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Abstract While traditional data management systems fo-
cus on evaluating single, ad hoc queries over static data sets in
a centralized setting, several emerging applications require
(possibly, continuous) answers to queries on dynamic data
that is widely distributed and constantly updated. Further-
more, such query answers often need to discount data that
is “stale” and operate solely on a sliding window of recent
data arrivals (e.g., data updates occurring over the last 24h).
Such distributed data streaming applications mandate novel
algorithmic solutions that are both time and space efficient
(to manage high-speed data streams) and also communica-
tion efficient (to deal with physical data distribution). In this
paper, we consider the problem of complex query answer-
ing over distributed, high-dimensional data streams in the
sliding-windowmodel. We introduce a novel sketching tech-
nique (termed ECM-sketch) that allows effective summa-
rization of streaming data over both time-based and count-
based sliding windows with probabilistic accuracy guaran-
tees. Our sketch structure enables point, aswell as inner prod-
uct, queries and can be employed to address a broad range of
problems, such as maintaining frequency statistics, finding
heavy hitters, and computing quantiles in the sliding-window
model. Focusing on distributed environments, we demon-
strate how ECM-sketches of individual, local streams can be
composed to generate a (low-error) ECM-sketch summary
of the order-preserving merging of all streams; furthermore,
we show how ECM-sketches can be exploited for continu-
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ous monitoring of sliding-window queries over distributed
streams. Our extensive experimental study with two real-
life data sets validates our theoretical claims and verifies the
effectiveness of our techniques. To the best of our knowl-
edge, ours is the first work to address efficient, guaranteed-
error complex query answering over distributed data streams
in the sliding-window model.

Keywords Sketches · Continuous queries · Distributed
monitoring

1 Introduction

The ability to process, in real time, continuous high-volume
streams of data is a common requirement in many emerg-
ing application environments. Examples of such applica-
tions include sensor networks, financial data trackers, and
intrusion-detection systems. As a result, in recent years, we
have seen a flurry of activity in the area of data-stream
processing. Unlike conventional database query processing
that requires several passes over a static, archived data image,
data-stream processing algorithms often rely on building
concise, approximate (yet, accurate) sketch synopses of the
input streams in real time (i.e., in one pass over the stream-
ingdata). Such sketch structures typically require small space
and update time (both significantly sublinear in the size of the
data), and can be used to provide approximate query answers
with guarantees on the quality of the approximation. These
answers can be more than sufficient for typical exploratory
analysis of massive data, where the goal is to detect inter-
esting statistical behavior and patterns rather than obtain-
ing answers that are precise to the last decimal. Large-scale
stream processing applications are also inherently distrib-
uted, with several remote sites observing their local stream(s)
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and exchanging information through a communication net-
work. This distribution of the data naturally imposes critical
communication efficiency requirements that prohibit naïve
solutions that centralize all the data, due to its massive vol-
ume and/or the high cost of communication (e.g., in sensor-
nets). Communication efficiency is particularly important for
distributed event monitoring scenarios (e.g., monitoring sen-
sor or IP networks), where the goal is real-time tracking of
distributed measurements and events, rather than one-shot
answers to sporadic queries [33].

Several query models for streaming data have been
explored over the past decade. Streaming data items natu-
rally carry a notion of “time”, and in many applications, it is
important to be able to downgrade the importance (orweight)
of older items; for instance, in the statistical analysis of trends
or patterns in financial data streams, data that are more than
a few months old might be considered “stale” and irrelevant.
Various time-decay models for querying streaming data have
been proposed in the literature, mostly differentiating on the
relation of an item’s weight to its age (e.g., exponential or
polynomial decay [7]). The sliding-window model [16] is
one of the most prominent and intuitive time-decay mod-
els that considers only a window of the most recent items
seen in the stream thus far (i.e., items outside the window
are “aged out” or given a weight of zero). The window itself
can be either time based (i.e., items seen in the last N time
units) or count based (i.e., the last N items). Several algo-
rithms have been proposed for maintaining different types of
statistics over sliding-window data streams while requiring
time and space that is significantly sublinear (typically, poly-
logarithmic) in the window size [16,21,32,34]. Still, the bulk
of existing work on the sliding-window model has focused
on tracking basic counts and other simple aggregates (e.g.,
sums) over one-dimensional streams in a centralized setting.
Recent work has also considered the case of distributed data;
however, no existing techniques can handle flexible, com-
plex aggregate queries over rapid, high-dimensional distrib-
uted data streams, e.g., with each dimension correspond-
ing to the number of packets originating by an IP address,
and the number of possible IP addresses reaching 248 for
IPv6.

Example Recent work on effective network monitoring sys-
tems (e.g., for detecting DDoS attacks or network-wide
anomalies in large-scale IP networks) has stressed the
importance of an efficient distributed-triggering functional-
ity [23,24,26,28]. In their early work, Jain et al. [26] discuss
a generic distributed attack-detection scheme relying on the
ability to maintain frequency statistics for high-dimensional
data over sliding windows. In particular, each node (e.g.,
a network router implementing Cisco’s Netflow protocol, a
wireless access point, or a peer in a P2P network) main-
tains a sliding-window count of all observed messages for

each target IP address. If this count exceeds a pre-determined
threshold, which is determined based on the capacity of the
target machine (possibly expressing the fair share of each
client to the target machine), an event is triggered to a cen-
tral coordinator as a warning of possible overloading. The
coordinator then collects network-wide statistics to monitor
overloaded nodes or abnormal behavior. More recent efforts
have focused on different variants and extensions of this basic
scheme, often requiring more extensive data/statistics col-
lection and more sophisticated analyses [23,24]. (Note that
such data collection mechanisms are supported by commer-
cial products, such as the Cisco Netflow Collection Engine
solution.)

The ability to efficiently summarize high-dimensional
data over sliding windows is obviously crucial to such moni-
toring schemes, given the tremendous volume of network-
data streams and their massive domain sizes (e.g., 248

for IPv6 addresses). This raises a critical need for syn-
opsis data structures that can compactly capture accurate
frequency statistics for a vast domain space over sliding
windows. Furthermore, to enable the coordinator to aggre-
gate data coming from different nodes (a requirement for
detecting DDoS attacks), we need to be able to com-
pose individually constructed synopses to a single syn-
opsis which can capture the global state of the network
and help isolate network-wide abnormalities. Thus, we are
faced with the difficult challenge of designing effective,
composable synopses that can support potentially complex
sliding-window analysis queries over massive, distributed
network-data streams.

Note that similar requirements are frequently observed in
other domains, e.g., for identifying misbehaving nodes in
large wireless networks, for training of classifiers with dis-
tributed training data that expires over time, and for ranking
products in a cloud-based e-shop, based on the number of
recent visits of each product.
Our contributions. In this paper, we consider the problem
of answering potentially complex continuous queries over
distributed, high-dimensional data streams in the sliding-
windowmodel. Our contributions can be summarized as fol-
lows.
• ECM-sketches for sliding-window streams. We introduce
a novel sketch synopsis (termed ECM-sketch) that allows
effective summarization of streaming data over both time-
based and count-based sliding windows with probabilistic
accuracy guarantees. In a nutshell, our ECM-sketch com-
bines the well-known Count-Min sketch structure [11] for
conventional streams with state-of-the-art tools for sliding-
window statistics. The end result is a sliding-window sketch
synopsis that can provide provable, guaranteed-error perfor-
mance for point, as well as inner-product, queries, and can
be employed to address a broad class of queries, such as

123



Sketching distributed sliding-window data streams 347

maintaining frequency statistics, finding heavy hitters, and
computing quantiles in the sliding-window model.
• Time-based sliding windows over distributed streams.
Focusing on distributed environments, we demonstrate how
ECM-sketches summarizing time-based sliding windows
of individual streams can be composed to generate a
guaranteed-error ECM-sketch synopsis of the order-preser-
ving merging of all streams. While conventional Count-Min
sketches are trivially composable, composing ECM-sketches
is more challenging since it requires merging of the sliding-
window statistics maintained in the sketch. Therefore, as part
of our merging solution for ECM-sketches, we also pro-
vide the theoretical foundations and an efficient algorithm
for merging sliding window statistics of deterministic algo-
rithms [16,21]. This is an important result on its own given
the wide applicability of these algorithms, as well as their
substantially higher efficiency and compactness compared
to randomized sliding window algorithms, which are more
easily composable [21,35]. This increased efficiency comes
at the cost of a slight inflation of the worst-case error guar-
antee due to the composition, which however can be easily
controlled, even in large hierarchical networks with iterative
mergings.
• Continuous query monitoring for complex queries over
distributed streams. We show how ECM-sketches can be
exploited in the context of the geometric framework of Sharf-
man et al. [33] for continuous monitoring of sliding-window
queries over distributed streams. We demonstrate the sketch-
enhanced geometric framework by addressing two frequent
requirements of distributed stream monitoring applications:
(a) maintaining the set of items with a frequency surpassing
a threshold (e.g., the IP addresses that exchange an exces-
sive amount of messages over a sliding window) and (b)
maintaining an estimate for the self-join size of a stream
over the sliding window, a useful measure for constructing
efficient distributed query execution plans. Empowered by
the compactness and efficiency of the underlying sketches,
the geometric framework can now monitor such queries in
a both computational-efficient and network-efficient man-
ner.
• Experimental study and validation. We perform a thor-
ough experimental evaluation of our techniques using two
massive real-life data sets, in both centralized and distrib-
uted settings. The results of our study verify the efficiency
and effectiveness of our ECM-sketch synopses in a variety
of applications and expose interesting functional trade-offs.
When compared to algorithms based on randomized sliding
window synopses—which are the only ones that were con-
sidered for composition up to now—ECM-sketches reduce
the memory and computational requirements by at least one
order ofmagnitudewith a very small loss in accuracy. Similar
savings apply to the network requirements.

2 Related work

Centralized and distributed data streams. Most prior
work on data-stream processing has focused on developing
space-efficient, one-pass algorithms for performing a wide
range of centralized, one-shot computations on massive data
streams; examples include computing quantiles [22], esti-
mating distinct values [19], counting frequent elements (i.e.,
“heavy hitters”) [6,10], and estimating join sizes and stream
norms [1,11]. Out of these efforts, flexible, general-purpose
sketch summaries, such as the AMS [1] and the Count-Min
sketch [11], have found wide applicability in a broad range
of stream-processing scenarios. More recent efforts have
also concentrated on distributed stream processing, propos-
ing communication-efficient streaming tools for handling a
number of query tasks, including distributed tracking of sim-
ple aggregates [30], quantiles [9], and join aggregates [8],
as well as monitoring distributed threshold conditions [33].
All the above-referenced works assume a traditional, “full-
history” data stream and do not address the issues specific to
the sliding-window model.
Sliding-window stream queries. As mentioned earlier,
the bulk of existing work on the sliding-window model
has focused on algorithms for maintaining simple statis-
tics, such as basic counts and sums, in space and time
that is significantly sublinear (typically, poly-logarithmic)
in the sliding-window size N . Exponential histograms [16]
are a state-of-the-art deterministic technique for maintain-
ing ε-approximate counts and sums over sliding windows,
using O( 1

ε
log2 N ) space. Deterministic waves [21] solve

the same basic counting/summation problem with the same
space complexity as exponential histograms, but improve
the worst-case update time complexity to O(1); on the
other hand, randomized waves [21] rely on randomization
through hashing to track duplicate-insensitive counts (i.e.,
COUNT-DISTINCT aggregates) over sliding windows. While
randomized waves can be easily composed (in distributed
settings), they come with an increased space requirement of
O(

log(1/δ)
ε2

log2 N ), where δ is a small probability of failure.
Xu et al. [35] describe a randomized, sampling-based synop-
sis, very similar to randomized waves, for tracking sliding-
window counts and sums with out-of-order arrivals (e.g., due
to network delays) in a distributed setting. As with random-
ized waves, their space requirements are also quadratic in
the inverse approximation error; furthermore, their approach
requires knowledge of the maximum number of elements in
any sliding window (to set up the synopsis data structure),
which could be problematic in dynamic, widely distributed
environments. Cormode et al. [14] also propose random-
ized techniques for handling out-of-order arrivals for tracking
duplicate-insensitive sliding window aggregates. To address
the high cost associated with randomized data structures,
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Busch and Tirthapura propose a deterministic structure for
handling out-of-order arrivals in sliding windows [3]. Sim-
ilar to the other deterministic structures, this structure also
does not allow composition and focuses only on basic counts
and sums.

More recent works developed protocols for efficient con-
tinuous monitoring of sliding window aggregates over dis-
tributed architectures [5,12,13,15]. These techniques typi-
cally focus on reducing the network requirements for main-
taining random samples or simple statistics (such as basic
counts, heavy hitters, and quantiles) with accuracy guaran-
tees. Some aspects of these techniques could find use in the
case of ECM-sketches as well. In this work, we have selected
to build the continuous monitoring scheme over the geomet-
ric method. The geometric method goes beyond monitoring
simple linear aggregates, by enabling distributed monitoring
of (possibly) complex functions that can be expressed over
the average values of the monitored variables, e.g., self-join
and inner product sizes. As such, we are able to monitor any
function that can be supported by the ECM-sketch.

Going beyond counts, sums, and simple aggregates,
there is surprisingly little work in the more general prob-
lem of maintaining general, frequency-distribution synopses
over high-dimensional streaming data in the sliding-window
model. Hung and Ting [25] and Dimitropoulos et al. [17]
propose synopses based on Count-Min sketches for track-
ing heavy hitters and frequency counts over sliding win-
dows; still, their techniques rely on keeping simple equi-
width counters within the sketch and thus cannot provide
any meaningful error guarantees, especially for small query
ranges. Similarly, the hybrid histograms of Qiao et al. [32]
combine exponential histograms with simplistic equi-width
histograms for answering sliding-window range queries;
again, these structures cannot give meaningful bounds on the
approximation error and cannot be composed in a distributed
setting.

Chakrabati et al. [4] briefly sketched the combination of
Count-Min sketches and exponential histograms for comput-
ing the entropy of a stream over a sliding window. Compared
to that work, our work goes several steps forward. First, we
provide important materialization details, which were not
discussed in [4]. For example, we show how to automatically
choose the sketch configuration that satisfies the accuracy
requirements and minimizes space complexity. Second, we
presentmerging algorithms for ECM-sketches (even the ones
that are based on deterministic sliding window algorithms),
which are necessary in many domains involving distributed
stream processing. Finally, we present algorithms for distrib-
uted continuous monitoring using ECM-sketches.

An early version of this work has previously appeared
in [31]. Compared to [31], in this article, we follow a more
rigorous analysis, which leads to tighter theoretical error
bounds and to substantial reduction of the size of the sketch.

Sketch size is typically reduced by a factor of three for ECM-
sketches based on deterministic sliding-window algorithms,
and by a factor of six for the ones based on randomized
algorithms. Furthermore, we elaborate on continuous func-
tion monitoring with ECM-sketches, which was only briefly
mentioned in the original paper. This elaboration includes
a novel efficient monitoring algorithm, accompanied with
proof of correctness and with extensive experimental evalu-
ation.

3 Preliminaries

ECM-sketches combine the functionalities of Count-Min
sketches [11] and exponential histograms [16]. We now
describe the two structures, focusing on the aspect related
to our work. The used notation is summarized in Table 1.
Count-Min sketches. Count-Min sketches are a widely
applied sketching technique for data streams. A Count-Min
sketch is composed of a set of d hash functions, h1(·), h2(·),
. . ., hd(·), and a 2-dimensional array of counters of width
w and depth d. Hash function h j corresponds to row j of
the array, mapping stream items to the range of [1 . . . w].
Let CM[i, j] denote the counter at position (i, j) in the
array. To add an item x of value vx in the Count-Min
sketch, we increase the counters located at CM[ j, h j (x)]
by vx , for j ∈ [1 . . . d]. A point query for an item q is
answered by hashing the item in each of the d rows and
getting the minimum value of the corresponding cells, i.e.,
mindj=1 CM[ j, h j (q)]. Note that hash collisions may cause
estimation inaccuracies—only overestimations. By setting
d = �ln(1/δ)� and w = �e/ε�, where e is the base of the
natural logarithm, the structure enables point queries to be
answered with an error of less than ε||a||1, with a probability
of at least 1 − δ, where ||a||1 denotes the number of items
seen in the stream. Similar results hold for range and inner
product queries.

Table 1 Frequently used notation

Notation Description

N Length of the sliding window, in time units or in
number of arrivals

hi (·) Hash function i of the Count-Min sketch

ar , br Substream of stream a, b, within the query range
r

fa(x, r) Frequency of item x in stream a, within the query
range r

Ea(i, j, r) Estimated value of the ECM-sketch counter for
stream a in position (i, j) for query range r

ar � br , ̂ar � br Real and estimated inner product of ar and br

u(N , S) Upper bound of number of arrivals on stream S
within the sliding window of length N
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Exponential histograms. Exponential histograms [16] are a
deterministic structure, proposed to address the basic count-
ing problem, i.e., for counting the number of true bits in the
last N stream arrivals. They belong to the family of methods
that break the sliding window range into smaller windows,
called buckets or basic windows, to enable efficient mainte-
nance of the statistics. Each bucket contains the aggregate
statistics, i.e., number of arrivals and bucket bounds, for the
corresponding subrange. Buckets that no longer overlap with
the sliding window are expired and discarded from the struc-
ture. To compute an aggregate over the whole (or a part of)
sliding window, the statistics from all buckets overlapping
with the query range are aggregated. For example, for basic
counting, aggregation is a summation of the number of true
bits in the buckets. A possible estimation error can be intro-
duced due to the oldest bucket inside the query range, which
usually has only a partial overlap with the query. Therefore,
the maximum possible estimation error is bounded by the
size of the last bucket.

To reduce the space requirements, exponential histograms
maintain buckets of exponentially increasing sizes. Bucket
boundaries are chosen such that the ratio of the size of
each bucket b with the sum of the sizes of all buckets more
recent than b is upper bounded. In particular, the follow-
ing invariant (invariant 1) is maintained for all buckets j :
C j/(2(1 + ∑ j−1

i=1 Ci )) ≤ ε where ε denotes the maximum
acceptable relative error and C j denotes the size of bucket j
(number of true bits arrived in the bucket range), with bucket
1 being the most recent bucket. Queries are answered by
summing the sizes of all buckets that fully overlap the query
range, and half of the size of the oldest bucket, if it partially
overlaps the query. The estimation error is solely contained in
the oldest bucket and is therefore bounded by this invariant,
resulting to a maximum relative error of ε.

4 ECM-sketches

We now describe ECM-sketches (short for Exponential
Count-Min sketches), a composable sketch for maintain-
ing data-stream statistics over sliding windows in distrib-
uted environments. ECM-sketches combine the functional-
ity of Count-Min sketches and sliding windows, and support
both time-based and count-based sliding windows under the
cash register model. Therefore, they can be used for com-
pactly summarizing high-dimensional streams over sliding
windows, i.e., to maintain the observed frequencies of the
stream items within the sliding window range.

The core of the structure is a modified Count-Min sketch.
Count-Min sketches alone cannot handle the sliding win-
dow requirement. To address this limitation, ECM-sketches
replace the Count-Min counters with sliding window struc-
tures. Each counter is maintained as a sliding window, cov-

Fig. 1 Adding an element to the ECM-sketch

ering the last N time units, or the last N arrivals, depending
on whether we need time-based or count-based sliding win-
dows.

As discussed in Sect. 2, there have been several algo-
rithms proposed for sliding window maintenance. Due to
the large expected number of sliding window counters in
ECM-sketches, we require an algorithm with a small mem-
ory footprint. Existing randomized algorithms for sliding
window synopses (as discussed in Sect. 2) appear to have
a quadratic dependence to ε and are therefore not good for
our purposes. Instead, we employ exponential histograms, a
compact and efficient deterministic synopsis [16]. Each of
the Count-Min counters is implemented as an exponential
histogram, configured to provide an ε approximation for any
query within a sliding window of length N , i.e., the estima-
tion x̂ of the counter for any query range within the sliding
window length is in the range of (1± ε)x of the true value x
of the counter.Wewill be discussing our choice for exponen-
tial histograms again in more detail in the following section,
wherewewill consider alternative deterministic and random-
ized algorithms.

Adding an item x to the structure is similar to the case of
standard Count-Min sketches. The process for time-based
sliding windows is depicted in Fig. 1. First, the counters
CM[ j, h j (x)], where j ∈ {1 . . . d}, corresponding to the
d hash functions are detected. For each of the counters,
we register the arrival of the item at time t and remove all
expired information, i.e., the buckets of the exponential his-
togram that have no overlap with the sliding window range.
The process for count-based sliding windows is similar, but
instead of registering each arrival with system time t , we reg-
ister it with the count of arrivals since the beginning of the
stream.

The challenges that need to be addressed for the integra-
tion of exponential histograms with Count-Min sketches are
(a) to take into account the additional error introduced by the
slidingwindowcounters for deriving the accuracy guarantees
for ECM-sketches (presented in the remainder of this section)
and (b) to enable composition of a set of ECM-sketches to a
single ECM-sketch representing the order-preserving merg-
ing of the corresponding individual streams (Sect. 5).

4.1 Query answering

We now explain how ECM-sketches support point queries,
inner-product and self-join size queries, and derive proba-
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bilistic guarantees for the estimation accuracy. Our analysis
covers both sliding window models, i.e., count based and
time based.
Point queries. A point query (x, r) is a combination of an
item identifier x , and the query range r defined either as
number of time units or number of arrivals. Point queries
are executed as follows. The query item is hashed to the
d counters CM[ j, h j (x)] where ( j ∈ {1 . . . d}), and the
estimate of each counter E( j, h j (x), r) for the query range
is computed. The estimate value for the frequency of x is
f̂ (x, r) = min j=1...d E( j, h j (x), r).
Let δcm and εcm denote the configuration parameters of

the Count-Min sketch, whereas εsw denotes the configura-
tion parameter of the exponential histogram. With ||ar ||1,
we denote the number of arrivals within the query range.
The following theorem provides probabilistic guarantees for
the approximation quality for point queries and enables opti-
mally setting εcm and εsw. As is typical for small-space
sketches, the error guarantees are relative to the stream char-
acteristics, i.e., the L1 norm.

Theorem 1 For any ε within (0, 1), an ECM-sketch con-
structed with εcm = ε

1+ε
and εsw = ε satisfies Pr [| f̂ (x, r)−

f (x, r)| ≤ ε||ar ||1] ≥ 1 − δcm. Furthermore, the afore-
mentioned combination of εcm and εsw minimizes the space
complexity of the sketch.

Proof Special case of Theorem 3, with δsw = 0. �	
Inner product and self-join size queries. Another frequent
query type is the cardinality of the inner product. Given two
streams a and b, the inner product is defined as a � b =
∑

x∈D fa(x)× fb(x), whereD denotes the input domain, i.e.,
the distinct input elements, and fa(x) (respectively fb(x))
denotes the frequency of element x in stream a (respectively
stream b). Self-join size queries, also called the second fre-
quencymoment F2, are a special case of inner product queries
defined over a single stream: F2(a) = ∑

x∈D ( fa(x))2. Both
inner product and self-join size queries are very important
for databases, e.g., for building query execution plans, and
they can be efficiently and accurately estimated for streams
in both the cash register and turnstile model [29]. However,
similar to point queries, computing these queries over sliding
windows is challenging.

ECM-sketches can be used to address this type of queries
as well. Let ar (respectively br ) denote the substream of
stream a (respectively b) within the query range. With CMa ,
we denote the corresponding ECM-sketch for stream ar , and
with Ea(i, j, r), we denote the estimated value of the counter
of CMa in position (i, j), for query range r . Also, fa(x, r)
and f̂a(x, r) denote the real and estimated frequency of x in
stream ar .

The inner product of two streams a and b in a range
r is defined as ar � br = ∑

x∈D fa(x, r) fb(x, r). Using

the ECM-sketches of a and b, we estimate it as fol-
lows: ̂ar � br = min j ( ̂ar � br ) j , where ( ̂ar � br ) j =
∑w

i=1 Ea(i, j, r)×Eb(i, j, r). The following theorembounds
the approximation error.

Theorem 2 For any ε within (0, 1), two ECM-sketches con-
structed with εcm = ε/(ε +1) and εsw = √

ε + 1−1 satisfy
Pr [| ̂ar � br − ar � br | ≤ ε||ar ||1||br ||1] ≥ 1 − δcm. Fur-
thermore, the aforementioned combination of εcm and εsw
minimizes the space complexity of the sketches.

Proof In the appendix. �	
Time-based ECM-sketches. Exponential histograms were
originally developed for count-based sliding windows (e.g.,
count the number of true bits in the last 100 arrivals), but
they can be extended for time-based sliding windows as well
(e.g., count the number of true bits arriving in the last 1000
s). Our solution can handle concurrent bit arrivals as well
as arrivals at arbitrary rates, and similar to the count-based
histograms, its memory footprint (the number of buckets)
scales logarithmically with the number of arrivals within the
sliding window. First, each entry in the data structure is iden-
tified using its arrival time, instead of using its position in the
stream. To reduce memory, arrival times are stored in wrap-
around counters of O(ln N ) bits, where N is the length of the
sliding window, e.g., in milliseconds. Second, entries expire
based on their arrival time, and not on their position in the
stream. Finally, we require an upper bound of the number
of arrivals within the sliding window time range for each
stream S, denoted as u(N , S). Note that this is required only
for computing the maximum memory requirements of the
structure a priori; it does not have an impact on the actual
required memory or quality of ECM-sketches. Furthermore,
the bound can be very loose without a noticeable change in
the estimated space requirements, because space complexity
increases only logarithmically with u(N , S).
Complexity. We use N to denote the length of the sliding
window, either in number of arrivals or in time (depending on
the desired sliding window model), and u(N , S) as defined
earlier. Also, g(N , S) = max(u(N , S), N ); function g is
used to enable unified cost expressions for both the time-
based and count-based sliding window model.

To get an εsw-approximation of the number of one
bits in the sliding window, exponential histograms require
O(ln N + ln ln(u(N , S))) memory per bucket, to store
the bucket size and bucket boundaries. The number of
buckets is O(ln(u(N , S))/εsw), yielding a total memory
of O(ln2(g(N , S))/εsw). The update cost per element is
O(ln(u(N , S))) worst case and O(1) amortized time. Que-
ries covering the whole sliding window are executed in con-
stant time. For queries with range N ′ < N , the required
time is O(ln(u(N , S)/εsw)). The extra time is required for
finding the oldest bucket overlapping with the query, assum-
ing sequential access. If the storage model of the buckets
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supports random access, e.g., a fixed-length array, then this
time can be further reduced to O(ln(ln(u(N , S)/εsw))) with
binary search.

The space complexity of ECM-sketches is as follows.
For the Count-Min array, we require an array of width
w = �e/εcm� and depth d = �ln(1/δ)�. Each cell
in the array stores an exponential histogram, requiring
O(ln2(g(N , S))/εsw) bits. Therefore, the total required
memory is O( 1

εswεcm
ln2(g(N , S)) ln(1/δ)) = O( 1

ε2
ln2

(g(N , S)) ln(1/δ)). Concerning time complexity, adding an
element requires computing d hash functions, and updat-
ing d separate exponential histograms. The amortized com-
plexity for each arrival is therefore O(d) = O(ln(1/δ)),
whereas the worst-case complexity is O(d ln(u(N , S))) =
O(ln(u(N , S)) ln(1/δ)). Finally, query execution takes O
(ln(1/δ)) time for a query of range N ′ equal to N . For
N ′ < N , the execution cost is O(d ln(u(N , S))/εsw) ≤
O(ln(1/δ) ln(u(N , S))/ε) with sequential access to buck-
ets, e.g., using a linked list. With random access sup-
port, binary search can be used for finding the last rel-
evant bucket for each query, reducing the query cost to
O(ln(1/δ) ln(ln(u(N , S))/ε)).

4.2 Alternative algorithms for sliding windows

Slidingwindow counters can also bematerialized using other
sliding window algorithms. In the literature, two such algo-
rithms are particularly well known: (a) deterministic waves
and (b) randomized waves [21]. We now show how ECM-
sketches can incorporate these algorithms and discuss the
positive and negative aspects of each variant.
Deterministic waves. Deterministic waves [21] have iden-
tical memory requirements with exponential histograms,
and they outperform exponential histograms with respect
to worst-case complexity for updates, requiring always con-
stant time. As such, the space and computational complexity
of ECM-sketches based on deterministic waves is identical
to that of sketches based on exponential histograms, with
the only difference being the worst-case update complexity,
which is O(ln(1/δ)).

A downside of deterministic waves is that they require
knowledge of the upper bound of the number of arrivals
u(N , S) during the initialization of the data structures, to
decide on the required number of queues/levels. Any overes-
timation of u(N , S) is therefore translated to increased space
requirements—logarithmic with u(N , S). It is important to
note that this constraint is substantially less limiting com-
pared to the constraints of previous algorithms, e.g., [35],
which required an upper bound for the total number of items
in all streams and therefore could not be applied to dynamic
networks with an unknown number of participating nodes
and streams.

Randomized waves. Randomized waves [21] provide (ε, δ)

approximation for the basic counting problem, i.e., Pr [|x̂ −
x | ≤ εswx] ≥ 1 − δsw, where x̂ and x denote the esti-
mated and real number of true bits in the sliding window
range, respectively. They have substantially higher space
complexity compared to their deterministic counterparts—
O(ln(1/δsw)/ε2sw) instead of O(1/εsw). Nevertheless, they
are important for distributed applications as they enable com-
position without causing an inflation of the worst-case error
bounds; deterministic counterparts did not originally sup-
port any composition functionality. Therefore, we also con-
sider randomizedwaves for integrationwith our ECM-sketch
structures.

Theorem 3 For any ε within (0, 1), an ECM-sketch con-
structed with εcm = ε

1+ε
, εsw = ε, and δsw = δcm = δ/2

satisfies Pr [| f̂ (x, r)− f (x, r)| ≤ ε||ar ||1] ≥ 1−δsw −δcm.
Furthermore, the aforementioned combination of εcm and
εsw minimizes the space complexity of the sketch.

Proof In the appendix. �	
The space complexity of ECM-sketches based on random-

ized waves is derived by multiplying the space complex-
ity of the two basic structures: O

(
ln(1/δcm) ln(1/δsw) ln2(

g(N , S))/(εcmε2sw)
) = O

(
ln2(δ) ln2(g(N , S))/ε3

)
. Insert-

ing a new element requires O(ln(δcm) ln(δsw)) = O(ln2(δ))
amortized time, and O(ln(δcm) ln(δsw) ln(u(N , S))) = O
(ln2(δ) ln(u(N , S))) worst-case time. Finally, query exe-
cution takes O(ln(δcm) ln(δsw) (ln(u(N , S)) + 1/ε2sw)) =
O(ln2(δ)(ln(u(N , S)) + 1/ε2)) with sequential access to
buckets and O(ln(δcm) ln(δsw) (ln ln(u(N , S))+ln(1/ε2sw)))

= O(ln2(δ)(ln ln(u(N , S)) + ln(1/ε2sw))) time with random
access.

Table 2 summarizes the main results for the combination
of ECM-sketches and the three sliding window structures.
The results correspond to both time-based and count-based
sliding windows.

5 Order-preserving merging

For many distributed applications, such as the network mon-
itoring application described in the introduction, we require
mergingof individualECM-sketchesCM1, CM2, . . . ,CMn ,
each one corresponding to stream S1, S2, . . . , Sn , to get
a single ECM-sketch CM⊕ that corresponds to the logical
stream S⊕ = S1 ⊕ S2 ⊕ . . . ⊕ Sn . The ⊕ operator is defined
as a merging operator that preserves the ordering and arrival
time of the events. Standard Count-Min sketches allowmerg-
ing, as long as all sketches are constructed with identical
dimensions and hash functions. For this, they rely on the lin-
earity of the Count-Min counters, which are simple integers
in the general case. However, this does not trivially hold for
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Table 2 Computational and space complexity of ECM-sketches

Exponential histogram Deterministic wave Randomized wave

Memory O
(

1
ε2

ln( 1
δ
) ln2(g(N , S))

)
O

(
1
ε2

ln( 1
δ
) ln2(g(N , S))

)
O

(
1
ε3

ln2(δ) ln2(g(N , S))
)

Amort. update O(ln(1/δ)) O(ln(1/δ)) O(ln2(δ))

Worst update O(ln(1/δ) ln(u(N , S))) O(ln(1/δ)) O(ln2(δ) ln(u(N , S)))

Query O(ln(1/δ) ln(u(N , S))/ε) O(ln(1/δ) ln(u(N , S))/ε) O(ln2(δ)(ln(u(N , S)) + 1/ε2))

Function g(N , S) is used as a shortcut for max(u(N , S), N )

ECM-sketches, where the counters are not simple numbers
but complex sliding window structures, since exponential
histograms (as well as all other deterministic sliding window
structures) do not support this kind of merging. Although
randomized structures enable losslessmerging (cf. Sect. 5.2),
they come with a substantially higher space complexity and
are thus not preferable for ECM-sketches. Therefore, we first
consider the order-preserving merging of deterministic slid-
ingwindow structures.Note that this problem is interesting in
itself, since these data structures are widely used in the litera-
ture for maintaining statistics over sliding windows. We then
extend our results to cover merging of randomizedwaves and
of ECM-sketches.

For completeness, before presenting the details of our
merging algorithm, we note that other types of merging are
also possible. For example, Gibbons and Tirthapura [21]
have considered utilizing more than one randomized waves
for generating their position-wise union, i.e., for maintain-
ing count-based slidingwindow statistics. Their scenario and
query types are fundamentally different than ours.

5.1 Merging of exponential histograms

Consider a set of exponential histograms EH1, EH2, . . . ,

EHn , summarizing time-based slidingwindows. All are con-
figured to cover a sliding window of N time units. The merg-
ing operation is denoted with⊕, i.e., EH⊕ = EH1⊕EH2⊕
. . . ⊕ EHn . With EH j

i , we denote bucket j of EHi and

|EH j
i | denotes the bucket size (number of true bits). By

convention, buckets are numbered such that bucket 1 is the
most recent. The ending time of the bucket is denoted as
e(EH j

i ). To ease exposition, we use s(EH j
i ) to denote the

starting time of the bucket, even though this is not explicitly
stored in the buckets. By construction, the starting time of
a bucket is equal to the ending time of the previous bucket,
i.e., s(EH j

i ) = e(EH j−1
i ).

To construct EH⊕, our methodology considers the indi-
vidual exponential histograms as logs. The basic idea is to
reconstruct EH⊕ by assuming that half of the elements arrive
at the starting time of each bucket and the remaining at the
ending time of the bucket. Precisely, let B denote the list
containing all buckets of all sliding windows. We initialize
an empty time-based exponential histogram with error ε′,

configured to keep the last N time units, and a maximum of∑n
i=1 |EHi | elements. For each bucket B[i] ∈ B, we simu-

late the insertion in EH⊕ of |B[i]| true bits. Half of the bits
are inserted with timestamp s(B[i]) and the other half at time
e(B[i]). Insertions are simulated in the order defined by the
starting and ending timestamps of the buckets.

Theorem 4 Consider n time-based exponential histograms
EH1, EH2, . . ., EHn, initialized with error parameter ε, and
covering the same time range. The exponential histogram
EH⊕ initialized with error parameter ε′ and constructed
with the proposed merging algorithm answers any query
within its time range for the stream S⊕ with a maximum
relative error of (ε + ε′ + εε′).

We will now give the intuition of the proof. The formal
proof is presented in the appendix. Each exponential his-
togram EH of stream S configured with error parameter ε

can be used to reconstruct an approximate stream S′, as fol-
lows: For each bucket b in EH , add |b|/2 true bits in time
s(b) and |b|/2 true bits in time e(b). We argue that answer-
ing any query with starting time sq within the range of EH
using the reconstructed stream S′ will result to a maximum
relative error ε. Let b j be the bucket s.t. s(b j ) < sq ≤ e(b j ).
Therefore, the accurate answer x of the query for stream S
is lower bounded by l = ∑ j−1

i=1 |bi | + 1 and upper bounded

by h = ∑ j−1
i=1 |bi | + |b j |. By construction, the reconstructed

stream will contain a total of
∑ j−1

i=1 |bi | + |b j |/2 items with
timestamp greater than or equal to sq . Therefore, answering
the query by counting the number of true bits in the recon-
structed streamwith timestamp after sq will have amaximum

error of max(h − ∑ j−1
i=0 |bi | + |b j |/2,∑ j−1

i=0 |bi | + |b j |/2−
l) = |b j |/2. By invariant 1 of exponential histograms,

|b j |/2 ≤ ε(1 + ∑ j−1
i=1 |bi |) ≤ εx . Therefore, the maximum

difference between the answer estimated by stream S′ and
the correct answer x will be less than or equal to εx .

Our merging algorithm is equivalent to reconstructing
each stream S′

i from exponential histogram EHi and using
these to recreate an exponential histogram EH⊕. The recon-
struction of stream S′ introduces a maximum relative error
ε, as explained above. Summarizing S′ with a new exponen-
tial histogram, we get an additional error ε′. However, ε′ is
relative on the answer provided by stream S′, and not by

123



Sketching distributed sliding-window data streams 353

S. Therefore, the absolute error due to the exponential his-
togram summarization will be ε′x ′, where x ′ ∈ (1± ε)x and
x denoting the accurate answer on Si . Summing both errors,
we get a total relative error of ε + ε′ + εε′.

For the special case when ε′ = ε, the maximum relative
error becomes 2ε +ε2. Concerning space and computational
complexity, EH⊕ behaves as a standard exponential his-
togram and therefore has the same complexity as presented
in [16]. �	
Multi-level Merging. It is frequently desired to merge slid-
ing windows in more than one levels. For example, consider
a hierarchical P2P network, where each peer maintains its
own exponential histogram and pushes it to its parent for
merging at regular intervals. Since the merged exponential
histograms have the same properties as the individual expo-
nential histograms (albeit with a higher ε), the above analysis
also supports iterative merging of exponential histograms.

There are two types of approximation error that influence
the estimation of a merged exponential histogram. A possi-
ble approximation error, denoted as err1, is introduced due
to halving of the size of the last bucket of the merged expo-
nential histogram. This error occurs only at query time and is
independent of the number of performed merges. Therefore,
at a multi-level merging scenario, this error does not need to
be propagated at the intermediary exponential histograms. A
second type of error, termed as err2, occurs due to the inclu-
sion (exclusion) of data that arrived before (after) the query
starting time in buckets that are accounted (not accounted)
in the query result.

It turns out that the error err2 is additive at theworst case (in
absolute value). For instance, in the lowest level (Level 0) of
the hierarchy, merging two exponential histograms (all with
relative error ε), having a true number of bits (in a given query
range) equal to i1 and i2, will result at a maximum value for
err2 ≤ ε(i1 + i2). In Level 1, in addition to the previous
possible errors, ε(i1 + i2) + ε(i3 + i4) stream items may
be incorrectly registered at the wrong side of the query start
time. A recursive repetition for h levels results to err2 ≤ hεi ,
where i = ∑

j i j . The total absolute error (including err1)
then becomes err = err2+err1 ≤ hεi +ε(i +hεi), resulting
to a maximum relative error of hε(1 + ε) + ε.

In many applications, the number of merging levels can be
predicted, or even controlled when constructing the network
topology. For example, consider DHT-based or hierarchi-
cal P2P topologies, which typically enable a balanced-tree
access to the peers of height h = log(N ), where N is the
number of nodes. In such systems, initializing the individual

exponential histograms with error
√
1+2h+h2+4hε−1−h

2h yields
a final merged exponential histogram of relative error ε. Nat-
urally, this causes a slight inflation of the size of the slid-
ing window, by O(log(N )). However, even with this infla-
tion, exponential histograms are—even for extremely large

Fig. 2 An example why merging of count-based exponential his-
tograms is not possible

networks—substantially smaller and more efficient than ran-
domized data structures that enable error-free merging in the
expense of memory proportional to O(ln(1/δ)/ε2) (see also
Sect. 5.2).
Deterministic waves. The merging technique trivially ext-
ends for deterministic waves. Recall that each wave is com-
posed of l levels, each covering a different range. To perform
the merging, we start from the lowest wave level l − 1 and
switch to a higher level every (1/ε + 1)/2 bits, i.e., when
the first entry in the higher level has arrived before the next
entry in the current level. Repeating the calculation of the
error bounds for themerging of deterministic waves becomes
straightforward when we notice that invariant 1 of the expo-
nential histograms is also true for deterministic waves.
Count-based exponential histograms. Although exponen-
tial histograms cover both time-based and count-based slid-
ing windows, merging of exponential histograms is specific
to time-based sliding windows. Count-based sliding win-
dowsdonot contain sufficient information for enablingorder-
preserving merging. Even storing the system-wide time of
the buckets would not be sufficient to allow such a merging.
To illustrate this limitation, consider the two count-based
exponential histograms depicted in Fig. 2. For each bucket,
we store the size of the bucket, the bucket completion time,
and the total number of arrivals until that time. An arrival in
count-based sliding windows might be a true or a false bit.
An example query can then be how many true bits arrived in
the last 100 system-wide arrivals. If these 100 system-wide
arrivals were read between time 19 and 20, then the correct
answer would be 1. However, it is also possible that the last
100 system-wide arrivals have arrived between time 3 and
time 20, in which case the correct answer could be anything
between 2 and 9. The information contained in the two expo-
nential histograms is not sufficient to estimate this type of
queries, as it only allows us to preserve the order of the true
bits, but looses the order of the false bits, which is also impor-
tant. Therefore, given only the exponential histograms, it is
not possible to merge them in a way that preserves the order-
ing of both true and false bits. Deterministic and randomized
waves also have the same limitation when it comes to order-
preserving merging of count-based sliding windows.

5.2 Merging of randomized waves

Randomized waves were proposed in [21] to address the
problem of distributed union counting: counting the num-
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ber of 1’s in the position-wise union of t distributed data
streams, over a sliding window. Even though the algorithm
of [21] can utilize more than one waves constructed at differ-
ent nodes to answer queries, it does not consider merging of
several waves to generate a single wave. Instead, it assumes
that individual randomized waves can be stored and accessed
any time, which is inconvenient for large networks. To elimi-
nate this assumption,we nowdescribe a slight variation of the
initial algorithm that can produce a single randomized wave
out of a set of individual waves, with the same probabilistic
accuracy guarantees as the individual waves.

Our algorithm simulates the construction of the merged
randomized wave RW⊕ by using only the information
included in the individual randomized waves. Consider a set
R of randomized waves RW1, RW2, …, RWn , configured to
store a sliding window of N time units, with error parame-
ters ε and δ. Themerged randomizedwave RW⊕ is initialized
with the same ε and δ parameters, for storing a maximum of
∑n

i=1 |RWi | events over N time units. Each level l of RW⊕
is then constructed by concatenating the corresponding level
l from all individual randomized waves, sorting all events
based on the timestamp, and keeping the last c/ε2 events.
Recall that the number of levels of individual randomized
waves is determined based on themaximumnumber of events
in the sliding window. Therefore, it may happen that RW⊕
has more levels than the individual randomized waves. To
populate the lower levels of RW⊕, we rehash the events pop-
ulating the last level of each individual randomized wave,
as proposed in [21] when merging different levels from ran-
domized waves.

The process of query execution and the accuracy guaran-
tees remain the same as for the standard randomized waves.

5.3 Merging of ECM-sketches

Consider a set of ECM-sketches CM1, CM2, . . ., CMn with
identical dimensions and hash functions. The ECM-sketch
CM⊕ with each counter set to the sum of all corresponding
counters from the individual sketches (as defined by the ⊕
operator) summarizes the information found in the individual
sketches:

CM⊕[ j, k] = CM1[ j, k] ⊕ CM2[ j, k] ⊕ . . . ⊕ CMn[ j, k]
To bound the estimation error, we consider the two sources of
error in the merged ECM-sketch. The error due to the Count-
Min sketch εcm does not change, since it only depends on
the dimensionality of the Count-Min array, which is fixed.
However, the error due to sliding window estimations at each
counter might change with each merging. Let ε′

sw denote the
error produced by the merging of the corresponding Count-
Min counters, as discussed in Sect. 5.1 and 5.2. If εsw and εcm
are configured according toTheorem3, it can be easily shown
that ε′

sw will always be greater than or equal to εcm/(1 −

εcm). Then, the error bounds follow directly by Lemma 3:
| f̂ (x, r) − f (x, r)| ≤ ε′

sw||ar ||1 with probability 1 − δcm .

6 Continuous function monitoring with ECM-sketches

A substantial number of distributed applications requires
continuous monitoring of complex functions defined over
high-dimensional domains. For example, network adminis-
trators frequently require to monitor the (sliding-window)
heavy-hitter IP addresses over distributed streams of network
packets (e.g., received by the edge routers of the corporate
network), as these IPs are potentially launching aDoS attack.
ECM-sketches can be exploited in these applications, such
that each network node can compactly and efficiently main-
tain its local state, as well as effectively propagate it over the
network. In this section, we show how ECM-sketches can
leverage the geometric method [27,33], to enable continu-
ous function monitoring.

We illustrate our technique by addressing two frequent
requirements of distributed applications: (a) monitoring
items with frequency over a user-defined threshold τ and (b)
monitoring self-join size queries. In principle, any query type
that can be answered by (a sequence of) point queries can be
monitored in the lines of the algorithm thatwewill present for
query (a). Some examples include hierarchical heavy hitters,
quantiles, range queries, and maximum frequency queries
(see also [11,31] for a more detailed discussion on how cen-
tralized Count-Min sketches and ECM-sketches can address
these problems using point queries). It is also straightforward
to extend the algorithm for query (b) for inner-product size
queries.

Section 6.1 provides an introduction to the geometric
method. In Section 6.2, we introduce the integration of ECM-
sketches with the geometric method and discuss the main
challenges that need to be addressed. Then, in Sect. 6.3, we
briefly discuss an algorithm for query (a). This discussion
serves mainly as a first, simple, example for the integration.
An algorithm for query (b) is presented in more detail in
Sects. 6.4 and 6.5. Our discussion for query (b) includes an
efficient monitoring algorithm and novel theoretical results
to enable dimensionality reduction of the monitoring prob-
lem (from d × w to d), which translates to drastic network
savings and better scalability.

6.1 An introduction to the geometric method

Sharfman et al. [33] consider the basic problem of monitor-
ing distributed threshold-crossing queries; that is, monitor-
ing whether f (v) < τ or f (v) > τ for a possibly complex,
nonlinear function f , and a high-dimensional vector v com-
puted as the aggregate of the corresponding local/partial vec-
tors {v(p1), v(p2), . . . , v(pn)} at a set of n sites. The key idea
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Fig. 3 Estimate vector e, Δv(pi ) (arrows out of e), drift vectors u,
convex hull enclosing the current global vector v (dotted outline), and
bounding balls B(e,Δv(pi ))

of the method is, since it is generally impossible to connect
the values of f on the local statistics vectors to the global
value f (v), one can employ geometric arguments to monitor
the domain (rather than the range) of the monitored function
f . The monitoring protocol works as follows. Assume that at
any point in time, each site pi has informed the coordinator
of some prior state of its local vector v′(pi ); thus, the coor-
dinator has an estimated global vector e = 1

N

∑N
i=1 v

′(pi ).
Clearly, the updates arriving at sites can cause the local vec-
torsv(pi ) to drift too far from their previously reported values
v′(pi ), possibly leading to a violation of the threshold τ . Let
Δv(pi ) = v(pi ) − v′(pi ) denote the local delta vector (due
to updates) at site i , and let u(pi ) = e + Δv(pi ) be the drift
vector from the previously reported estimate at site pi . We
can then express the current global statistics vector v in terms
of the drift vectors:

v = 1

N

N∑

i=1

(v′(pi ) + Δv(pi ))

= e + 1

N

N∑

i=1

Δv(pi ) = 1

N

N∑

i=1

u(pi ).

That is, the current global vector is a convex combination of
drift vectors and thus guaranteed to lie somewhere within the
convex hull of the delta vectors around e. Fig. 3 depicts an
example in d = 2 dimensions. The current value of the global
statistics vector lies somewhere within the shaded convex-
hull region; thus, as long as the convex hull does not overlap
the inadmissible region (i.e., the region {v ∈ R

2 : f (v) > τ }
in Fig. 3), we can guarantee that the threshold has not been
violated (i.e., f (v) ≤ τ ).

The problem, of course, is that the Δv(pi )’s are spread
across the sites and thus the above condition cannot be
checked locally. To transform the global condition into
a local constraint, we place a d-dimensional bounding
ball B(e,Δv(pi )) around each local delta vector of radius

1
2‖Δv(pi )‖ and centered at e + 1

2Δv(pi ) (see Fig. 3). It can
be shown that the union of these balls completely covers the
convex hull of the drift vectors [33]. This observation effec-
tively reduces the problem of monitoring the global statistics
vector to the local problem of each remote site monitoring
the ball around its local delta vector.

More specifically, given the monitored function f and
threshold τ , we can partition the d-dimensional space to two
regions V = {v : f (v) > τ } and V = {v : f (v) ≤ τ }. (Note
that each of these can be arbitrarily complex, e.g., they may
comprise multiple disjoint regions of R

d .) The basic proto-
col is now quite simple: Each site monitors its delta vector
Δv(pi ) and, with each update, checks whether its bounding
ball B(e,Δv(pi )) ismonochromatic, i.e., all points in the ball
lie within the same region (either V , or V ). If this is not the
case,we have a local threshold violation, and the site commu-
nicates its local Δv(pi ) to the coordinator. The coordinator
then initiates a synchronization process that typically tries
to resolve the local violation by communicating with only
a subset of the sites in order to “balance out” the violating
Δv(pi ) and ensure the monochromicity of all local bounding
balls [33]. Briefly, this process involves collecting the cur-
rent delta vectors from (a subset of) the sites and recomputing
the minimum and maximum values of f (v) according to the
new, partial, average. If both values reside at the same side
of the threshold, the coordinator computes a slack vector for
each site in the synchronization set that shifts the local vec-
tor to the partial average. In the worst case, the delta vectors
from all N sites are collected, leading to an accurate estimate
of the current global statistics vector, which is by definition
monochromatic (since all bounding balls have 0 radius).

In more recent work, Sharfman et al. [27] show that the
local bounding balls defined by the geometric method are
actually special cases of a more general theory of Safe Zones
(SZs), which can be broadly defined as convex subsets of
the admissible region of a threshold-crossing query. Then,
as long as the local drift vectors stay within such a SZ, the
global vector is guaranteed (by convexity) to be within the
admissible region of the query.

6.2 ECM-sketches and the geometric method

We are interested in domains where the local and global sta-
tistics vectors (v(pi ) and v, respectively) are defined over
a user-chosen sliding window range and are expected to be
high-dimensional, e.g., they may contain the frequency of
each item within the user-defined sliding window, for a large
number of items. Clearly, accurate maintenance of these sta-
tistics for high-velocity data streams is computationally chal-
lenging. Furthermore, the aggregation of the local statistics
vectors in order to compute the global statistics vector is
costly, since it requires exchanging large vectors during syn-
chronization. Both computational and network cost can be
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substantially reduced with a small trade-off on quality, by
using ECM-sketches. This requires the following modifica-
tions in the geometric method: a) sites use ECM-sketches to
approximate their local statistics vectors, b) the global sta-
tistics/estimate vector, the local delta vectors, and the drift
vectors are all represented as Count-Min sketches, extracted
by the ECM-sketches (at query time), and finally, c) during
configuration of the geometricmethod, the query is described
on top of the sketch representations of the local and global
statistics vector.

Clearly, a naive implementation of the above changes
would be subject to substantial constraints, since the size of
the domain space of geometric monitoring would be equal to
the dimensionality of theECM-sketches (d×w), and the geo-
metric method is known to be inefficient in high-dimensional
domains. It is therefore imperative to reduce the dimension-
ality of the problems to monitor. In the following sections,
we show how this is achieved for the frequent items query
and for the self-join size queries.

Before going into further details, notice that the above
method enables concurrent monitoring of multiple queries
(not necessarily of the same type) with a single ECM-
sketch per node,which satisfies the strictest accuracy require-
ments of all queries and covers the largest window. Multiple
instances of the geometric method (in the simple case, one
per query) could then be executed in parallel, coordinating
the synchronization process to reduce network cost. The net-
work cost formonitoring the queries is determined by the net-
work requirements of the geometric method, i.e., it depends
mainly on the stability of the answer and the acceptable error
parameter θ . Fully analyzing all query types, examining the
involved challenges, and exploiting the parallel execution of
the queries for network and computational benefits are inter-
esting open problems and part of our future work.

6.3 Monitoring frequent items

Let p1, p2, . . . , pn denote all n network nodes, S1, S2, . . . ,

Sn their corresponding streams, and S0 the order-preserving
union of these streams.We useD to denote the domain of S0,
i.e., all distinct items appearing in the stream, and Si,r the sub-
stream of Si within query range r . The algorithm addresses
the problem of distributed continuous monitoring of the set
Fr

τ of items with frequency in S0,r greater than a user-chosen
threshold τ . It works by decomposing the problem to a set
of smaller individual problems, one for each distinct item
occurring in the stream, yet without requiring the knowledge
of all distinct items a priori.

The user first selects the frequency threshold τ , the desired
accuracy of ECM-sketches (δ and ε), and an acceptable error
parameter θ ≥ 0 that defines the error tolerance of the geo-
metric method algorithm, i.e., it is acceptable for the algo-
rithm to misclassify items with frequency in the range of

τ(1± θ). At initialization time t0, each site pi constructs an
empty ECM-sketch ECMi to be used as its local statistics
vector, and an empty Count-Min sketch CM(t0) to be used
as the reference vector (we drop the site id from the notation
since the reference vector is always identical at all sites). Both
sketches are of the same size d × w and are initialized with
identical hash functions at all sites. After initialization, sites
enter the monitoring phase: For each item x ∈ D, we define a
d-dimensional threshold-crossing query as the boolean con-
dition:

Q( f , v, x, τ, θ)≡
{
f (v(t, x))≥τ(1− θ) if f (v(t0, x))<τ

f (v(t, x))<τ(1+θ) if f (v(t0, x))≥τ

with function vector f : R

d → R defined as f (v) = n ×
mindj=1 v[ j]. The d-dimensional vectors v(t, x) and v(t0, x)
are extracted by ECMi and CM , respectively, as follows.
v(t)[ j] = Ei ( j, h j (x), r) (the estimation from the counter of
ECMi at position ( j, h j (x))) and v(t0)[ j] = CM[ j, h j (x)]
(the value of the counter of the reference Count-Min sketch
at position ( j, h j (x))).

Using the geometric method, sites monitor the threshold-
crossing queries in order to detect item arrivals or expirations
that potentially invalidate the set of estimated frequent items
F̂r

τ . An arrival of any item x is handled as follows. First,
the local ECM-sketch is updated to include the arrival. If
x is already frequent, nothing else needs to be done. In the
opposite case, the site probes the corresponding threshold
query Q( f , v, x, τ, θ), initiating a synchronization if thresh-
old crossing occurs. Notice that, for synchronization, the
coordinator needs to collect only the values of the ECM-
sketch counters corresponding to x , i.e., E( j, h j (x), r) for
j = 1 . . . d, in order to update the reference Count-Min
sketch and decide whether the item causing the violation is
frequent. The actual sliding window structures do not need
to be exchanged.

Counter updates due to expirations are slightly more com-
plicated (these could cause the removal of a frequent item
from F̂r

τ ). The technical challenge comes from the fact that a
bucket expiration at the sliding window of any counter from
the ECM-sketch may affect many items, introducing com-
putational complexity. One approach would be to have each
site execute the threshold-crossing queries for all frequent
items at regular intervals. To reduce computational complex-
ity, each site pi instead maintains a balanced binary search
tree that contains all counters of ECMi and the set of fre-
quent items corresponding to each counter, ordered by the
expiration time of their oldest bucket. This tree enables pi to
quickly detect (in constant time) whether any of the counters
of ECMi contains expired buckets and test only the rele-
vant threshold-crossing queries. The quality guarantees and
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memory footprint of the above algorithm are summarized by
the following lemma.

Lemma 1 The algorithm guarantees that with probability
greater than or equal to 1 − δ, any item x contained in F̂r

τ

has a real frequency in S0,r greater than (1−θ)τ −ε||S0,r ||1,
whereas any item x not contained in F̂r

τ has a real frequency
less than (1+θ)τ+ε||S0,r ||1. The algorithm requiresmemory
of O( 1

ε2
ln( 1

δ
) ln2(||r ||1) + |F̂r

τ |).

6.4 Monitoring self-join size queries

In the previous case, the problem to bemonitored was always
d-dimensional, with a small d (d ≤ 5 for δ ≥ 0.01). As
such, the geometric method was able to bound the convex
hull using relatively small balls, effectively filtering out local
updates. Furthermore, threshold violations could be resolved
by exchanging only d counters. Estimation of the self-join
size, however, involves all d×w counters, with (d×w) typ-
ically in the hundreds. A naive application of the geometric
method for self-join size monitoring would therefore require
exchanging d × w counters at each threshold violation. The
problem is further aggravated by the high dimensionality of
the bounding balls (equal to the number of counters), which
increases the frequency of threshold crossings.

Our attack to this problem is twofold. First, we adapt a
recently proposed insight [18] that enables us to reduce the
problem to d dimensions, by monitoring upper and lower
bounds of the self-join size estimate instead. This adaptation
includes repeating the analysis of [18] for the ECM-sketch
(monitoring the min instead of the median and providing
error guarantees relevant to the stream length). However, the
bounds offered by this method alone turn up to be quite loose
when it comes to ECM-sketches, causing frequent thresh-
old crossings. Therefore, we offer a new, second, approach
that further tightens these bounds by exploiting the sliding-
window property of ECM-sketches. Compared to the first
approach, the second approach drastically reduces the num-
ber of threshold crossing, enabling substantial network gains.

We initiate the discussion with some basic notation.
Let r denote the query range, and vi (t) the Count-Min
sketch extracted by the ECM-sketch of node pi , with each
counter computed as vi (t)[row, col] = Ei (row, col, r).1

Also, v(t) = 1
n

∑n
i=1 vi (t) (the average of vi (t)). Function

f (v) corresponds to the self-join size estimate function with
Count-Min sketches, i.e., f (v) = mindrow=1

∑w
col=1(v[row,

col])2. Finally, di is the d-dimensional vector computed as
di [row] = ||vi (t)[row]−vi (t0)[row]||, and d = 1

n

∑n
i=1 di .

1 The geometric method is trivially extended to handle matrices instead
of vectors by applying vectorization on the matrices and adjusting the
monitored function to use the corresponding vector dimensions.We use
the matrix notation for the sketches only for convenience.

The following lemma enables us to extract d-dimensional
threshold-crossing queries:

Lemma 2 If mindrow=1{ ||v(t0)[row]||
n − d[row]} ≥ 1

n

√
f (v(t0))
1+θ

and mindrow=1{ ||v(t0)[row]||
n + d[row]} ≤ 1

n

√
f (v(t0))
1−θ

, then
f (v(t0)) ∈ (1 ± θ) f (v(t)).

Proof In the appendix. �	
Since d is a convex combination (the average) of the dis-

tributed values d j , we can already exploit the geometric
method to monitor the self-join size estimate. This can be
achieved by defining two queries: the first (Qu) for upper
bounding mindi=1{||v(t0)[i]|| − nd[i]} and the second (Ql )
for lower boundingmindi=1{||v(t0)[i]||+nd[i]}. A key obser-
vation, however, is that the definition of d does not account
for the direction of each update: Any update of a counter on
a local ECM-sketch that shifts a counter away from its last
synchronized value (either decreasing the counter value due
to an expiration of a bucket or increasing the value due to
a new arrival) will lead to an increase of d. This, however,
results in unnecessary threshold crossings. For example, an
increase of a counter at a peer p j may lead to a threshold
crossing on the lower-bound threshold query, even though
in practice an increase of the counter can only lead to an
increase of the self-join size.

To circumvent this problem, we introduce two auxiliary
matrices per peer: one for the upper bound that includes only
the counter shifts which increase the counters’ values since
last synchronization and another with the shifts that decrease
the counters’ values. Formally, for the upper bound, vui (t)
is computed as vui (t)[row, col] = max(vi (t), vi (t0)), and
for the lower bound vli (t)[row, col] = min(vi (t), vi (t0)).
Similarly, dui = ||vui (t)[row] − v(t0)[row]|| and dli =
||vli (t)[row] − v(t0)[row]||. du and dl are the corresponding
averages over all nodes. Then, we can show the following:

Theorem 5 Ifmindrow=1{ ||v(t0)[row]||
n −dl [row]}≥ 1

n

√
f (v(t0))
1+θ

and mindrow=1{ ||v(t0)[row]||
n + du[row]} ≤ 1

n

√
f (v(t0))
1−θ

, then
f (v(t0)) ∈ (1 ± θ) f (v(t)).

Proof In the appendix. �	
This leads to the following threshold-crossing queries (the

queries become true when threshold violation occurs):

Qu( f , du, v, θ) ≡ d
min
row=1

{

du[row] + ||v(t0)[row]||
n

}

>
1

n

√
f (v(t0))
1 − θ

and for the lower bound:

Ql( f , dl , v, θ) ≡ d
min
row=1

{ ||v(t0)[row]||
n

− dl [row]}
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<
1

n

√
f (v(t0))
1 + θ

Synchronization. A two-phase synchronization algorithm is
used to handle threshold violations. Without loss of general-
ity, we will demonstrate the algorithm assuming a threshold
violation in Qu (the case of Ql is analogous). In a first phase,
all nodes pi send their local values of dui to the coordinator in
order to compute the accurate averagevalue du . If the updated
du no longer causes threshold violation, it is sent back to
all nodes to be used in the monitoring algorithm. However,
if this first phase is not sufficient to address the threshold
violation, the coordinator collects also the local values of
vi (t), recomputes the average value v(t) and the updated self-
join size, and reinitializes the monitoring algorithm with the
updated values. Both phases can be further extended such
that synchronization stops as soon as balancing between
the retrieved vectors is possible, as explained in Sect. 6.1.
The first phase has a network cost (in transfer volume) of
O(d × n) = O(n ln(1/δ)), whereas the cost of the (more
infrequent) second phase is O(d×w×n) = O(n ln(1/δ)/ε).

6.5 Efficient monitoring of the minimum

The previous discussion has abstracted away the details of
the geometric monitoring of functions containing the mini-
mum. In principle, the standard geometric monitoring algo-
rithm can be used, as described above. However, the nature
of the monitored function enables substantial optimizations.
We distinguish two types of queries: (a) the queries where the
last estimate vector is located above the threshold and (b) the
queries where the last estimate vector is below the threshold.

For the first type of queries, wewill use as a running exam-
ple the query Ql , introduced in Sect. 6.4 (the same principles
apply to the queries introduced in Sect. 6.3 that correspond
to frequent items). The admissible region of the monitored
vector in this query is already convex (i.e., in two dimensions,
this will be the L-shaped area above the threshold). Hence,
the monochromicity test becomes fairly simple: A node pi
reading an update only needs to test whether the local value
of dli stays within the convex admissible region, in which
case the update is guaranteed to be safe.

Query Qu and the queries from Sect. 6.3 corresponding
to infrequent items belong to the second type of queries. For
these queries, the admissible region is non-convex. However,
the inadmissible region is now convex, and we can apply a
different technique based on convex safe zones [27]: In the
absence of statistics for the velocity and direction of du , we
choose the safe zone such that it maximizes the slack in all
dimensions, as follows. First, we find the point p of the inad-
missible region that is closest to v(t0)

n . It is easy to show

that this point is p[i] = max

(
v(t0)
n , 1

n

√
f (v(t0))
1−θ

)

. Then, we

Fig. 4 Monitoring of the minimum for Qu with safe zones. The inad-
missible region is fully covered by the R subspace (yellow). The L
subspace (green) can be used as a safe zone for v(t0)/n + du (color
figure online)

find the hyperplane H passing from p that is perpendicu-
lar to vector (p − v(t0)

n ) (see Fig. 4 for a two-dimensional
illustration of this process). Hyperplane H divides the d-
dimensional space to two convex subspaces. By construction,
the one of the two subspaces (in the two-dimensional exam-
ple, the subspace in the right of H , denoted with R) contains
the inadmissible region and possibly some admissible area,
whereas the second subspace (denoted with L) contains only
admissible area with respect to query Qu . Since L is con-
vex, it can be used as a safe zone for the geometric method.
In particular, after each update, nodes only need to check
whether v(t0)/n + du is still within L . This is guaranteed
to be the case whenever v(t0)/n + dui remains within L for
all nodes i . The computational complexity for this process is
only O(d) = O(ln(1/δ)) for computing the hyperplane and
checking whether dui is still in the safe zone.

7 Experimental evaluation

Our experiments focused on evaluating ECM-sketches with
respect to their scalability, effectiveness, and efficiency, as
well as their suitability for distributed setups. The experi-
ments were conducted using two large real-life data sets, the
World Cup 1998 [2] (wc98) and the CAIDA Anonymized
Internet Traces 2011 data set (caida2). The wc98 data set
consists of all HTTP requests that were directed within a
period of 92 days to the web servers hosting the official
World Cup 1998 Web site. It contains a total of 1.089 bil-
lion valid requests, served by 33 server mirrors. Each request
was indexed using the Web page url as a key, i.e., the ECM-
sketch could be used for estimating the popularity of each
Web page. The caida data set consists of Internet traces col-
lected by passive monitors installed in Chicago and San Jose.

2 Available from http://www.caida.org/data/
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For this experiment, we have used the subset of data collected
from the Chicago monitors in February 17, 2011, which con-
tained a total of 345 Million IPv4 packets. Each packet was
indexed using the source’s IP address. Therefore, the ECM-
sketch enabled estimating the number of packets sent by each
IP address.

We compared three sketch variants, differentiating on the
employed sliding window algorithm: (a) the default vari-
ant described earlier which is based on exponential his-
tograms, denoted as ECM-EH, (b) a variant using determin-
istic waves (ECM-DW ), and (c) a variant based on random-
ized waves (ECM-RW ). Comparison between the variants
was performed to examine the influence of the sliding win-
dow algorithm to the performance of ECM-sketches, in both
centralized and distributed environments. Comparison with
ECM-RW was of particular interest, since randomized algo-
rithms for sliding windowmaintenance (such as the random-
ized waves employed by ECM-RW) were the only ones sup-
porting merging prior to this work. Therefore, examining
the performance of ECM-RW experimentally also serves the
purpose of examining the importance of the merging mecha-
nism for deterministic sliding window algorithms, proposed
in this work.

7.1 Implementation details

ECM-sketches were implemented in Java 1.7 using 32-bit
addressing. The timing experiments were executed on a sin-
gle idle core of an Intel Xeon E5-2450, clocked at 2.1GHz.
For the wc98 data set, deterministic and randomized waves
were initialized with an upper bound of 1000 events per sec-
ond, whereas for the caida data set, we have used an upper
bound of 1000 events per millisecond. In practice, it is rarely
possible to predict themaximumnumber of events per sliding
window, and therefore, such estimates (typically decided by
analyzing a small stream sample) are often the only option.
Exponential histograms did not require such knowledge at
initialization time.

Particularly for randomized waves, Gibbons and Tirtha-
pura [20,21] explain that a correctness probability of 1−δsw
requires the parallel maintenance of c ln2(1/δsw) indepen-
dent instances of the data structure, where the constant
c = 36 is determined by worst-case analysis. This num-
ber of repetitions, in combination to the space complexity
of each instance (c/ε2sw), can make the exchange of random-
izedwaves over a distributed network extremely inefficient—
hence, the importance of the ability to merge deterministic
data structures is proposed in this article. Notice however
that, as suggested in [20], smaller constants may also be used
in practice in order to reduce the space and computational
complexity. This, of course, comes at the cost of meaning-
less worst-case guarantees. In the following experiments, we
set c = √

36 = 6, which reduces the cost by a factor of 36,

but still offers an empirical estimation accuracy that is com-
parable to the one of deterministic sliding window structures
configured with the same ε.

Unless otherwise mentioned, ECM-sketches were set to
monitor a sliding window of 2 million time units. For wc98,
this corresponded to 2million seconds, i.e., 23 days, whereas
for caida, it corresponded to 2 million microseconds, i.e., 33
min. Queries smaller than the sliding window were executed
as well, using the same ECM-sketches. In particular, queries
were generated with an exponentially increasing range, i.e.,
query qi covered the range [t − 10i , t], with t denoting the
time of the last arrival. For each range, a self-join size query,
as well as a set of point queries were constructed and exe-
cuted. For thorough evaluation, we constructed one point
query for each distinct item in the query range (i.e., estimat-
ing the popularity of each Web page in the wc98 data set, or
the number of packets sent by each IP address in the caida
data set).

7.2 Centralized setup

In the centralized scenario, a single site monitors the whole
stream andmaintains an ECM-sketch, which is subsequently
used for answering the queries.We first consider the trade-off
betweenmemory requirements and estimation error. For this,
we vary ε within the range of [0.05, 0.3], keeping δ = 0.15.
For each ε value, we use the analysis presented in Sect. 4 for
point and self-join size queries to configure the ECM-sketch,
such that the required memory for the targeted query type is
minimized.

Figures 5a–d plot the average and maximum observed
error in correlation with the required memory for the two
data sets. The plots are annotated with indicative ε values.
The displayed error at the y-axis is relative to the num-
ber of events arriving within the query range, i.e., for point
queries, err = | f̂ (x, r) − f (x, r)|/||ar ||1 and for self-joins,
err = |âr � ar − ar � ar |/(||ar ||1)2. Recall that ECM-
RW does not allow probabilistic guarantees for self-join
size queries and is therefore not considered for this type of
queries. Table 3 presents indicative update and point query
rates for the considered sketches.

We first observe that both the average and maximum
observed errors are lower than the user-selected value ε for
all ECM-sketch variants.However, thememory requirements
of ECM-RW are typically two to three orders of magnitude
higher than the requirements of ECM-sketches based on the
two deterministic structures configured with the same ε. As
an example, for the wc98 experiment with a moderate value
of ε = 0.15, the cost of maintaining the ECM-RW sketch
is 48.8 MB, whereas ECM-sketches based on exponential
histograms and deterministic waves require 22 and 50 kB,
respectively. This happens because thememory requirements
of randomized waves grow quadratically with 1/ε, whereas
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Fig. 5 Average and maximum observed error in correlation to memory requirements for a centralized setup. Subfigures a and b present the results
for the wc98 data set, and subfigures c and d for the caida data set. The points correspond to ε ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}

Table 3 Indicative update and query rates (per second) for the central-
ized setup

ECM-EH ECM-DW ECM-RW

wc98

Update rate 4343095 6067130 70468

Query rate 1641935 1850909 11905

caida

Update rate 5344982 6205999 72778

Query rate 2377502 3827267 15108

the two deterministic sliding window algorithms scale lin-
early. Note that this negative result applies to all known
randomized sliding window algorithms, e.g., [14,35], since
they all scale quadratically with 1/ε. As such, ECM-sketches
based on deterministic structures aremore applicable for sce-
narios with hardware with less memory, such as sensor net-
works and network devices. Also note that ECM-RW are
substantially slower than ECM-EH and ECM-DW, support-
ing two orders of magnitude lower update and query rates
(cf. Table 3).

Focusing on the two structures with deterministic sliding
windows, we see that ECM-EH sketches are substantially

more compact, requiring around one-third of the space of
ECM-DW for the same ε value. Concerning computational
performance, both structures can support comparable update
and query execution rates (ECM-DW is slightly faster than
ECM-EH, mainly due to its O(d)worst-case complexity per
update, compared to O(d log N ) for ECM-EH). The results
are consistent for both data sets.

Summarizing, these first results demonstrate the superior-
ity of ECM-EH and ECM-DW compared to ECM-RW, both
in terms of compactness and computational performance.
ECM-EH and ECM-DW have comparable computational
performance, whereas in terms of compactness, ECM-EH
substantially outperforms ECM-DW.

7.3 Distributed setup

The second series of experiments was designed to evaluate
the suitability of ECM-sketches for distributed setups and
precisely: (a) for setups requiring one-timemerging of ECM-
sketches, possibly even in a hierarchical fashion, and (b) for
setups requiring continuous monitoring of functions through
distributed ECM-sketches.
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Fig. 6 Observed error in correlation with the network cost, for varying ε. Subfigure a corresponds to the wc98 data set, and subfigure b corresponds
to the caida data set

Table 4 Observed errors and
error increase rate—inflation is
due to the iterative merging

ε Data set Point queries ECM-EH Self-join ECM-EH ECM-RW

Centr.:Distr. Inc.rate Centr.:Distr. Inc.rate Centr.:Distr.

0.1 wc98 0.018:0.020 1.114 0.018:0.019 1.053 0.017:0.017

0.2 wc98 0.034:0.040 1.181 0.034:0.037 1.092 0.031:0.031

0.1 caida 0.020:0.021 1.043 0.020:0.020 1.018 0.018:0.018

0.2 caida 0.038:0.041 1.079 0.037:0.039 1.042 0.034:0.034

7.3.1 One-time merging

These experiments focused on studying the influence of the
network size and ε on the network cost. We have simu-
lated a fixed network of n ∈ [2256] sites, organized in
an architecture resembling a balanced binary tree of height
�log2(n)�. All sites resided at the leaf nodes of the tree and
were assigned the task of summarizing disjoint streams with
ECM-sketches. Some of the sites were also randomly placed
at the internal tree nodes and were responsible for merging
the sketches coming from their children. After completion of
the streams, the sites pushed the resulting ECM-sketches to
the root through the hierarchy, with merging at each interme-
diary node. At the end of this process, the root node of the
hierarchy was holding a single ECM-sketch that represented
the order-preserving merging of the n streams. ECM-DW
sketches are not considered in this set of experiments, since
they do not offer advantages compared to ECM-EH sketches
with respect to compactness or accuracy.

Figure 6a, b plot the average observed error for point and
self-join size queries in correlation to the network require-
ments for the whole merging process to be completed. The
results correspond to a fixed network of 16 sites, with
ε ∈ [0.05, 0.3] and δ = 0.15 (note that the simulation
with ECM-RW sketches did not complete for ε = 0.05 val-
ues, due to insufficient memory resources at the machine

simulating the sites). To illustrate the accuracy loss due to
this merging, Table 4 presents a comparison between the
observed error of the centralized and the distributed ECM-
sketches.

As expected, the process of iterative mergings causes an
inflation of the observed error for ECM-EH sketches. This
inflation, however, is very small, and substantially lower than
the theoretical worst-case bound derived by the analysis. For
example, for the wc98 data set with ε = 0.1, the average
observed error after all mergings is 0.020, whereas the cen-
tralized ECM-EH has an observed error of 0.018, i.e., the
error inflation caused by the iterative ECM-EH mergings
is less than 1/8 of the experimentally derived error of the
centralized sketch. Concerning ECM-RW sketches, there is
no systemic variation of the error, since randomized waves
enable lossless merging at the expense of a larger memory
footprint. However, the network required for performing this
merging using ECM-RW is at least three orders of magni-
tude higher. This requirement is prohibitive for a large set of
application scenarios, such as sensor and mobile networks,
where high network usage causes severe battery drainage.

To explore the influence of the network size on the esti-
mation accuracy and network cost, we have also simulated
networks of n sites, with n = {2, 4, . . . , 256}. (For the case
of ECM-RW, the number of sites reached only up to 64 due
to memory constraints at the machine executing the simula-
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Fig. 7 Observed error and network cost for different network sizes. Subfigures a and b present the results for the wc98 data set, and subfigures c
and d for the caida data set

tion.) The sites were again placed as leaf nodes on a balanced
binary tree, and updates were assigned to the sites randomly,
with equal probability. Figure 7a, c plot the average observed
error in correlation with the network size, for ε = δ = 0.15.
As expected, for ECM-EH sketches, increasing the number
of sites leads to a small increase on the observed estimation
error, whereas the accuracy of ECM-RW sketches remains
unaffected. However, similar to the previous experiment, the
network cost for merging the sketches based on randomized
waves (Fig. 7b, d) is three orders of magnitude higher com-
pared to ECM-EH. This limits the applicability of ECM-RW
to cases where fast, fixed network is available and makes the
ability to merge deterministic sliding windows, e.g., based
on exponential histograms, a very important contribution of
this work.

Summarizing, this set of experiments showed that ECM-
sketches based on exponential histograms can be merged
with very small information loss. Compared to the loss-
less merging of ECM-sketches based on randomized waves,
ECM-EH are substantially more compact and are therefore
applicable for a wider range of application scenarios, where
network cost and/or memory is of the essence, such as P2P
networks, sensor networks, and network routers.

7.3.2 Continuous monitoring

The final set of experiments investigates the suitability of
ECM-sketches in combination with the geometric method
for distributed continuous monitoring, as discussed in Sect. 6
(denoted as Aecm hereafter). Particularly, we consider mon-
itoring of the self-join size of a high-dimensional vector v
that corresponds to sliding window statistics (i.e., item fre-
quencies) aggregated over n data streams S1, S2, . . . , Sn .
Each stream Si is monitored by site pi , and all sites are
enabled direct communication with a coordinator. Estimat-
ing the self-join size of such high-dimensional vectors is
frequently useful, e.g., for query optimization in distributed
databases, data partitioning, and computing a variety of use-
ful indexes for streams (see [1] for a discussion). We only
consider ECM-sketches constructed with exponential his-
tograms, since these offer the best trade-off betweenmemory
and accuracy. As a baseline, we use the centralized algorithm
(denoted as Acen), which relies on a central coordinator for
collecting all updates from the remote sites and maintain-
ing the accurate self-join size. Notice that Acen has several
practical considerations besides the high network cost, i.e.,
the coordinator still needs to efficiently maintain the high-
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Fig. 8 Subfigures a and b present the network cost and observed error for different network sizes, whereas subfigure c presents the effect of the
value of θ on the network cost

dimensional statistics over a sliding window, which is chal-
lenging to achievewithoutECM-sketches.Yet,we ignore this
issue for our experiments. Both algorithms were allowed a
warm-up phase (until the sliding window filled up for first
time) before starting to measure cost and quality.

Figure 8a presents the transfer volume required by Aecm

for different network sizes as a ratio of the corresponding
transfer volume of Acen. The results correspond to a config-
uration of Aecm with δ = ε = θ = 0.15. Clearly, Aecm

is substantially more efficient than the baseline, enabling
network savings of up to two orders of magnitude for net-
works up to 32 sites. As expected, increasing the network
size leads to an increase of the communication cost of Aecm

(the cost of Acen does not change). This is a known char-
acteristic of the geometric method. Nevertheless, even for
the network of 256 sites, Aecm still requires less than half
the cost of Acen. We also see that caida is slightly more dif-
ficult to monitor compared to wc98. This is because wc98
is more stable than caida, i.e., as soon as the sliding win-
dow is filled, self-join size changes very slowly. Caida data
set, on the other hand, is by nature more dynamic, caus-
ing more frequent threshold violations, and a higher network
cost.

The average observed error for the same runs is shown in
Fig. 8b. Even though error slightly increases with network
size, the increase is negligible, and the error always remains
smaller than the value of parameter θ , i.e., the error tolerance
of the geometric method. All results are consistent for both
data sets.

We have also tested the sensitivity of Aecm on parameter
θ . The results in Fig. 8c correspond to a fixed network of
16 sites, with δ and ε set to 0.15. As expected, increasing
θ drastically reduces the network cost of the algorithm: for
a higher θ , Aecm causes less threshold crossings, requiring
less synchronizations of both phases. As an indication, for
the caida data set and for θ = 0.05, Aecm required 7133
first-phase synchronizations (i.e., synchronizations on du |dl
only) and 2694 second-phase synchronizations (on the full

sketches). For θ = 0.3, these synchronizations were reduced
to 5637 for the first phase, and only 457 for the second phase.

Summarizing, the experiments have shown that the com-
bination of ECM-sketches with the geometric method can be
used for efficiently monitoring of nonlinear functions, such
as the self-join size, in distributed settings. The network sav-
ings are substantial compared to the baseline algorithm that
forwards all updates to a central coordinator, and typically
exceed two orders of magnitude for small networks, whereas
the observed error is negligible.

8 Conclusions

In this work, we considered the problem of answering com-
plex queries over distributed and high-dimensional data
streams, in the sliding window model. Our proposal, ECM-
sketches, is a compact structure combining the state-of-the-
art sketching technique for data-stream summarization with
deterministic sliding window synopses. The structure pro-
vides probabilistic accuracy guarantees for the quality of the
estimation, for point queries and self-join size queries, and
can enable a broad range of problems, such as finding heavy
hitters, computing quantiles, and answering range queries
over sliding windows.

Focusing on distributed applications, we also showed how
a set of ECM-sketches, each one representing an individual
stream, can be merged to generate a single ECM-sketch that
summarizes the streamproduced by the order-sensitivemerg-
ing of all individual streams. Interestingly, this is the first
result in the literature enabling such merging for determin-
istic sliding window synopses (or sketches based on these),
and it is of high importance since deterministic synopses
are generally a factor of O(log(1/δ)/ε) more compact than
the best-known randomized synopsis for delivering an ε-
accurate approximation. In the same context, we demon-
strated how ECM-sketches can be exploited within the geo-
metricmethod for answering continuous queries defined over
sliding windows.
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ECM-sketches were thoroughly evaluated with a set of
extensive experiments, using two massive real-world data
sets, and considering both centralized and distributed setups.
The results verified the high performance of the structure.
Compared to structures based on randomized slidingwindow
synopses, ECM-sketches improve the memory and compu-
tational complexity by at least one order of magnitude. The
same magnitude of improvement is observed with respect to
the network requirements.

Our future work will focus on further optimizations for
continuous distributed queries. Two interesting open prob-
lems include considering other query types and concurrently
executing multiple continuous queries. In Sect. 6,we have
already discussed initial optimizations for concurrent execu-
tion of many queries. We expect that both computation and
network complexity can be reduced further by coordinating
the synchronization process between the queries and taking
the accuracy requirements of each query into account during
the synchronization process.
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9 Appendix

9.1 Proofs for centralized queries

Lemmas 3 and 4 provide error guarantees for point and inner
product queries on ECM-sketches, for any set of εcm , εsw,
δcm and δsw. With Theorems 2 and 3 we derive the optimal
values of these parameters (the ones that minimize the total
cost), given only the acceptable total ε and δ.

Lemma 3 With probability at least 1 − δcm − δsw,

| f̂ (x, r) − f (x, r)|≤
{

(1+εsw)εcm ||ar ||1 if εsw ≤ εcm
1−εcm

,

εsw||ar ||1 if εsw ≥ εcm
1−εcm

.

Proof We start with an overview of the proof. The ECM-
sketch estimation is susceptible to two types of errors. The
first is due to the hash collisions, i.e., two different itemsmay
hash to the same ECM-sketch cell. This error is relative to
the L1 norm. The second is due to the sliding window coun-
ters, and is relative to the counter value, i.e., the number of
items hashed to the particular counter. For the lemma, we
derive a single error relative to the L1 norm by considering
worst-case bounds (i.e., maximum possible values) for the
combination of the two errors. We first bound the number of
hash collisions that occur at counter ( j, h j (x)) for any row
j ≤ d within the query range r , assuming that the sliding

window algorithm offers perfect accuracy. The proof stems
from the accuracy proof for Count-Min sketches [11], dif-
ferentiating on the estimation step of the number of hash
collisions (by offering an error relative to ||ar ||1 − f (x, r),
instead of ||ar ||1). Then, we consider the error caused by the
sliding window estimation.

Error due to hash collisions. Temporarily assume that
the sliding window structure enables perfect accuracy (the
assumption will be lifted later). With Ix, j,y we denote the
indicator variables which are 1 if x �= y ∧ h j (x) = h j (y),
and 0 otherwise. We further define the variables Xx, j,r to
be Xx, j,r = ∑

y∈D Ix, j,y f (y, r). By our assumption that
the sliding window estimation is accurate, E( j, h j (x), r) =
f (x, r)+Xx, j,r . Since theECM-sketchwill return f̂ (x, r) =
min j E( j, h j (x), r) = f (x, r)+min j Xx, j,r as a frequency
estimate, the estimation error will be f̂ (x, r) − f (x, r) =
min j Xx, j,r , which can be bounded as follows.

By pairwise independence of the hash functions: E(Ix, j,y)
= Pr [h j (x) = h j (y)] ≤ 1/w = ε

e . Therefore, the expected
value of Xx, j,r is E(Xx, j,r ) = E

(∑n
k=1 Ix, j,y f (k, r)

) =∑
∀k∈D\{x} f (k, r)E(Ix, j,y) ≤ (||ar ||1− f (x, r)) ε

e . Further-
more, by Markov inequality:

Pr [min
j

Xx, j,r > ε(||ar ||1 − f (x, r))] =
Pr [∀ j : Xx, j,r > ε(||ar ||1 − f (x, r))] ≤
Pr [∀ j : Xx, j,r > eE(Xx, j,r )] < e−d ≤ δcm (1)

Error due to the sliding window estimation. In prac-
tice, the sliding window algorithm may introduce errors to
the computation of E( j, h j (x), r). Let R( j, h j (x), r) denote
the accurate number of bits contained within the query
range at counter ( j, h j (x)). Then, an (ε, δ)-approximate slid-
ing window algorithm guarantees that Pr [E( j, h j (x), r) −
R( j, h j (x), r) ≤ εswR( j, h j (x), r)] ≥ 1 − δsw.

Consider row j = min arg j E( j, h j (x), r), i.e., the row

with E( j, h j (x), r) = f̂ (x, r) . For the case that f̂ (x, r) >

R( j, h j (x), r), we have:

Pr [ f̂ (x, r) ≤ (1 + εsw)R( j, h j (x), r)] ≥ 1 − δsw ⇒
Pr [ f̂ (x, r) ≤ (1 + εsw)( f (x, r) + Xx, j,r )]
≥ 1 − δsw ⇒
Pr [ f̂ (x, r) − f (x, r) ≤ Xx, j,r + εsw( f (x, r) + Xx, j,r )

≥ 1 − δsw

Furthermore, Xx, j,r can be bounded by Inequality 1, giv-
ing: Pr [ f̂ (x, r) − f (x, r) ≤ εcm(||ar ||1 − f (x, r)) +
εsw( f (x, r) + εcm(||ar ||1 − f (x, r)))] ≥ 1 − δsw − δcm .
For convenience we define c = f (x, r)/||ar ||1. Then,
Pr [ f̂ (x, r)− f (x, r) ≤ ||ar ||1(εcm(1−c)+εsw(c+εcm(1−
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c)))] = Pr [ f̂ (x, r) − f (x, r) ≤ ||ar ||1(c(εsw − εcm −
εswεcm) + εcm + εswεcm)] ≥ 1 − δsw − δcm .

Variable c takes values between 0 and 1 (inclusive). When
εsw ≤ εcm/(1−εcm), the RHS of the inequality (the error) is
maximized for c = 0. Otherwise, the RHS is maximized for
c = 1. Therefore, with a probability of at least 1−δcm −δsw:

f̂ (x, r) − f (x, r) ≤
{

||ar ||1εcm(1+εsw) if εsw ≤ εcm
1−εcm

,

||ar ||1εsw if εsw ≥ εcm
1−εcm

.

(2)

With a similar analysis, the case of f̂ (x, r) < R( j, h j (x), r)
gives a much tighter constraint:

Pr [ f (x, r) − f̂ (x, r) ≤ εsw f (x, r)] ≥ 1 − δsw (3)

The lemma follows directly by inequalities 2 and 3. �	
Theorem 3

Proof We first consider an ECM-sketch with a determinis-
tic sliding window structure, e.g., an exponential histogram.
We want to derive the combination of εcm and εsw that min-
imizes the space complexity of the sketch for a given ε, i.e.,
minimizes C(ε) = O(

ln(1/δcm )
εcmεsw

). We study the two cases of
Lemma 3 separately:

Case 1 (εsw ≤ εcm
1−εcm

): We first exploit the fact that

ε = (1 + εsw)εcm (4)

to eliminate εsw from the space complexity of the sketch:

C(ε) = O

(
ln(1/δcm)

εswεcm

)

= O

(
ln(1/δcm)
ε−εcm
εcm

εcm

)

= O

(
ln(1/δcm)

ε − εcm

)

The cost is minimized when the denominator is maximized.
For a fixed ε chosen by the user, this happens when εcm
is minimized. The smallest εcm satisfying Eqn. 4 and the
precondition of Case 1 is εcm = ε

1+ε
, resulting to εsw = ε.

Case 2 (εsw ≥ εcm
1−εcm

): By Lemma 3, we see that set-
ting εsw = ε we achieve the required accuracy. In order to
derive εcm , notice that we want to minimize the complexity
C(ε) = O(

ln(1/δcm)
εcmεsw

). This is achieved by maximizing εcm .
The maximum value of εcm satisfying the precondition of
Case 2 is εcm = ε

1+ε
.

Notice that both cases lead to the same combination for
minimizing the cost, i.e., εcm = ε

1+ε
and εsw = ε.

The case of randomized waves is similar. The cost func-
tion becomes O(ln(1/δcm) ln(1/δsw)/(εcmε2sw)), with the
constraint that δ = δcm + δsw. The cost is minimized for
δcm = δsw = δ/2, εcm = ε

1+ε
and εsw = ε. �	

Lemma 4 With probability at least 1 − δcm,

| ̂ar � br − ar � br | ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

||ar ||1||br ||1εcm(1 + εsw)2

if εcm ≥ ε2sw+2εsw
(εsw+1)2

,

||ar ||1||br ||1(ε2sw + 2εsw)

if εcm ≤ ε2sw+2εsw
(εsw+1)2

.

Proof We first examine the case that ̂ar � br > ar � br .
Consider the estimation derived by any single row j of the
ECM-sketch. With Ea(i, j, r) we denote the frequency esti-
mation of the sliding window counter at position (i, j) for
stream a and for query range r .

E(( ̂ar � br ) j − ar � br )=
w∑

i=1

Ea(i, j, r)Eb(i, j, r)− ar � br

≤
w∑

i=1

∑

p∈D,
h j (p)=i

fa(p, r)
∑

q∈D,
h j (q)=i

fb(q, r) ∗ (1+ εsw)2− ar � br

=
w∑

i=1

∑

x∈D,
h j (x)=i

fa(x, r) fb(x, r) ∗ (1 + εsw)2

+
w∑

i=1

∑

p,q∈D,p �=q,
h j (p)=h j (q)=i

fa(p, r) fb(q, r) ∗ (1+εsw)2 − ar � br

=(1 + εsw)2

(
∑

x∈D
fa(x, r) fb(x, r)

+
∑

p,q∈D,p �=q,
h j (p)=h j (q)

fa(p, r) fb(q, r)

⎞

⎟
⎟
⎠ − ar � br

=ar � br
(
ε2sw + 2εsw

)

+
∑

p,q∈D,p �=q,
h j (p)=h j (q)

fa(p, r) fb(q, r)(1 + εsw)2 (5)

Our next step is to bound
∑

p,q∈D,p �=q,
h j (p)=h j (q)

fa(p, r) fb(q, r).

For convenience we use Xi, j,r as a shortcut for
∑

p,q∈D,p �=q,
h j (p)=h j (q)

fa(p, r) fb(q, r). Then,

E(Xi, j,r ) =
∑

p,q∈D,p �=q

Pr [h j (p) = h j (q)] fa(p, r) fb(q, r)

= 1

w

∑

p,q∈D,p �=q

fa(p, r) fb(q, r)

≤εcm

e
(

∑

p,q∈D
fa(p, r) fb(q, r) − ar � br )

123



366 O. Papapetrou et al.

Xi, j,r can be bounded by Markov inequality:

Pr [min
j

Xi, j,r > εcm(
∑

p,q∈D
fa(p, r) fb(q, r) − ar � br )] =

Pr [∀ j : Xi, j,r > eE(Xi, j,r )] < e−d ≤ δcm (6)

Let c = ar�br||ar ||1||br ||1 . Combining Eq. (5) and Inequality 6:

̂ar � br − ar � br

≤ ar � br (ε
2
sw + 2εsw)

+
∑

p,q∈D,p �=q,
h j (p)=h j (q)

fa(p, r) fb(q, r)(1 + εsw)2

< ar � br (ε
2
sw + 2εsw) + (1 + εsw)2 min

j
Xi, j,r

≤ ar � br (ε
2
sw + 2εsw)

+(1 + εsw)2εcm

⎛

⎝
∑

p,q∈D
fa(p, r) fb(q, r) − ar � br

⎞

⎠

= ar � br (ε
2
sw + 2εsw)

+(1 + εsw)2εcm(||ar ||1||br ||1 − ar � br )

= c||ar ||1||br ||1(ε2sw + 2εsw)

+εcm(1 + εsw)2||ar ||1||br ||1(1 − c)

= ||ar ||1||br ||1
(
c(ε2sw + 2εsw)

+ εcm(1 + εsw)2(1 − c)
)

with probability at least 1 − δcm .
The values of c that maximize the error (the RHS) are c =

1 when εcm <
ε2sw+2εsw
(εsw+1)2

, and c = 0 when εcm ≥ ε2sw+2εsw
(εsw+1)2

.

The corresponding maximum errors are ||ar ||1||br ||1(ε2sw +
2εsw) (for c = 1), and ||ar ||1||br ||1εcm(1+εsw)2 (for c = 0).

With a similar analysis, the case of ̂ar � br < ar � br
gives a tighter constraint: Pr [ar � br − ̂ar � br > (ε2sw +
2εsw)ar � br ] < δsw. The lemma follows directly. �	
Theorem 2

Proof Similar to the analysis for point queries, we need to
consider the two cases of Lemma 4 separately.

Case 1 (εcm ≥ ε2sw+2εsw
(εsw+1)2

): By Lemma 4, we set εcm(1 +
εsw)2 = ε in order to achieve the required accuracy. The

space complexity then becomes C(ε) = 1
εswεcm

= (1+εsw)2

εεsw
.

Since (1+εsw)2

εεsw
is strictly decreasing for εsw in the interval

[0, 1], we can minimize the space complexity by setting the
maximum value for εsw satisfying the case’s precondition

εcm ≥ ε2sw+2εsw
(εsw+1)2

, i.e., εsw = √
ε + 1− 1. Then, εcm becomes

equal to ε
ε+1 .

Case 2 (εcm ≤ ε2sw+2εsw
(εsw+1)2

): ByLemma4, in order to achieve

the required accuracy we need to set ε2sw + 2ε2sw = ε ⇒
εsw = √

ε + 1 − 1. Accordingly, εcm = ε
ε+1 .

Notice that, similar to the point queries analysis, the two
cases lead to the same configuration for minimizing the cost,
i.e., εcm = ε

ε+1 and εsw = √
ε + 1 − 1. �	

9.2 Proofs for distributed setups

Theorem 4 derives worst-case error bounds for the merging
of exponential histograms. Lemma 2 and Theorem 5 prove
the correctness of the algorithm for continuous self-join size
queries.
Theorem 4

Proof Weargue that EH⊕ approximates the exponential his-
togram of the logical stream, with a maximum relative error
of ε + ε′ + εε′, where ε is the error parameter of the initial
exponential histograms. Consider a query for the last q time
units. With sq = t −q we denote the query starting time. Let
Q denote the index of the bucket of EH⊕ which contains sq
in its range, i.e., s(EHQ

⊕ ) ≤ sq ≤ e(EHQ
⊕ ). With i and î

we denote the accurate and estimated number of true bits in
the query range. According to the estimation algorithm, the
estimation for the number of true bits in the stream will be
î = 1/2|EHQ

⊕ | + ∑
1≤Y<Q |EHY⊕|. This estimation may be

influenced by two types of approximation errors: (a) a possi-
ble approximation error of the overlap of bucket EHQ

⊕ with
the query range, denoted as err1, and, (b) a possible approx-
imation error of i , denoted as err2, because of the inclusion
of data that arrived before sq in buckets Y ≤ Q, or data that
arrived after sq in buckets Y > Q. Let us now look into these
two errors in more details.

With respect to err2, recall that the contents of individ-
ual buckets are inserted to EH⊕ using the starting time
and the ending time of the buckets. Therefore, it may
happen that some bits arrive before sq but are inserted
to EH⊕ with a timestamp after sq , creating ‘false posi-
tives’. The opposite is also possible. These bits are called
out-of-order bits with respect to sq . Clearly, out-of-order
bits may lead to underestimation or overestimation of the
query answer. According to Lemma 5, the number of out-
of-order bits originating from each exponential histogram
EHx is at most εix , with ix denoting the accurate num-
ber of true bits that were inserted in EHx at or after sq .
The number of out-of-order bits from all streams is then
bounded as follows: err2 ≤ ∑n

x=1 εix = ε
∑n

x=1 ix =
εi .

Underestimation or overestimation of the overlap may
also happen because of the halving of the size of bucket
EHQ

⊕ during query time (err1). As shown in [16], this
process may introduce a maximum relative error of εr ,
where r is the sum of the sizes of all buckets in EH⊕
with an index lower than Q (i.e., with a starting time at
least equal to sq ). Recall that r may also include bits that
have arrived before sq (the out-of-order bits), which is
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however upper bounded by εi , as discussed before. There-
fore, the maximum underestimation or overestimation error
is err1 = ε′r ≤ ε′(i + εi) = ε′i + εε′i , with i =∑n

x=1 ix .
Summing err1 and err2, we get a maximum relative error

of (ε + ε′ + εε′), which completes the proof. �	

Lemma 5 Consider an individual exponential histogram
EHx of stream X, configured with error parameter ε. The
out-of-order bits with respect to the query starting time sq
that EHx can generate are at most εix , with ix denoting the
number of true bits arriving at or after sq in X.

Proof Due to the non-decreasing nature of bucket times-
tamps, there can be only one bucket with a start time less
than sq and end time greater than or equal to sq . Let this

bucket be EH j
x . All other buckets have both starting and

ending time at the same side of sq , and therefore their con-
tents are always inserted with a timestamp at the correct side
of sq and do not create out-of-order bits.

Since the ending time of EH j
x is at or after sq , its most

recent true bit has arrived at or after sq , and should be included
in the query range. Therefore, the number of true bits arriving
at or after sq in stream X is ix ≥ 1+ ∑ j−1

b=1 |EHb
x |. Further-

more, since half of the bits of EH j
x are inserted using the

ending time and half using the starting time of the bucket,
the maximum number of out-of-order bits is |EH j

x |/2. By
construction (invariant 1):

∣
∣
∣EH j

x

∣
∣
∣

2

⎛

⎝1 +
j−1∑

b=1

∣
∣
∣EHb

x

∣
∣
∣

⎞

⎠

≤ ε ⇒
∣
∣
∣EH j

x

∣
∣
∣

2
≤ ε

⎛

⎝1 +
j−1∑

b=1

∣
∣
∣EHb

x

∣
∣
∣

⎞

⎠ ≤ εix

�	

Lemma 2

Proof The proof relies on the following properties of the
min:

Monotonicity: If x[i] ≤ y[i] for all i , then mini {x[i]} ≤
mini {y[i]}.

Distributivity: For any monotonically increasing function
f , mini { f (x[i])} = f (mini {x[i]}).

We want to derive sufficient conditions such that (1 −
θ) f (v(t)) ≤ f (v(t0)) ≤ (1 + θ) f (v(t)), with f (v(t)) =
mindrow=1{||v[row]||2}. By the distributivity property of the
min for monotonically increasing functions (i.e., the square
root), it is sufficient to verify:
√

f (v(t0))
1 + θ

≤ d
min
row=1

{||v(t)[row]||} ≤
√

f (v(t0))
1 − θ

.

By the triangle inequality:

||v(t)[row]−v(t0)[row]|| ≤
n∑

j=1

||v j (t)[row]−v j (t0)[row]||

=
n∑

j=1

d j [row] = nd[row] ⇒

||v(t0)[row]|| − nd[row] ≤ ||v(t)[row]||
≤ ||v(t0)[row]|| + nd[row] (7)

Notice that ||v(t0)[row]|| is constant per synchronization.
Therefore, Inequality 7 bounds ||v(t)[row]|| by a linear rela-
tion of d, i.e., it allows us to form threshold-crossing queries
in the Rd space. By monotonicity of the min, it suffices to
monitor the following conditions:

d
min
i=1

{||v(t0)[i]|| + nd[i]} ≤
√

f (v(t0))
1 − θ

and

d
min
i=1

{||v(t0)[i]|| − nd[i]} ≥
√

f (v(t0))
1 + θ

.

The lemma follows directly, by dividing both sides of the
conditions by n. �	
Theorem 5

Proof Sketch: By construction, all counters of vui (t) are at
least equal to the corresponding counters of vi (t). Therefore,
the self-join size estimate for vui (t) will be at least equal
to the self-join size estimate for vi (t) at all times. Using
Lemma 2 to monitor v but only considering the shifts which
increase the counters, we get that if mindrow=1{ ||v(t0)[row]||

n +
du[row]} ≤ 1

n

√
f (v(t0))
1−θ

, then f (v(t0)) ≤ (1 + θ) f (v(t)).
The lower bound is shown analogously. �	
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