,000 798 387 975 457

Table 5: Storage and time requirements vs #Tuples

5.1.2 Comparison with Full Cubetrees

In this experiment we created cubes of fewer dimensions, in order to compare the performance of Dwarf with that of

Cubetrees. We created full cubes with the number of dimensions ranging from 4 to 10. In each case, the fact table

contained 250000 tuples created by using either a uniform, or a 80-20 self-similar distribution. In Figure 5 we show

14

the space required for Dwarf and for Cubetrees to store the entire cube. Figure 6 shows the corresponding construction

times. From these two Figures we can see that:

• Cubetrees do not scale, as far as storage space is concerned, with the number of dimensions. On the contrary,

Dwarf requires much less space to store the same amount of information.

• Dwarf requires significantly less time to build the cube. This is because Cubetrees (like other methods that

calculate the entire cube) perform multiple sorting operations on the data, and because Dwarf avoids computing

large parts of the cube, since suffix coalescing identifies parts that have already been computed.

4 5 6 7 8 9 10
#Dimensions

0.0

1.0×10
9

2.0×10
9

3.0×10
9

4.0×10
9

5.0×10
9

6.0×10
9

St
or

ag
e

(B
yt

es
)

Cubetrees Uniform
Cubetrees Self-Similar
Dwarf Uniform
Dwarf Self-Similar

4 5 6 7 8 9 10
#Dimensions

500

1000

1500

2000

2500

C
re

at
io

n
T

im
e

(s
ec

)

Cubetrees Uniform
Cubetrees Self-Similar
Dwarf Uniform
Dwarf Self-Similar

Figure 5: Storage space vs #Dims Figure 6: Construction time vs #Dims

5.1.3 Comparison to Reduced Cubetrees

This experiment compares the construction time of Dwarf with that of Cubetrees when the Cubetrees size is limited

to that of the Dwarf structure. We will refer to this type of Cubetrees asreducedCubetrees. This is useful to examine,

since in many cases of high-dimensional data, Cubetrees (and most other competitive structures) may not fit in the

available disk space. Since the Cubetrees will not store all the views of the CUBE operator, we have to make a

decision of which views to materialize. The PBS algorithm [SDN98] provides a fast algorithm to decide which views

to materialize under a given storage constraint, while at the same time guaranteeing good query performance. The PBS

algorithm selects the smallest views in size, which are typically the views that have performed the most aggregation.

In addition, we have also stored in thereducedCubetrees the fact table, in order for them to be able to answer queries

(in the Queries section) on views which are not materialized or cannot be answered from other materialized views.

Dataset #Dims #Tuples
Size
(MB)

Cubetrees
Time(sec)

Dwarf
Time(sec)

PBS
Views

Meteo-9 9 348448 66 64 35 63 out of 512
Forest 10 581012 594 349 350 113 out of 1024

Meteo-12 12 348448 358 451 228 310 out of 4096

Table 6: Storage and Creation Time for Real Datasets

Table 6 gives the Dwarf and reduced Cubetrees storage and creation times for three real datasets. Cubetrees were

created having the same size as the corresponding Dwarfs. The construction times of the reduced Cubetrees do not

include the running time for the PBS algorithm. The table also shows the number of views contained in the reduced

Cubetrees. The first real dataset contains weather conditions at various weather stations on land for September 1985

15

[HWL]. From this dataset we created two sets - Meteo-9 and Meteo-12 - of input data: one which contained 9

dimensions, and one with 12 dimensions. The second real data-set contains “Forest Cover Type” data [Bla98] which

includes cartographic variable that are used to estimate the forest cover type of land areas. In all data sets some of the

attributes were skewed and among some dimensions there was substantial correlation.

Even though the reduced Cubetrees calculate significantly fewer views that Dwarf does, Dwarf cubes are signifi-

cantly faster at their creation for the two Weather datasets, and took the same amount of time as the Cubetrees for the

Forest dataset. One important observation is that the Dwarf structure for the Weather dataset with 12 dimensions is

smaller, and faster to compute than the Dwarf for the Forest data, which had 10 dimensions. The top three dimensions

in the Weather data were highly correlated and suffix coalescing happened at the top levels of the Dwarf structure in

many cases, thus providing substantial space and computational savings.

5.2 Query Performance

In this section we study the query performance of Dwarf when compared to full and reduced Cubetrees. We also give

a detailed analysis of how range queries, applied to different levels of the Dwarf structure, are treated by both the

clustered and unclustered structure.

5.2.1 Dwarfs vs Full Cubetrees

We created two workloads of 1000 queries, and queried the cubes created in the previous experiment (full cubes of

4-10 dimensions with 250000 tuples). The description of the workloads is presented in Table 7.

Probabilities Range
Workload #Queries PnewQ Pdim PpointQ Max Min

A 1000 0.34 0.4 0.2 20% 1
B 1000 1.00 0.4 0.2 20% 1

Table 7: Workload Characteristics for “Dwarfs vs Full Cubetrees” Query Experiment

Since other query workloads will also be given in tables similar to Table 7, we give below a description on the

notation used. An important thing to consider is that in query workloads to either real data, or synthetic data produced

by using the uniform distribution, the values specified in the queries (either point values, or the endpoints of ranges)

are selected by using a uniform distribution. Otherwise, we use the 80/20 Self-Similar distribution to produce these

values. This is more suitable, since we suspect that the user will typically be more interested in querying the denser

areas of the cube.

PnewQ The probability that the new query will not be related to the previous query. In OLAP applications, users

typically perform a query, and then often execute a series of roll-up or drill-down queries. When our query

generator produces a query, it produces a roll-up query with probability(1−PnewQ)/2, a drill-down query

with the same probability or a new query with probabilityPnewQ. For example, Workload B creates only new

(unrelated) queries, while workload A creates a roll-up or a drill-down with a probability of 0.33 each.

Pdim The probability that each dimension will be selected to participate in a new query. For example, for a 10-

dimensional cube, if the above probability is equal to 0.4, then new queries will include 10·0.4 = 4 dimensions

on average.

PpointQ The probability that we specify just a single value for each dimension participating in a query. Otherwise,

with probability 1−PpointQ we will specify a range of values for that dimension. This way we control how

16

selective our queries will be: a value of 1 produces only point queries, and a value of 0 produces queries with

ranges in every dimension participating in the query. In most of our experiments we selected low values for this

parameter, since a high value would result in most queries returning very few tuples (usually 0).

RangeThe range for a dimension is uniformly selected to cover a specified percentage of the cardinality of the

dimension. For example, if a dimensiona has values ranging from 1 to 1000, a 20% value maximum range

will force any range of dimensiona to be limited to at most 200 values. Each range contains at least one value.

4 5 6 7 8 9 10
#Dimensions

0

50

100

150

R
es

po
ns

e
T

im
e

(s
ec

)

Cubetrees/A
Cubetrees/B
Dwarf/A
Dwarf/B

4 5 6 7 8 9 10
#Dimensions

0

50

100

150

R
es

po
ns

e
T

im
e

(s
ec

)

Cubetrees/A
Cubetrees/B
Dwarf/A
Dwarf/B

Figure 7: Query performance on uniform data Figure 8: Query performance on self-similar data

Returning to the experiment, the results for the workloads of Table 7 on the cubes created in the previous exper-

iment are shown in Figures 7 and 8. Dwarf outperforms Cubetrees in all cases, and for small-dimensionality Dwarf

cubes are 1-2 orders of magnitude faster. The main advantage of Dwarf cubes is their condensed storage, which allows

them to keep in main memory a lot more information than Cubetrees can. Moreover, we can see that Dwarf performs

better in workload A, because roll-up and drill-down queries have a common path in the Dwarf structure with the

previously executed query, and thus the disk pages corresponding to the common area are already in main memory.

For example, for the 10-dimensional cases, in the Uniform dataset the response time drops from 35 to 28 seconds

when roll-up and drill-down operations are used (a 20% reduction), while for the Self-Similar case the improvement

is even larger: from 58 to 40 seconds. This is a 31% reduction in response time.

5.2.2 Dwarfs vs Reduced Cubetrees

In this set of experiments, we compare the query performance of Dwarfs with that of reduced Cubetrees. The datasets

used in this experiment were the real datasets described in Section 5.1.3 (Meteo-9, Meteo-12, Forest). Since Cubetrees

in this case did not contain all the views of the cube, we need to explain how we answered queries on non-materialized

views.

When a query on a non-materialized viewv is issued, the Cubetree optimizer picks the best materialized vieww

to answerv. If v does not share a common prefix withw, then it uses a hash-based approach to evaluate the query. If

howeverv shares a common prefix withw, then the result is calculated on the fly, taking advantage of the common sort

order. The second case is much faster than using a hash-table. The Cubetree optimizer needs estimates for the size of

all views, but in our case we had the exact sizes by issuing appropriate queries to the Dwarf structure.

For each real dataset we created 5 workloads of 2000 queries, whose characteristics are presented in Table 8. Here,

the#Dimscolumn denotes the average number of dimensions specified on each query. Notice that workloads C and E

are similar to workloads B and D, respectively, but contain no roll-up/drill-down queries.

17

Workload #Queries PnewQ #Dims PpointQ Rangemax

A 2000 0.34 4 0.1 15%
B 2000 0.34 4 0.5 25%
C 2000 1.00 4 0.5 25%
D 2000 0.34 3 0.5 25%
E 2000 1.00 3 0.5 25%

Table 8: Workload Characteristics for “Dwarfs vs Reduced Cubetrees” Query Experiment

The query performance of Dwarf and the reduced Cubetrees is presented in Table 9. Dwarf is about an order of

magnitude faster than the reduced Cubetrees in the Weather datasets Meteo-9, Meteo-12), and 2−3 times faster in the

Forest dataset. Dwarf performs significantly better in the Weather datasets due to the correlation of the attributes in

these datasets. Because coalescing happened at the top levels of the structure, a large fraction of nodes at the top levels

were cached, thus improving performance dramatically.

An important observation is that Dwarfs are faster when the workload contains roll-up/drill-down queries. For

example, for workloads D and E of the forest dataset, Dwarf was 17% faster. Also notice that in this type of workloads

the limitation of the average number of dimensions specified in each query, favors Cubetrees, which typically store

views with up to 3 dimensions, because of the PBS algorithm. For workloads with queries containing more dimensions,

on average, the performance of the Cubetrees was significantly worse.

Reduced Cubetrees Dwarf
Workload Meteo-9 Meteo-12 Forest Meteo-9 Meteo-12 Forest

A 305 331 462 13 34 150
B 292 346 478 13 39 176
C 304 340 483 13 44 208
D 315 301 427 12 47 217
E 305 288 448 15 49 262

Table 9: Query Times in Seconds for 2000 Queries on Real Datasets

5.2.3 Evaluating Ranges in Dwarf Cubes

One of our initial concerns when designing Dwarf was to ensure that their query performance would not suffer on

queries with large ranges on the top dimensions of the structure. The dimensions on the higher levels of the Dwarf

structure have higher cardinalities, and thus a large range on them (for example a range containing 20% of the values)

might be expensive because a large number of paths would have to be followed. In the following experiment we study

the query behavior of Dwarf, when queries with ranges in different dimensions are issued.

We first created four 8-dimensional datasets, each having a fact table of 800,000 tuples. For the first 2 datasets

(Auni, A80/20), each dimension had a cardinality of 100. For the last 2 datasets (Buni,B80/20), the cardinalities of the

dimensions were: 1250, 625, 300, 150, 80, 40, 20 and 10. The underlying data used in datasetsAuni andBuni was

produced by using a Uniform distribution, while for the other 2 datasets we used the 80-20 Self-Similar distribution.

For reference, the sizes of the Dwarf cubes for theAuni andA80/20 datasets were 777 and 780 MB, while for theBuni

andB80/20 datasets the corresponding sizes were 490 and 482 MB.

We decided to create workloads of queries, where three consecutive dimensions would contain ranges on them.

For example, if we name the cube’s dimensionsa1,a2, ...,a8, then the first workload would always contain ranges

on dimensionsa1,a2,a3, the second workload on dimensionsa2,a3,a4... We also considered ranges on dimensions

a7,a8,a1 and ona8,a1,a2. Each workload contained 1000 queries. Since a set of three dimensions was always queried

18

in each workload, we also issued a point query on the remaining dimensions with probability 30% -otherwise the

ALL value is selected-. Having point queries on few dimensions allowed our queries to “hit” different views while

the three ranged dimensions remained the same, and the small probability with which a point query on a dimension

happens allowed for multiple tuples to be returned for each query. Each range on a dimension contained 5-15% of

the dimension’s values. The results for datasetsAuni andA80/20 are presented in Table 10, and for datasetsBuni and

B80/20 in Table 11. To view the effect of clustering on Dwarf cubes, we also present the query times achieved by

Dwarf when we use the original CreateDwarfCube and SuffixCoalesce algorithms, without improving clustering the

way we described in Section 4.2. We refer to the corresponding structure as “Unclustered Dwarfs”. For comparison

reasons we have also included the corresponding query times for the full Cubetrees7. In the following paragraphs we

will focus our discussion on how the query performance of Dwarf cubes is influenced by the location of ranges. The

behavior of Cubetrees was explained in [KR98].

Auni A80/20

Ranged Cubetrees Dwarf Unclustered Result Cubetrees Dwarf Unclustered Result
Dims (sec) (sec) Dwarf (sec) Tuples (sec) (sec) Dwarf (sec) Tuples

1,2,3 142 8 20 60663 170 13 18 158090
2,3,4 126 9 21 78587 146 15 18 150440
3,4,5 117 10 37 65437 128 15 22 162875
4,5,6 113 13 41 78183 114 16 42 165284
5,6,7 110 18 53 72479 108 17 42 150926
6,7,8 109 22 39 69165 104 13 18 163357
7,8,1 126 28 53 71770 119 23 23 153532
8,1,2 134 17 19 86547 154 19 19 155837

Table 10: Time in seconds for 1000 queries on datasets with constant cardinality

In Table 10, for the uniform workloadAuni and the clustered Dwarf we can observe that the query performance

decreases as the ranges move to lower dimensions. In this case, the query values (either point, or ALL), on dimensions

above the ranged ones, randomly hit different nodes at the upper levels of the structure. This has the effect that

consecutive queries can follow paths in vastly different locations of the Dwarf file. Since the Dwarf does not fit into

main memory, the larger the area targeted by queries of each workload, the more swapping that takes place to fetch

needed disk pages to main memory, and the worse the query performance. Thus, the performance degrades as the

queries move towards the lower levels, because a larger area of the Dwarf file is targeted by the queries, and caching

becomes less effective.

Here we need to clarify that a single query with ranges on the top dimensions is more expensive than a single query

with ranges on the lower dimensions. However, consecutive queries involving ranges on the top levels of the structure

benefit more from caching, since after a few queries the top level nodes where the ranges are applied will be in main

memory. This is why this kind of queries exhibited better performance in the experiment.

The same behavior can be observed for the unclustered Dwarf, with one exception, the 6,7,8 ranges. In this case

the benefits of the reduced per-query cost seem to outweigh the cache effects resulting in better overall performance.

Overall, the unclustered Dwarf performs much worse than the clustered one -although still much better compared

to Cubetrees-. The reason for the worse behavior of the unclustered Dwarf is (as we have mentioned before) the

interleaving of the views. This has the result that most disk pages fetched contain “useless” information for the query,

and thus more pages need to be fetched when compared to the clustered Dwarf.

The above concepts can help explain the behavior of the Dwarf structure for thewrapped querieson dimensions
7to minimize the effect of online aggregation

19

8,1,2 and 7,8,1. The ranges at the top dimensions benefit the cache performance but increase the per-query cost. The

tradeoff between the two determines the overall performance.

A similar behavior can be observed for theA80/20 workload. In this case the queries address denser areas compared

to that of the uniform case, as the returned tuples and the overall performance demonstrate. Dwarf performs similarly

to theAuni case.

Buni B80/20

Ranged Cubetrees Dwarf Unclustered Result Cubetrees Dwarf Unclustered Result
Dims (sec) (sec) Dwarf (sec) Tuples (sec) (sec) Dwarf (sec) Tuples

1,2,3 206 20 37 96383 271 66 87 2582365
2,3,4 164 11 25 106879 183 29 38 1593427
3,4,5 130 11 22 106073 129 13 17 427202
4,5,6 112 14 19 56261 107 12 16 85862
5,6,7 105 16 15 12327 99 10 8 21808
6,7,8 103 17 12 2773 96 9 8 5173
7,8,1 180 19 73 47436 165 19 39 93139
8,1,2 180 24 37 115291 228 28 34 989998

Table 11: Time in seconds for 1000 queries on datasets with varying cardinalities

Table 11 presents the query performance of Dwarf for the datasetsBuni andB80/20. The extra parameter -and the

dominating one- to be considered here is the different cardinalities, as a range (i.e. 10%) on the top dimension contains

much more values than the same range does in any other dimension. The effect of the different cardinalities is more

evident in theB80/20 workload. This happens because a given range will be typically satisfied by a lot more values than

in the uniform case (recall that 80% of the values exist in 20% of the space). This is evident from both the number

of result tuples, and from the query performance which improves when the queries are applied to dimensions with

smaller cardinalities. However the basic concepts described for Table 10 apply here as well.

5.2.4 Coarse-grained Dwarfs

As described in Section 4.4, we can limit the space that Dwarf occupies and subsequently computation time, by

appropriately setting the minimumgranularity (Gmin) parameter. In this set of experiments we investigate how the

construction time, space, and query performance of Dwarfs are influenced when increasing theGmin threshold. We

created the Dwarf structure for the 8-dimension cubes of theBuni andB80/20 datasets (see previous experiment) for

different values of theGmin parameter and then issued 8,000 queries on each of the resulting Dwarf cubes. The

description of the queries was the same as in the case of the rotated dimensions. Table 12 presents the creation times,

the required storage, and the time required to execute all 8,000 queries for each Dwarf.

Uniform Distribution 80-20 Distribution
Gmin Space(MB) Construction(sec) Queries(sec) Space(MB) Construction(sec) Queries(sec)

0 490 202 154 482 218 199
100 400 74 110 376 81 262

1000 312 59 317 343 62 295
5000 166 29 408 288 53 1094

20,000 151 25 476 160 30 1434

Table 12: Performance measurements for increasingGmin

When we increase the value ofGmin, the space that Dwarf occupies decreases, while at the same time query

performance degrades. The only exception was for the Uniform distribution andGmin value of 100, where the reduction

20

of space actually improved query performance, despite the fact that some aggregations needed to be done on-the-fly.

The reason is that coarse-grained areas for this value fit in one -or at most two- pages and it is faster to fetch them and

do the aggregation on the fly, rather than fetching two or more pages to get to the precomputed aggregate.

In Table 12 the pay-off in construct time is even higher than the space savings. AGmin value of 20000 results

in 3 to 1 storage savings, but in more than 7 to 1 speedup of computation times. After various experiments we have

concluded that a value ofGmin between 100 and 1000 typically provides significant storage/time savings with small

degradation in query performance.

5.3 Updates

In this section we present experimental results to evaluate the update performance of Dwarfs when compared to the

full and reduced Cubetrees.

5.3.1 Synthetic Dataset

In this experiment, we used the 8-dimension datasetBuni. We originally constructed the Dwarf, the full Cubetrees and

the reduced Cubetrees with 727,300 tuples and then proceeded to add 10 increments of 1% each (to reach the total

of 800,000 tuples). The reduced Cubetrees were selected to have about the same size as the Dwarf cube when both

are constructed using 727.300 tuples. Table 13 shows the update time for all 3 structures. We clearly see that the

full Cubetrees require significantly more time, since their size is much larger than that of the Dwarf structure. Dwarf

performs better at the beginning when compared to the incremental updates of the reduced Cubetrees. For example, for

the first incremental update, the reduced Cubetrees took 34% more time than Dwarf. As we update the structures with

more and more data, the difference in update times becomes smaller, and eventually Dwarf becomes more expensive

to update incrementally. The main reason for this is the degradation of the Dwarf’s clustering as nodes are expanded

during updates, and overflow nodes are added to the structure. To demonstrate this, we ran on the final Dwarf structure

(after the 10 increments had been applied) the same set of queries that we used in the previous experiment. Dwarf now

required 211 seconds, 37% more time than the 154 seconds of the reorganized Dwarf.

We notice that Cubetrees (according to the specification of the update algorithm [KR98]) are always kept optimized

by using new storage for writing the new aggregates. This results in having about twice the space requirements of

Dwarf during updates, since the old structure is used as an input for the update process. The same technique can be

implemented for Dwarf too. After a few increments we can reorganize the dwarf structure with a background process

that writes a new Dwarf into new storage, restoring its clustering. For example, if we reorganize the Dwarf after the

first 9 increments, the update time for the last increment is 82 seconds, which is faster than the corresponding update

of the Cubetrees.

5.3.2 Using the APB-1 Benchmark Data

We tested the update performance of Dwarf on the APB-1 benchmark [Cou98], with the density parameter set to

8. The APB-1 benchmark contains a 4-d dataset with cardinalities 9000, 900, 17 and 9 and two measure attributes.

We mapped the string data of the fact table to integers, randomly permuted the fact table, and then selected about

90% of the tuples (22,386,000 tuples) to initially load the Cubetrees (full and reduced) and Dwarf, and then applied 10

successive increments of 1% each. Table 14 shows the results for the reduced Cubetrees and Dwarf. The full Cubetrees

are always more expensive to update than the reduced Cubetrees (since they have more views to update) and, thus, are

not included in the results. Dwarf surpassed the reduced Cubetrees in all the incremental updates. Moreover, it is

interesting to notice that the update time of Dwarf decreased as more tuples were inserted. This is mainly because this

21

Full Cubetrees Dwarf Reduced
Cubetrees

Action Time (sec) Space (MB) Time (sec) Space (MB) Time (sec)

Create 1089 3063 180 446 296
Update #1 611 3093 65 455 87
Update #2 605 3123 68 464 84
Update #3 624 3153 70 473 92
Update #4 618 3183 73 482 86
Update #5 631 3212 79 491 90
Update #6 626 3242 81 499 87
Update #7 636 3272 87 508 91
Update #8 633 3301 98 517 88
Update #9 651 3331 107 526 93

Update #10 644 3361 121 535 90

Table 13: Update performance on Synthetic Dataset

dataset corresponded to a dense cube and, therefore, the number of coalesced tuples was small. Updating coalesced

tuples is the most time consuming part of the imcremental update operation for Dwarf. As more tuples were inserted,

fewer coalesced links existed, and the update performance improved.

Dwarf .6in
Reduced

Cubetrees

Action .3in
Time

(sec)
.3in

Space
(MB) .3in

Time
(sec)

Create 1124 346 1381
Update #1 42 350 76
Update #2 36 353 78
Update #3 39 359 77
Update #4 34 365 79
Update #5 24 369 80
Update #6 34 374 82
Update #7 24 378 79
Update #8 30 384 83
Update #9 22 390 82
Update #10 20 393 84

Table 14: Update performance on the APB-1 benchmark

6 Related Work

The goal of any algorithm that computes the data cube is to take advantage of commonalities between different group-

bys. Techniques that have been proposed include sharing partitions, sorts or partial sorts and intermediate results

between group-bys with common attributes.

The PIPESORT algorithm was introduced in [AAD+96, SAG96]. The idea is to convert the cube lattice (see

Figure 2) to a processing tree and compute every group-by from the smallest parent. The OVERLAP algorithm,

proposed in [DANR96], overlaps the computation of the group-bys by using partially matching sort orders, in order

to reduce the number of sorting steps required. For example, OVERLAP uses the sortedabc group-by, in order to

produce theacsort order. It does that by sorting independently each one of the|a| partitions ofabconc.

In [GBLP96] a main memory algorithm is proposed where all the tuples are kept in memory as ad-dimension

22

array, whered is the number of dimensions. In [ZDN97] another array-based algorithm is proposed. The algorithm

uses memory-arrays to store partitions and to avoid sorting. It “chunks” thed-dimension array to ad-dimension

sub-array that corresponds to a page. The array is stored in units of chunks to provide clustering. Sparse chunks are

compressed.

The algorithms proposed in [RS97] are designed to work together and target sparse cubes. PartitionCube partitions

the data into units that can fit in main memory and then MemoryCube is called for each unit in order to compute the

cube. The authors observe that buffering intermediate results requires too much memory for sparse cubes and choose

to bufferonly the partitioned units for repeated in-memory sorts. MemoryCube picks the minimum number of sorts

required to compute the cube that corresponds to one in-memory unit.

The Bottom-Up Cube (BUC) algorithm is described in [BR99] and is designed to compute sparse and Iceberg-

cubes. The general Iceberg-cube problem is to compute all group-by partitions for every combination of grouping at-

tributes that satisfy an aggregate selection condition. Iceberg-cubes can be used to computeiceberg queries[FSGM+98].

For Iceberg cubes, BUC stores only those partitions of a group-by whose value is produced by aggregating at least

MinSuptuples of the fact table. The parameterMinSupis called theminimum support. Sparse Iceberg cubes are

much smaller than the full cubes, because the minimum support pruning has a direct effect on the number of views

materialized. Assume a cube with 10 dimensions each with a cardinality 1000 and a fact table of 1000000 tuples

uniformly distributed. A minimum support of 10 materializes only views with 3 dimensions or less. The other views

contain group-bys with partitions less than the minimum support.

Recently, work has been performed on approximating Data Cubes through various forms of compression such

as wavelets [VWI98], multivariate polynomials [BS98], or by using sampling [GM98, AGP00] or data probability

density distributions [SFB99]. While these methods can substantially reduce the size of the Cube, they do not actually

store the values of the group-bys, but rather approximate them, thus not always providing accurate results.

In Cubetrees [RKR97, KR98], group-bys are mapped into orthogonal hyperplanes of a multidimensional index.

Common sort orders are then used to cluster the points of each group-by into continuous disk space. A packing

algorithm guarantees full page utilization, resulting in at least 50% space savings over indexed relations. Updates are

handled through a Merge-Packing algorithm that scans the old aggregates and merges them with the update increment,

which is sorted in compatible order.

In [JS97], Cube Forests were proposed for storing the data cube. Cube Forests are similar to Dwarfs in that they

also exploit prefix redundancy when storing the cube. However, they differ from Dwarf both in their structure -forest

of trees-, their construction algorithms, and their indexing methods (Cube Forests use additional B-trees along paths

of their Cube Tree Template).

In [FH00], the idea of a statistics tree (ST) was introduced. In this tree, prefix redundancy was partially exploited.

Unique suffixes were stored just once, but the tree contained all possible paths (even paths corresponding to tuples that

have not been inserted) making it inappropriate for sparse datasets. Moreover, the construction algorithm of theST

did not exploit data locality and clustering, thus resulting in inefficient cube computation.

In [WLFY02] the notion of abase single tupleis similar to the one of a coalesced tuple of this paper and previously

in [RSDK01]. In [WLFY02], three algorithms are described for discovering tuples whose storage can be coalesced:

MinCube guarantees to find all such tuples, but is very expensive computationally, while BU-BST and RBU-BST are

faster, but discover fewer coalesced tuples. Compared to this work, our method provides a much more efficient method

not only for the automatic discovery of the coalesced tuples, but also for indexing the produced cube, something also

not done by most of the methods for cube computation listed above. A detailed comparison to this paper is not present

because it was published after the submission of our paper.

23

7 Conclusions

In this paper we presented Dwarf, a highly compressed structure for computing, storing, and querying data cubes.

Dwarf identifies prefix and suffix structural redundancies and factors them out by coalescing their storage. The Dwarf

structure shows that suffix redundancy is the dominant factor in sparse cubes and its elimination has the highest return

both in storage and computation time.

Dwarf is practical because it is generated over a single pass over the data and requires no deep knowledge the

underlying value distributions. It is scalable because the higher the dimensions the more the redundancy to harvest.

Dwarf can be used to store the full cube (made possible because of its compact size) or, alternatively, precompute only

aggregates whose computation will be too costly to be done on the fly, using the minimum granularity metric.

The great reduction in terms of storage space that the dwarf structure exhibits has positive effects in terms of

query and update performance. The dwarf structure plays a double role as a storage and indexing mechanism for high

dimension data. Roll-up and drill-down queries seem to benefit from the dwarf structure due to common paths that are

exploited while caching. In terms of update speed, dwarf by far outperforms the closest competitor for storing the full

data cube, while their performance is comparable when the competitor is reduced to storing only a partial cube of the

same size as Dwarf.

References

[AAD +96] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J .F. Naughton, R. Ramakrishnan, and S. Sarawagi.

On the computation of multidimensional aggregates. InProc. of the 22nd VLDB Conf., pages 506–521,

1996.

[AGP00] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional Samples for Approximate Answering of

Group-By Queries. InProceedings of ACM SIGMOD International Conference on Management of

Data, pages 487–498, Dallas, Texas, 2000.

[Bla98] Jock A. Blackard. The Forest CoverType Dataset. ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/covtype, 1998.

[BPT97] E. Baralis, S. Paraboschi, and E. Teniente. Materialized View Selection in a Multidimensional Database.

In Proc. of VLDB Conf., pages 156–165, Athens, Greece, August 1997.

[BR99] K.S. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs. InProceed-

ings of the ACM SIGMOD International Conference on Management of Data, pages 359–370, Philadel-

phia, Pennsylvania, June 1999.

[BS98] D. Barbara and M. Sullivan. A Space-Efficient way to support Approximate Multidimensional

Databases. Technical report, ISSE-TR-98-03, George Mason University, 1998.

[BSG00] T. Barclay, D. Slutz, and J. Gray. Terraserver: A spatial data warehouse, 2000.

[Cou98] Olap Council. APB-1 Benchmark. http://www.olapcouncil.org/research/bmarkco.htm, 1998.

[DANR96] P.M. Deshpande, S. Agarwal, J.F. Naughton, and R. Ramakrishnan. Computation of multidimensional

aggregates. Technical Report 1314, University of Wisconsin - Madison, 1996.

24

[FH00] Lixin Fu and Joachim Hammer. CUBIST: A New Algorithm for Improving the Performance of Ad-hoc

OLAP Queries. InDOLAP, 2000.

[FSGM+98] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D. Ullman. Computing Iceberg Queries

Efficiently. In Proc. of the 24th VLDB Conf., pages 299–310, August 1998.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals. InProc. of the 12th ICDE, pages 152–159, New

Orleans, February 1996. IEEE.

[GHRU97] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index Selection for OLAP. InProc. of ICDE

Conf., pages 208–219, Burmingham, UK, April 1997.

[GM98] P. B. Gibbons and Y. Matias. New Sampling-Based Summary Statistics for Improving Approximate

Query Answers. InProceedings ACM SIGMOD International Conference on Management of Data,

pages 331–342, Seattle, Washington, June 1998.

[Gup97] H. Gupta. Selections of Views to Materialize in a Data Warehouse. InProc. of ICDT Conf., pages

98–112, Delphi, January 1997.

[HHW97] J.M. Hellerstein, P.J. Haas, and H. Wang. Online Aggregation. InProceedings of the ACM SIGMOD

Conference, pages 171–182, Tucson, Arizona, May 1997.

[HRU96] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data Cubes Efficiently. InProc. of ACM

SIGMOD, pages 205–216, Montreal, Canada, June 1996.

[HWL] C. Hahn, S. Warren, and J. London. Edited synoptic cloud reports from ships and land stations over the

globe. http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html.

[JS97] T. Johnson and D. Shasha. Some Approaches to Index Design for Cube Forests.Data Engineering

Bulletin, 20(1):27–35, March 1997.

[KR98] Y. Kotidis and N. Roussopoulos. An Alternative Storage Organization for ROLAP Aggregate Views

Based on Cubetrees. InProceedings of the ACM SIGMOD International Conference on Management of

Data, pages 249–258, Seattle, Washington, June 1998.

[RKR97] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and Bulk Incremental

Updates on the Data Cube. InProceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, pages 89–99, Tucson, Arizona, May 1997.

[RS97] K. A. Ross and D. Srivastana. Fast Computation of Sparse Datacubes. InProc. of the 23rd VLDB Conf.,

pages 116–125, Athens, Greece, 1997.

[RSDK01] Nick Roussopoulos, John Sismanis, Antonios Deligiannakis, and Yannis Kotidis. The Dwarf Structure

for Creating, Storing, and Querying Highly Compressed Data Cubes. Application to U.S. patent office

submitted, June 2001.

[SAG96] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical Report RJ10026, IBM

Almaden Research Center, San Jose, CA, 1996.

25

[SDN98] A. Shukla, P.M. Deshpande, and J.F. Naughton. Materialized View Selection for Multidimensional

Datasets. InProceedings of the 24th VLDB Conference, pages 488–499, New York City, New York,

August 1998.

[SFB99] J. Shanmugasundaram, U. Fayyad, and P.S. Bradley. Compressed Data Cubes for OLAP Aggregate

Query Approximation on Continuous Dimensions. InProc. of the Intl. Conf. on Knowledge Discovery

and Data Mining (KDD99), 1999.

[VWI98] J.S Vitter, M. Wang, and B. Iyer. Data Cube Approximation and Histograms via Wavelets. InProc. of

the 7th Intl. Conf. Information and Knowledge Management (CIKM’98), 1998.

[WLFY02] Wei Wang, Hongjun Lu, Jianlin Feng, and Jeffrey Xu Yu. Condensed Cube: An Effective Approach to

Reducing Data Cube Size. InICDE, 2002.

[ZDN97] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimen-

sional aggregates. InProc. of the ACM SIGMOD Conf., pages 159–170, 1997.

26

