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Abstract The wavelet decomposition is a proven tool for
constructing concise synopses of large data sets that can be
used to obtain fast approximate answers. Existing research
studies focus on selecting an optimal set of wavelet coeffi-
cients to store so as to minimize some error metric, without
however seeking to reduce the size of the wavelet coeffi-
cients themselves. In many real data sets the existence of
large spikes in the data values results in many large coef-
ficient values lying on paths of a conceptual tree structure
known as the error tree. To exploit this fact, we introduce in
this paper a novel compression scheme for wavelet synop-
ses, termed hierarchically compressed wavelet synopses, that
fully exploits hierarchical relationships among coefficients
in order to reduce their storage. Our proposed compression
scheme allows for a larger number of coefficients to be stored
for a given space constraint thus resulting in increased accu-
racy of the produced synopsis. We propose optimal, approx-
imate and greedy algorithms for constructing hierarchically
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compressed wavelet synopses that minimize the sum squared
error while not exceeding a given space budget. Extensive
experimental results on both synthetic and real-world data
sets validate our novel compression scheme and demonstrate
the effectiveness of our algorithms against existing synopsis
construction algorithms.
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1 Introduction

Approximate query processing over compact precomputed
data synopses has attracted a lot of attention recently as an
effective means of dealing with massive data sets in inter-
active decision support and data exploration environments.
In such settings, users typically pose complex queries, which,
require considerable amounts of time to produce exact
answers, over large parts of the stored data. In exploratory
queries of such nature, users can often tolerate small impre-
cisions in query results, as long as these results are quickly
generated and fairly accurate.

The wavelet decomposition is a mathematical tool for the
hierarchical decomposition of functions with a long history
of successful applications in signal and image processing [17,
24,26]. Several studies have demonstrated the applicability
of wavelets as a data reduction tool for a variety of database
problems. Briefly, the key idea is to first apply the decom-
position process over an input data set, thus producing a
set of wavelet coefficients. We then retain only a subset,
composing the wavelet synopsis, of the coefficients by per-
forming a thresholding procedure. This thresholding process
depends on the desired minimization metric. The bulk of past
research [26,28,29], both in databases as well as in image and
signal processing applications, has focused on the minimiza-
tion of the sum squared error of the produced approximation.
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Recent approaches have targeted the minimization of
additional error metrics, such as the maximum absolute/
relative error [8,9], or the weighted sum squared relative
error [12,23,27] of the approximation.

Independently of the targeted minimization metric, the
selected coefficients are stored as pairs 〈Coords, V alue〉,
where the first element (Coords) is the coordinates/index of
the coefficient and determines the data that this coefficient
helps reconstruct (also termed as the support region of the
coefficient), while the second element (V alue) denotes the
magnitude/value of the coefficient. Depending on the actual
storage representation for these elements (i.e., integer values
for the coordinates and floating point numbers for the coef-
ficient value) and the data dimensionality, the fraction of the
available storage for the synopsis that is used for storing coef-
ficient coordinates can be significant. If sizeof(Coord) and
sizeof(V alue) denote the storage requirements for the coeffi-
cient coordinates1 and the coefficient value, correspondingly,
then the storage of the coefficient coordinates will occupy a
fraction sizeof(Coord)

sizeof(Coord)+sizeof(V alue) of the overall synopsis size
(see Sect. 2).

While reducing the storage overhead of the wavelet coor-
dinates would allow for a larger number of coefficient values
to be stored, and would thus result in increased accuracy of
the synopsis, to our knowledge none of the above techniques
tries to exploit this fact and incorporate it in the coefficient
thresholding process. A past suggestion [1] has proposed
constructing a linear approximation method with respect to
the wavelet orthonormal basis [19] by selecting for storage
only the top coefficient values (i.e., the ones with the largest
support regions). Using such an approach, no coordinates
need to be stored. However, such an approach does not give
any guarantee on whether the selected coefficients can sig-
nificantly reduce the desired error metric. Finally, techniques
that target, possibly multi-dimensional, data sets with mul-
tiple measures [6,15] exploit storage dependencies among
only coefficient values that correspond to the same coordi-
nates, but for different measures.

To address the drawbacks of existing techniques, in this
paper we propose a novel, flexible, compression scheme,
termed hierarchically compressed wavelet synopses (denoted
as HCWS), for storing wavelet coefficients. In a nutshell,
instead of individually storing wavelet coefficients, our com-
pression scheme allows for storing sets of coefficient values.
These stored sets are not arbitrary, but are rather composed
by coefficients that lie on a path of a conceptual tree-like
structure, known as the error tree, that captures the hierar-

1 While for a D-dimensional data set, the D coefficient coordinates
could be stored uncompressed, alternative encodings can be utilized to
limit their size. For example, utilizing a location function for arrays, the
D-dimensional coefficient coordinates can be encoded with space that
depends on the product of the dimension cardinalities.

chical relationship amongst wavelet coefficients. While its
formal description is deferred for Sect. 2, a sample error tree
is depicted in Fig. 1. Each path of coefficient values stored as
a hierarchically compressed wavelet coefficient (HCC) can
be uniquely identified by (i) the coordinates of the path’s low-
est, in the error-tree, stored coefficient LC ; and (ii) a bitmap
that reveals how many ancestors of LC are also stored in
the same HCC. Utilizing such an index-sharing setting lever-
ages better space allocation, since the coordinates of a single
coefficient need to be stored in each path, which can result
to increased accuracy of the obtained approximation.

A question that naturally arises is whether “important”,
for the desired error metric, coefficient values can frequently
occur within such a path and would, thus, be beneficial to
store using a HCC. As we explain in Sect. 2, due to the
nature of the wavelet decomposition process, this behavior is
expected to be frequently observed, and only, in data sets with
frequent spikes and discontinuities in neighboring domain
regions. These discontinuities are often due to large spikes
in the collected data values, such as the ones observed in
network monitoring applications where the number of net-
work packets may often exhibit a bursting behavior. A simi-
lar behavior also occurs in sparse regions over large domain
sizes, where either few non-zero data values may occur in
an otherwise empty region, or where dense regions neighbor
empty regions of the data.

One could argue that wavelets are ill-suited for such data
sets, and that other competitive approximation techniques,
such as compressed histograms [25], might be in some cases
more appropriate. Our proposed techniques seek to improve
the accuracy of the obtained data synopsis in such data sets,
without requiring any a-priori knowledge on the overall data
distribution, or on the existence, and frequency, of spikes and
discontinuities in the collected data. When such spikes and
discontinuities occur frequently, our techniques manage to
improve the storage utilization of wavelet coefficients and,
thus, the quality of the obtained approximation. Moreover,
our techniques can be adapted to multi-dimensional data sets,
where prior studies [2,29] have demonstrated that the wavelet
transform can lead to more accurate data representations than
competitive techniques, such as Histograms.

To briefly illustrate the benefits of our approach, consider
the sample error tree depicted in Fig. 1. In this figure, the
values of 16 coefficients are depicted, using the symbol ci to
denote the coefficient at coordinate i . Without formally intro-
ducing the internals of the conventional thresholding process,
assuming a space budget of 41 bytes, and using 8 bytes for
storing the〈Coord, V alue〉 pairs, the optimal conventional
wavelet synopsis would simply store the coefficients c0, c1,
c7, c8 and c15 shown in gray. On the other hand, our hierar-
chically compressed wavelet synopsis, given the same space
budget, would store the two paths shown in Fig. 1 —that is, it
would manage to also store coefficients c2, c3, c5 and c11 in
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comparison to the coefficient c8 selected by the conventional
wavelet synopsis. The effect of including these coefficients is
the reduction of the sum squared error (SSE) of the approx-
imation by 60% (SSE of 294 instead of 752).

While the notion of HCWS can be used as a storage tech-
nique by optimization algorithms and incorporated in their
operation for any of the proposed error metrics, in this paper
we simply focus on minimizing the commonly used sum
squared (absolute or relative) error metrics. The contribu-
tions of our work can be summarized as:

1. We introduce the concept of HCWS, a novel compres-
sion scheme that fully exploits the hierarchical relation-
ships among wavelet coefficients, and that may lead to
significant accuracy gains.

2. We propose a novel, optimal dynamic programming algo-
rithm, HCDynL2, for selecting the HCWS that minimizes
the sum of squared errors under a given synopsis size
budget. We then propose a streaming variant of the opti-
mal algorithm that can operate in one pass over the data
using limited memory.

3. We present an approximation algorithm, HCApprL2, with
tunable guarantees, for the benefit of the obtained solu-
tion, for the same optimization problem. Further, we
present a streaming variant of the algorithm.

4. Due to the large running time and space requirements of
our DP solution, we introduce a fast greedy, HCGreedyL2,
algorithm with space and time requirements on par with
conventional synopsis techniques. We then also present a
streaming variant, the HCGreedyL2-Str algorithm, of the
greedy algorithm.

5. We sketch useful extensions for multi-dimensional data
sets and running time improvements for large domain
sizes.

6. We present extensive experimental results of our algo-
rithms on both synthetic and real-life data sets. Our exper-
imental study demonstrates that (i) the use of HCWS
can lead to wavelet synopses with significantly reduced
errors; (ii) HCApprL2 constructs HCWS with tunable
accuracy guarantees; (iii) although HCGreedyL2 cannot
provide guarantees in the quality of the obtained syn-
opsis, it always provides near-optimal solutions, while
exhibiting very fast running times; and (iv) the
HCGreedyL2-Str algorithm consistently provides results
comparable to those of the HCGreedyL2 algorithm.

Outline. The remainder of this paper is organized as fol-
lows. Section 2 builds the necessary background on wavelet
decomposition, introduces the concept of hierarchically com-
pressed wavelet synopses and formally presents our
optimization problem. In Sect. 3, we formulate a dynamic
programming recurrence and use it to optimally solve this
optimization problem. Next, in Sect. 4 we present an

approximation algorithm with tunable guarantees, whereas,
in Sect. 5 we present a faster greedy algorithm. In Sect. 6
we provide a streaming version of our greedy algorithm. In
Sect. 7 we sketch some useful extensions of our algorithms
and in Sect. 8 we describe the results of our empirical study.
Section 9 presents related work and, finally, Sect. 10 provides
some concluding remarks and future directions.

2 Preliminaries

In this section, we provide a quick introduction to the sim-
plest of wavelet decompositions, the Haar wavelet decompo-
sition. We also discuss the existing strategies for coefficient
thresholding and demonstrate some of their important short-
comings. Finally, we introduce the notion of hierarchically
compressed wavelet coefficients and synopses, which form
the basis for our proposed approach and data-reduction algo-
rithms.

2.1 One-dimensional Haar wavelets

Wavelets are a useful mathematical tool for hierarchically
decomposing functions in ways that are both efficient and
theoretically sound. Broadly speaking, the wavelet decompo-
sition of a function consists of a coarse overall approximation
along with detail coefficients that influence the function at var-
ious scales [26]. Suppose we are given the one-dimensional
data vector A containing the N = 16 data values A = [17,

41, 32, 30, 36, 36, 35, 57, 0, 0, 0, 0, 0, 0, 0, 36]. The
Haar wavelet transform of A can be computed as follows.
We first average the values together pairwise to get a new
“lower-resolution” representation of the data with the fol-
lowing average values [29, 31, 36, 46, 0, 0, 0, 18]. In other
words, the average of the first two values (that is, 17 and
41) is 29, that of the next two values (that is, 32 and 30) is
31, and so on. Obviously, some information has been lost
in this averaging process. To be able to restore the original
values of the data array, we store some detail coefficients
that capture the missing information. In Haar wavelets, these
detail coefficients are simply the differences of the (second
of the) averaged values from the computed pairwise average.
Thus, in our simple example, for the first pair of averaged
values, the detail coefficient is −12 since 29 − 41 = −12,
for the second we again need to store 1 since 31 − 30 = 1.
Recursively applying the above pairwise averaging and dif-
ferencing process on the lower-resolution array containing
the averages, we get the following full decomposition: The
wavelet transform (also known as the wavelet decomposi-
tion) of A consists of the single coefficient representing the
overall average of the data values, followed by the detail
coefficients in the order of increasing resolution. Thus, the
one-dimensional Haar wavelet transform of A is given by
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WA = [20, 15.5, −5.5, −4.5, −1, −5, 0, −9, −12, 1, 0,

−11, 0, 0, 0, −18]. Each entry in WA is called a wavelet coef-
ficient. The main advantage of using WA instead of the origi-
nal data vector A is that for vectors containing similar values
most of the detail coefficients tend to have very small values.
Thus, eliminating such small coefficients from the wavelet
transform (i.e., treating them as zeros) introduces only small
errors when reconstructing the original data, resulting in a
very effective form of lossy data compression [26].

Resolution Averages Detail coefficients

4
[17, 41, 32, 30, 36, 36, 35, 57,

0, 0, 0, 0, 0, 0, 0, 36] —

3 [29, 31, 36, 46, 0, 0, 0, 18] [−12, 1, 0, −11, 0, 0, 0, −18]

2 [30, 41, 0, 9] [−1, −5, 0,−9]
1 [35.5, 4.5] [−5.5, −4.5]
0 [20] [15.5]

The Haar coefficient error tree. A helpful tool for exploring
and understanding the key properties of the Haar wavelet
decomposition is the error tree structure [21]. The error tree
is a hierarchical structure built based on the wavelet transform
process (even though it is primarily used as a conceptual tool,
an error tree can be easily constructed in linear O(N ) time).
Figure 1 depicts the error tree for our example data vector
A. Each internal node ci (i = 0, . . . , 15) is associated with
a wavelet coefficient value, and each leaf di (i = 0, . . . , 15)
is associated with a value in the original data array; in both
cases, the index/coordinate i denotes the positions in the data
array or error tree. For example, c0 corresponds to the overall
average of A. Note that average coefficients are shown with
square nodes (data values can be considered as averages at
level log N ), whereas details are shown with circular nodes.
The resolution levels l for the coefficients (corresponding to
levels in the tree) are also depicted. (We use the terms “node”
and “coefficient” interchangeably in what follows.)

Table 1 summarizes some of the key notational conven-
tions used in this paper; additional notation is introduced
when necessary. Detailed symbol definitions are provided at
the appropriate locations in the text. Given a node u in an
error tree T , let path(u) denote the set of all proper ances-
tors of u in T (i.e., the nodes on the path from u to the
root of T , including the root but not u) with non-zero coef-
ficients. A key property of the Haar wavelet decomposition
is that the reconstruction of any data value di depends only
on the values of coefficients on path(di ); more specifically,
we have di = ∑

c j ∈path(di )
δi j · c j , where δi j = +1 if di

is in the left child subtree of c j or j = 0, and δi j = −1
otherwise. Reconstructing any data value involves summing
at most log N + 1 coefficients. For example, in Fig. 1, d5 =
c0 + c1 − c2 + c5 = 20+ 15.5− (−5.5)+ (−5) = 36. Note
that, intuitively, wavelet coefficients carry different weights

Table 1 Notation

Symbol Description (i ∈ {0, . . . , N − 1})
N Number of data-array cells

D Data-array dimensionality

B Space budget for synopsis

A, WA Input data and wavelet transform arrays

di Data value for i th cell of data array

d̂i Reconstructed data value for i th cell

ci , c∗
i Un-normalized/normalized Haar coefficient coor-

dinate i

path(u) Set of non-zero proper ancestors of u in the error
tree

level(ci ) The level of the error tree ci belongs to

HCC A hierarchically compressed wavelet coefficient

bottom(HCC) The bottommost coefficient that belongs to HCC

top(HCC) The topmost coefficient that belongs to HCC

parent(HCC) The parent of the topmost coefficient that belongs
to HCC

with respect to their importance in rebuilding the original data
values. For example, the overall average and its correspond-
ing detail coefficient are obviously more important than any
other coefficient since they affect the reconstruction of all
entries in the data array. In order to weigh the importance of
all wavelet coefficients, we need to appropriately normalize
the final entries of WA. A common normalization scheme [26]
is to multiply each wavelet coefficient ci by

√
2log N−level(ci ),

where level(ci ) denotes the level of resolution at which the
coefficient appears (with 0 corresponding to the “coarsest”
resolution level and log N to the “finest”). Given this normal-
ization procedure, the normalized values of the wavelet coef-
ficients of our example data array A are: [80, 62, −11

√
2,

−9
√

2, −2, −10, 0, −18, −12
√

2,
√

2, 0, −11
√

2, 0, 0, 0,

−18
√

2].

2.2 Conventional wavelet synopses

Given a limited amount of storage for building a wavelet
synopsis of the input data array A, a thresholding procedure
retains a certain number BC � N of the coefficients in WA as
a highly-compressed approximate representation of the orig-
inal data (the remaining coefficients are implicitly set to 0).
The goal of coefficient thresholding is to determine the “best”
subset of BC coefficients to retain, so that some overall error
measure in the approximation is minimized. The method
of choice for the vast majority of studies on wavelet-based
data reduction and approximation [2,21,22] is conventional
coefficient thresholding that greedily retains the BC largest
Haar-wavelet coefficients in absolute normalized value. This
thresholding method provably minimizes the sum squared
error (SSE). Indeed, in a mathematical view point, the process
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Fig. 1 Error-tree structure for
example data vector A
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of computing the wavelet transform and normalizing the
coefficients is actually the orthonormal transformation of the
data vector with respect to the Haar basis. Parseval’s formula
guarantees that choosing the BC largest coefficients is opti-
mal with respect to the SSE. Consider our example array A
and assume that we have a space budget of 41 bytes. In con-
ventional synopses we require to store each coefficient as a
〈i, ci 〉 pair, where i denotes the index/coordinate of the coef-
ficient and ci denotes its value. Thus, our budget translates to
five coefficients, if we further assume that a coordinate and
a coefficient value cost 4 bytes each. Optimizing for the sum
of squared errors, leads to choosing the 5 largest (in absolute
normalized value) coefficients. These retained coefficients
c0, c1, c7, c8 and c15 are shown in gray in Fig. 1. Note that in
D-dimensional data sets the stored coefficients consist of the
D dimension coordinates (which, as mentioned in Sect. 1,
can be stored in less space than explicitly storing them as D
integer values) and of the coefficients value.

As discussed in Sect. 1, the main drawback of conventional
wavelet synopses for minimizing the SSE of the approxima-
tion is that not only is there no effort to reduce the storage
overhead of the selected coefficients but, more importantly,
that this objective is not incorporated in the operation of
the algorithm. The same drawback also occurs in threshold-
ing algorithms that try to minimize other error metrics, such
as the maximum or weighted sum squared absolute/relative
error of the approximation [8,9,12,23,27]. Due to the dif-
ferencing process employed by the wavelet decomposition
between average values of neighboring regions, multiple
large coefficient values may exhibit hierarchical relation-
ships (i.e., belong in the same path) only when spikes over
some regions of the data are large enough2 to significantly
impact the values of coefficients (and, thus, generate coef-
ficients with large values) in multiple (and potentially all)
resolution levels. Data sets which include multiple spikes
with the aforementioned property (i.e., can generate multi-
ple large coefficients in their path), present great opportunity
for exploiting the hierarchical relationships among important

2 Besides its magnitude, the impact of a spike may also depend, in
the case of the Lw

2 error metric discussed in Sect. 7.3, on the weight
specified for each data point.

coefficient values and also provide better opportunities for
our presented techniques to be most effective.

2.3 Hierarchically compressed synopses

Given the shortcomings of the existing wavelet thresholding
algorithms we now introduce the notion of a hierarchically
compressed wavelet coefficient (HCC). For ease of presen-
tation, we initially focus on the one-dimensional case. The
extensions to multi-dimensional data sets are presented in
Sect. 7.

Definition 1 A hierarchically compressed (HCC) wavelet
coefficient is a triplet 〈Bit, C, V 〉 consisting of:

• A bitmap Bit of size |Bit| ≥ 1, denoting the storage of
exactly |Bit| coefficient values.

• The coordinate/index C of the bottommost stored coeffi-
cient.

• The set V of |Bit| stored coefficient values.

The bitmap of a HCCcan help determine how many coef-
ficient values have actually been stored. By representing the
number of stored coefficients in unary format, as a series of
(|V |−1) 1-bits and utilizing a 0-bit as the last bit (also acting
as a stop bit), any hierarchically compressed wavelet coeffi-
cient that stores |V | coefficient values requires a bitmap of
just |V | bits. A hierarchically compressed wavelet synopsis
(HCWS) consists of a set of HCCs, in analogy to a conven-
tional synopsis that comprises 〈Coords, V alue〉 pairs.

Returning to our example array A, for a space budget of
41 bytes, or 328 bits, optimizing for the SSE metric results
in storing two hierarchically compressed coefficients. These
HCCs are essentially the two paths illustrated in Fig. 1 and
are depicted in Table 2. Assuming, as before, that a coor-
dinate and a coefficient value each require 32 bits, the first
hierarchical coefficient requires 32 + 5 + 5 · 32 = 197 bits,
whereas the second one requires 32 + 3 + 3 · 32 = 131 bits.

It is easy to see how a hierarchically compressed synopsis
better utilizes the available space, and in doing so manages to
store three more coefficients than the conventional synopsis
retains. In terms of SSE, the conventional synopsis loses 752,
whereas the HCWS just 294—an improvement of over 60%.
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Table 2 HCWS for data vector A and B = 41 bytes

Coordinate Bitmap Set of coefficient values

11 11110 {−11, −5, −5.5, 15.5, 20}
15 110 {−18, −9, −4.5}

It is important though to emphasize that the coefficient values
stored in HCWS are not necessarily a superset of the coef-
ficients selected by the conventional thresholding algorithm,
since it is often more beneficial to exploit storage depen-
dencies and store multiple coefficient values that lie on a
common path, than storing a slightly larger individual value,
as shown in Sect. 8. In our example, note that the c8 coeffi-
cient, selected by a conventional synopsis, is not included in
the optimal HCWS.

2.4 Problem definition

The selection of which hierarchically compressed wavelet
coefficients to store is based on the optimization problem
we are trying to solve. To simplify notation, in our discus-
sion hereafter the unit of space is set equal to 1 bit, and all
space requirements are expressed in terms of this unit. The
bulk of the work in wavelet-based compression of data tries
to minimize the sum of squared absolute errors (SSE) of
the overall approximation. We focus on the same problem,
here; extensions to the sum of squared relative errors, or any
weighted Lw

2 norm, can be found in Sect. 7. More formally,
the optimization problem can be posed as follows:

Problem 1 [Sum of squared errors minimization for hier-
archically compressed coefficients] Given a collection WA

of wavelet coefficients and a storage constraint B select a
synopsis S of hierarchically compressed wavelet coeffici-
ents HCC’s that minimizes the sum of squared errors; that
is, minimize

∑N−1
i=0 (di − d̂i )

2 subject to the constraint
∑

HCC∈S |HCC| ≤ B, where |HCC| denotes the space
requirement for storing HCC.

Based on Parseval’s theorem and the discussion in
Sect. 2.2, using c∗

i to denote the normalized value for the
i th wavelet coefficient, we can restate the above optimization
problem in the following equivalent (but easier to process)
form.

Problem 2 [Benefit maximization for hierarchically
compressed coefficients] Given a collection WA of wave-
let coefficients and a storage constraint B, select a synop-
sis S of hierarchically compressed wavelet coefficients that
maximizes the sum

∑N−1
i=0 (c∗

i )2 of the squared retained nor-
malized coefficient values, subject to the constraint

∑
HCC∈S

|HCC| ≤ B, where |HCC| denotes the space requirement for
storing HCC.

3 HCDynL2: an optimal dynamic-programming
algorithm

We now propose a thresholding algorithm (termed HCDynL2)
based on dynamic-programming (DP) ideas, that optimally
solves the optimization problem described above. Our
HCDynL2 algorithm takes as input a set of input coefficient
values WA and a space constraint B. HCDynL2 then selects
an optimal set of hierarchically compressed coefficients for
Problem 2. Before explaining the operation of our HCDynL2

algorithm, we need to introduce the notion of overlapping
paths.

Definition 2 Two paths are overlapping if they both store
the value of at least one common coefficient.

It is important to note that the benefit of storing two over-
lapping paths is not equal to the sum of benefits of these two
paths, since the storage of at least one coefficient value is
duplicated. Thus, the benefit of each path depends on which
other overlapping paths are included in the optimal solu-
tion. The possibly varying benefit of each candidate path is
the main difficulty in formulating an optimal algorithm. To
make matters worse, the number of candidate paths that may
be part of the solution is quite large (O(N log N )), as is the
number of overlapping paths. In particular, any coefficient
value ci belonging at level level(ci ) may be stored in up to
∑

0 ≤ k ≤ min{ j, level(ci )}
level(ci ) − k + j ≤ log N

2k paths of length 1 ≤ j ≤ log N + 1

(i.e., paths originating from nodes in its subtree with distance
at most j from ci ). Fortunately, the following lemma helps
reduce the search space of our algorithm, by considering the
structure of the error tree.

Lemma 1 The optimal solution for Problem 2 (and equiv-
alently for Problem 1) never needs to consider overlapping
paths.

The proof of Lemma 1 is simple and is based on the obser-
vation that for any solution that includes a pair of overlapping
paths (the extension to having multiple overlapping paths
is straightforward), there exists an alternative solution with
non-overlapping paths that stores exactly the same coefficient
values and, thus, has the same benefit while requiring less
space. This solution is produced by simply removing from
one of the overlapping paths its intersection with the other
path. Let the storage overhead cost of the coefficient coordi-
nate be assigned to the lowest coefficient of each path. Thus,
the required space for this coefficient (i.e., the “start-up” cost
for any HCC) is S1 = sizeof(Coord) + sizeof(V alue) + 1
and the corresponding space for all other coefficient values
in its path is simply: S2 = sizeof(V alue) + 1. Then, when
considering the optimal solution at any node i ≥ 1 (The
extension to node 0 that has just one subtree is straightfor-
ward) of the error tree, given any space constraint B, the
following cases may arise:
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1. Coefficient ci is not part of the optimal solution. The
optimal solution arises from the best allotment of the
space B to the two subtrees of ci .

2. Coefficient ci is part of the optimal solution but is not
a part of any hierarchically compressed path originating
from any of its descendants in the error tree. The optimal
solution arises from storing ci in a new hierarchically
compressed path and considering the best allotment of
the space B − S1 to the two subtrees of ci .

3. Coefficient ci is part of the optimal solution and is part of
a single hierarchically compressed path originating from
one of its descendants that may reside in its left (right)
subtree. The optimal solution arises from attaching ci

to the hierarchically compressed path of the left (right)
subtree and considering the best allotment of the space
B − S2 to the two subtrees of ci . However, for this space
distribution process to be valid, we need to make sure
that the solution that is produced by allocating space
0 ≤ b ≤ B − S2 to the left (right) subtree stores the
coefficient c2i (c2i+1) — otherwise, ci cannot be attached
to a path originating from that subtree.

Cases 1 and 2 are pretty straightforward, since they
introduce a recursive procedure that can be used to calculate
the optimal solution at node i . This recursive procedure
will check all possible allocations of space to the two
subtrees of i and calculate the optimal solutions in these
subtrees, given the space allocated to them. The optimal
solution arises from the space allocation that results in
the largest benefit. Note that in these two cases there are
no dependencies or requirements from the solutions sought
in the two subtrees, other that they result in the largest
possible benefit, given the space allocated to them (and
thus seeking the optimal solutions in these subtrees
suffices).

On the contrary, in Case 3 coefficient ci , for any space allo-
cation to its two subtrees, needs to be attached to a solution
that is produced at one of its subtree and where this solution
stores the coefficient value at the root of the subtree. Given
this requirement, the solution for this subtree is not neces-
sarily the optimal one, but only the optimal solution, given
that the root of the subtree is stored. This implies that our
algorithm will need to also keep track of some suboptimal
solutions, similarly to the dynamic programming algorithm
in [6], which seeks to exploit storage dependencies in data
sets with multiple measures only among coefficient values
of different measures that share the same coefficient coordi-
nates (and, thus, cannot be used for the problem addressed
in this paper). On the other hand, the goal of our algorithm

is to explore hierarchical relationships among coefficient
values of different coordinates in order to reduce their stor-
age overhead and improve their storage utilization in single-
measure data sets. This requires properly utilizing the
error-tree structure to identify these storage dependencies
and processing the nodes in the error tree using an appropri-
ate ordering. Neither of these restrictions was present in [6].

Table 3 Notation used in HCDynL2 Algorithm

Symbol Description

S1 sizeof(Coords) + sizeof(V alue) + 1

S2 sizeof(V alue) + 1

M[i, B] The optimal benefit acquired when assigning

at most B space to the subtree of coefficient ci

F[i, B] The optimal benefit acquired when assigning

at most B space to the subtree of coefficient

ci and when ci is forced to be stored

3.1 Our solution

We now formulate a dynamic programming (DP) solution
for the optimization problem of Sect. 2.4; the notation used
is shown in Table 3. Let M[i, B] denote the maximum ben-
efit acquired when assigning at most space B to the subtree
of coefficient ci . Also, let F[i, B] denote the optimal benefit
acquired when assigning at most space B to the subtree of
coefficient ci and when ci is forced to be stored. Equation 1
depicts the recurrences employed by our HCDynL2 algorithm
in order to calculate these values. Case 2, discussed above,
corresponds to the first clause of the max calculation for
F[i, B], while Case 3 is covered by the next two clauses
of the same max calculation. Of course, when the remaining
space is less than S1 or i ≥ N , it is infeasible3 to store the
coefficient value ci , thus returning a benefit of −∞. For the
calculation of the M[i, B] value, Case 1 is covered in the first
clause of the max quantity, while Cases 2 and 3 are covered
in the second clause (F[i, B]). Of course, if the remaining
space is less than S1 or i ≥ N , no coefficient value can be
stored, thus returning a benefit of 0 for M[i, B].

3 Even though ci can be stored for S2 ≤ B < S1, there will be
insufficient space (< S1) to allocate to the lowest node of the path that
ci is attached to.
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F[i, B] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∞, if i ≥ N or B < S1

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
0≤bL ≤B−S1

(c∗
i )2+M[2i,bL ]+M[2i+1,B−bL−S1]

max
0≤bL ≤B−S2

(c∗
i )2+F[2i,bL ]+M[2i+1,B−bL−S2]

max
0≤bL ≤B−S2

(c∗
i )2+M[2i,bL ]+F[2i+1,B−bL−S2]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, otherwise

M[i, B] =

⎧
⎪⎨

⎪⎩

0, if i ≥ N or B < S1

max

{
max

0≤bL ≤B
M[2i,bL ]+M[2i+1,B−bL ]

F[i,B]

}

, otherwise
(1)

Given Eq. 1, our HCDynL2 algorithm starts at the root of
the error tree and seeks to calculate the value of M[0, B]. In
this process, various M[] and F[] values are calculated. For
each of these calculations we also record which clause of the
formulas helped determine these values, and the correspond-
ing allotments bL to the left subtree of the nodes (see Eq. 1).
This step helps to quickly trace the steps of the algorithm
when reconstructing the optimal solution.

After the value M[0, B] has been calculated, we can recon-
struct the optimal solution as follows. We start from the root
node with a space constraint B. Based on which clause deter-
mined the value of M[i, B], we recurse to the two subtrees
with the appropriate space allocation (recall that this infor-
mation was recorded in the calculation of the M[] and F[]
values) and a list of hanging coefficient values. These coeffi-
cient values belong to the hierarchically compressed path that
passes through ci . This path needs to be included in the recur-
sion process because it can only be stored when all of its the
coefficient values have been identified. Based on Cases 1–3
described above, at each node we may either: (i) not store ci ;
then store the input hanging path if it is non-empty; (ii) attach
ci to the received hanging path (Case 2) and store the result-
ing hierarchically compressed coefficient; or (iii) attach ci

to the received hanging path (Case 3) and recurse to the two
subtrees. In this recursion, the resulting hanging path needs
to be input to the appropriate subtree, while the other subtree
will receive an empty hanging path.

Theorem 1 The HCDynL2 algorithm computes the optimal
M[i, B] and F[i, B] values at each node of the error tree and
for any space constraint B correctly.

Proof We will prove Theorem 1 by induction on the height
of each coefficient from the bottom of the error tree (i.e., leaf
nodes correspond to height 1).

Base case: Leaf nodes (height = 1). If coefficient ci belongs
at the leaf level, then the possible set of paths in the subtree of
ci degenerates to simply storing ci . Thus, the optimal benefit
of a solution M[i, B] is equal to (c∗

i )2 for B ≥ S1 and 0, oth-
erwise. Similarly, for B ≥ S1, F[i, B] = M[i, B] = (c∗

i )2.
Otherwise, ci cannot be stored because of space constraints

(thus the benefit is set −∞ to represent this). Notice that
in all cases the formulas for calculating M[i, B] and F[i, B]
correctly compute the optimal solution and its benefit for any
leaf node ci and for any space constraint B assigned to the
subtree of the node.

Inductive step. Assume that the HCDynL2 algorithm cor-
rectly computes the optimal M[i, B] and F[i, B] values at
each node of the error tree up to height j and for any space
constraint B. We will show that the HCDynL2 algorithm also
correctly computes the optimal M[i, B] (the proof for F[i, B]
is similar) values at each node at height j + 1.

Note that the HCDynL2 algorithm considers all combina-
tions of storing (or not) the root coefficient at each subtree
and attaching this coefficient (or not) to optimal solutions
calculated by the node’s two subtrees. Thus, a case of sub-
optimality may occur only if the optimal solution at node i
needs to be computed by using a suboptimal solution (other
than the computed M[2i, B] and M[2i + 1, B] values, or the
F[2i, B] and F[2i + 1, B] values when ci is stored) at (at
least) one of its two subtrees.

Let the suboptimal solution needed to be considered is
over a solution computed over the left subtree of ci (i.e., the
subtree of coefficient c2i ). Situations where the suboptimal
solution is over the right subtree (or over both subtrees) are
handled in a similar way.

First case: M[i, B] does not store ci . Consider that the opti-
mal solution at a coefficient ci that lies at height j + 1
of the error tree for a space constraint B is produced by
not storing ci , but by considering solutions Lsol and Rsol
at the left and right subtrees, respectively, of ci with cor-
responding maximum space bL and bR . Let the solution
M′[2i, bL ] at the left subtree be a suboptimal one, mean-
ing that M′[2i, bL ] < M[2i, bL ]. Then, a solution that would
consider Rsol and the solution of M[2i, bL ] requires at most
space bL + bR and has a larger benefit than the optimal solu-
tion of Lsol and Rsol. We therefore reached a contradiction.

Second case: M[i, B] stores ci and does not attach it in
paths of the solutions of any subtree. In this case, if the
optimal solution needs to consider a sub-optimal solution
Lsol at the left subtree of ci with space bL , then obviously

123



Hierarchically compressed wavelet synopses

HCDynL2 examines the solution that stores M[2i, bL ] instead
of Lsol, and which results in a larger benefit. We therefore
reached a contradiction.

Third case: M[i, B] stores ci and attaches it to subopti-
mal solution Lsol (Rsol) at left (right) subtree. In this
case, note that c2i must be stored in the suboptimal solu-
tion Lsol (Rsol) considered at the left (right) subtree (and
thus ci requires space S2 to be stored). Note that the solu-
tion that stores ci and attaches it to the solution of F[2i, bL ]
(F[2i + 1, bR]), where bL (bR) denotes the space of the sub-
optimal solution Lsol (Rsol), while also storing M[2i +
1, B − bL − S2] (M[2i, B − bR − S2]) will result in a larger
benefit, due to the inductive hypothesis. We therefore reached
a contradiction.

3.2 Running time and space complexities

Consider a node ci at height j in the error tree. Since there
can be at most 2 j − 1 coefficients below the subtree rooted
at node ci , the total budget allocated cannot exceed 2 j · S1.
Therefore, at any node ci , HCDynL2 must calculate at most
min{B, 2 j S1} entries (if 2 j S1 < B, all space allotments larger
than 2 j S1 result in the same benefit as that of the allotment for
2 j S1 and need not be computed), where each requires time
min{B, 2 j S1} to consider all possible space allotments to the
children nodes. Given that there are N/2 j nodes at height j
and summing across all log N heights we obtain (note that
B = 2 j S1 when j = log B

S1
):

log N∑

j=1

N

2 j

(
min{B, 2 j S1}

)2

=
log B

S1∑

j=1

N

2 j
22 j S2

1 +
log N∑

j=log B
S1

+1

N

2 j
B2

= N S2
1

log B
S1∑

j=1

2 j + N B2
log N∑

j=log B
S1

+1

1

2 j

= N S2
1 · O

(
B

S1

)

+ N B2 · O

(
S1

B

)

= O(S1 N B) = O(N B).

Note that the reconstruction process simply requires a top-
down traversal of the error tree. Therefore, the total running
time remains O(N B). Using similar arguments, we obtain
that the space complexity is:

log B
S1∑

j=1

N

2 j
2 j S1 +

log N∑

j=log B
S1

+1

N

2 j
B = N S1 log B+N B · O

(
S1

B

)

= O(N log B).

Theorem 2 The HCDynL2 algorithm constructs the optimal
HCWS, given a space budget of B, in O(N B) time using
O(N log B) space.

A streaming variant. The HCDynL2 algorithm can be easily
modified to operate in one pass over the data using limited
memory—i.e., in a data stream setting. Recall that HCDynL2

requires two passes over the data, one bottom-up for com-
puting the optimal benefit while marking the decisions made,
and another top-down for constructing the optimal HCWS.
The streaming variation, denoted as HCDynL2-Str, makes two
important observations: (i) not all the entries of the dynamic
programming array are needed for the construction of the
optimal HCWS; and (ii) in order to reconstruct the solution,
the selected coefficients must be carried at each node along
each M[] and F[] entry. Thus, in principle our HCDynL2-Str

algorithm follows the same observations made in [14]. How-
ever, as explained later in this section, our main technical
contribution in the HCDynL2-Str algorithm involves the ability
to calculate the M[] and F[] entries and perform the mem-
ory cleanup in an efficient way, through some careful book-
keeping. This step was not present in [14]. The following
definition is helpful in our remaining discussion.

Definition 3 A wavelet coefficient is termed as closed if we
have observed all the data values in its support region. A
wavelet coefficient is termed as active if it is not closed and
for which we have already observed at least one data value in
its support region. A wavelet coefficient is termed as inactive
if it is neither active nor closed.

For the first observation, notice that at any time a new data
value di is read, then the active wavelet coefficients, which lie
in path(di ), need to be updated and their corresponding M[]
and F[] entries need to be calculated again. Each such active
node will also require in its operation the corresponding M[]
and F[] entries of its child node that does not lie in path(di ).
Thus, for any space allotment b, only O(log N ) (rather than
O(N )) entries M[·, b] and F[·, b] need to be in memory, for
any b—the remaining entries are only required for the second
pass over the error tree.

For the algorithm to operate in one pass, the price that
has to be paid is that of increased space requirements per
M[] and F[] entry. Namely, following the second observa-
tion, we need a factor of O(min{B, 2 j }) more space to store
the HCCs calculated so far at each node that belongs at height
j of the error tree (again, this space is required only for the
aforementioned O(log N ) active nodes). An important obser-
vation is that through some careful book-keeping for each
entry M[·, b], F[·, b] we only require O(1) time to calculate
the HCCs involved. To achieve this, we maintain the selected
HCCs at each of the aforementioned O(log N ) nodes as a list,
where the first element is always the HCC that includes the
root coefficient of the node’s subtree (note that such a HCC
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may not exist for the M[] entry). The selected HCCs of a
node are updated when data values in its support region are
observed. However, as we explain later in this section, for
all nodes that become closed we need to perform a cleanup
operation that removes from main memory certain HCCs of
these nodes. This cleanup operation is thus performed only
once, and not per observed data value in their support region.

For each allotment b to the node’s subtree the HCCs for
the M[] and F[] entries can be computed as follows (assum-
ing that bL (bR) space is allocated to the node’s left (right)
subtree):

1. If ci is stored and attached to a path originating from the
node’s left (right) subtree, then create a new HCC that is
the result of adding ci to the first HCC that corresponds
to the solution of the F[2i, bL ] (F[2i + 1, bR]). We then
link this new HCC to the second element of the list of
F[2i, bL ] (F[2i + 1, bR]) and with the corresponding list
of the M[2i + 1, bR] (M[2i, bL ]) entry.

2. If ci is stored but is not attached to any path originating
from the node’s left (right) subtree, then create a new
HCC containing only ci . Then link to this HCC the lists
of HCCs that correspond to M[2i, bL ] and M[2i +1, bR].

3. If ci is not stored then simply link the lists of HCCs that
correspond to M[2i, bL ] and M[2i + 1, bR].

All the above operations can be completed in O(1) time,
along with the removal of the HCCs that were created at
node ci (and linked to the HCC lists calculated at the children
nodes of ci ) at the observation of previous data values (see
the above 3 cases). Please note that when we compute the
final list of HCCs for any node ci (after the node becomes
closed), then any HCCs of its children nodes c2i and c2i+1

that are not part of the HCCs stored at node ci are no longer
needed and need to be deleted. This can be easily detected
by examining how the M[i, b] and F[i, b] entries at node ci

were calculated. Assuming that ci belongs at height j of the
error tree, this can be achieved in O(min{B, 2 j }) time per
each space allotment b ≤ B to ci .

Thus, the overall running time requirements of the algo-
rithm become (since the HCCs of each node are calculated
continuously, but the memory cleanup is performed just once
per node and per space allotment b ≤ B):

log N∑

j=1

N

2 j

((
min{B, 2 j }

)2 + log N · min{B, 2 j }
)

=
log B∑

j=1

N

2 j
(22 j + 2 j log N )+

log N∑

j=log B+1

N

2 j
(B2+B log N )

= N
log B∑

j=1

(2 j + log N ) + N B(B + log N )

log N∑

j=log B+1

1

2 j

= O(N B + N log N log B) + N (B + log N )

= O(N B + N log N log B).

To summarize, HCDynL2-Str operates in one pass over
the data and gains in space by storing only B log N entries,
which, however, each requires O(B) space for the storage
of its HCCs. Moreover, at any specific moment the currently
selected HCWS can be accessed directly from the root node
of the error tree.

Theorem 3 The HCDynL2-Str algorithm constructs the opti-
mal HCWS in one pass, given a space budget of B, in O(B +
log N log B) amortized time per processed data value using
O(B2 log N ) space.

3.3 Achieved benefit vs. classic method

A question that naturally arises is how does the benefit of
the solution achieved by the HCDynL2 algorithm compare
to the one achieved by a traditional technique (Classic) that
individually stores the coefficients with the largest absolute
normalized values. Consider a set S = S1, . . . , SB of B stored
coefficient values, sorted in non-increasing order of their
absolute normalized values, by the traditional thresholding
algorithm. Consider the case where these coefficient values
lie in distant regions of the error tree. Using a space con-
straint equal to B × (si zeo f (Coord) + si zeof (V alue))=
B × (S1 −1) the benefit of the HCDynL2 algorithm cannot be
smaller than the benefit of storing the first m = � B×(S1−1)

S1
�

coefficient values of S as hierarchically compressed wavelet
coefficients, each storing exactly one coefficient value. Thus,
in the worst case the ratio of benefits of the HCDynL2 algo-
rithm over the Classic algorithm, as described above, may be
as low as Bene f i t (HCDynL2)

Bene f i t (Classic)
= Bene f i t (S1,...,Sm )

Bene f i t (S1,...,SB )
≥ m

B , since
the coefficients in S are sorted.

On the other hand, the best case for the benefit of the
HCDynL2 algorithm may occur for a storage constraint of
B ′ = S1 +(log N +1)×S2. In this case if the log N +1 coef-
ficient values with the largest absolute normalized values lie
on the same root-to-leaf path of the error tree, then the ratio of
benefits of the HCDynL2 algorithm over the Classic algorithm
will be as high as (for m′ = � B′

S1−1�) : Bene f i t (HCDynL2)
Bene f i t (Classic)

=
Bene f i t (S1,...,Slog N+1)

Bene f i t (S1,...,Sm′ ) ≤ log N+1
m′ . Therefore, the following the-

orem holds.

Theorem 4 The HCDynL2 algorithm, when compared to the
Classic algorithm, given the same space budget, exhibits a
benefit ratio of
⌊

B × S1−1
S1

⌋

B
≤ Bene f i t (HCDynL2)

Bene f i t (Classic)
≤ log N + 1

⌊
S1+(log N+1)S2

S1−1

⌋ .

An improved-benefit variant. It is important to emphasize
that the HCDynL2 algorithm can be easily modified to guar-
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antee that its produced solution has a benefit at least equal to
the one of the traditional approach. This can be achieved by
allowing HCCs with a single stored coefficient value to drop
the very small overhead of the single bit and be stored in a
separate storage. In this case, the first stored coefficient in a
HCC requires space S1−1, the second coefficient value in the
same HCC requires additional space equal to S2 + 1, while
any additional coefficient values in the same HCC require
space S2 to be stored. This results in constructing a modified
HCWS∗ synopsis.

F[i, B] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, if i ≥ N or B < S1 − 1

max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
0≤bL ≤B−S2−1

(c∗
i )2+G[2i,bL ]+M[2i+1,B−bL−S2−1]

max
0≤bL ≤B−S2−1

(c∗
i )2+M[2i,bL ]+G[2i+1,B−bL−S2−1]

max
0≤bL ≤B−S2

(c∗
i )2+F[2i,bL ]+M[2i+1,B−bL−S2]

max
0≤bL ≤B−S2

(c∗
i )2+M[2i,bL ]+F[2i+1,B−bL−S2]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, otherwise

G[i, B] =
{−∞, if i ≥ N or B < S1 − 1

max
0≤bL ≤B−S1+1

(c∗
i )2+M[2i,bL ]+M[2i+1,B−bL−S1+1], otherwise

M[i, B] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if i ≥ N or B < S1 − 1

max

⎧
⎪⎨

⎪⎩

max
0≤bL ≤B

M[2i,bL ]+M[2i+1,B−bL ]

F[i,B]
G[i,B]

⎫
⎪⎬

⎪⎭
, otherwise

(2)

The main difference of the modified algorithm, denoted as
HCDynL2∗, compared to the discussion of Sect. 3 is that now,
due to the different space needed for the second and third
coefficient values of each HCC, two suboptimal solutions
need to be maintained (see Eq. 2): (i) F[i, B], the benefit of
the optimal solution when assigning space at most equal to
B to the subtree of coefficient ci and when both ci and one
of its children (c2i or c2i+1) are stored; and (ii) G[i, B], the
benefit of the optimal solution when assigning space at most
equal to B to the subtree of coefficient ci and ci is stored
as the bottom-most coefficient in a path. Note, that for the
second suboptimal solution the space required is S1 − 1, as
discussed. For the first suboptimal solution two cases exist:
(a) ci is the second coefficient in a path, hence, the space
required is S2 + 1 and further, a suboptimal solution G[] in
one of its children must be combined with an optimal solution
M[] in the other child (the first two non-trivial cases of F[i, B]
in Eq. 2); and (b) ci is not the second coefficient (it could
be the third or more), hence, the space required is S2 and
further, a suboptimal solution F[] in one of its children must
be combined with an optimal solution M[] in the other child
(the last two non-trivial cases of F[i, B] in Eq. 2. Therefore,
the following theorem holds.

Theorem 5 The HCDynL2∗ algorithm constructs a modified
HCWS∗ synopsis such that the obtained benefit is never less
than that of the Classic algorithm, given the same space bud-

get:

Bene f i t (HCDynL2∗) ≥ Bene f i t (Classic).

It is important to note that the asymptotic running time and
space requirements of the HCDynL2∗ algorithm are the same
as those of the HCDynL2 algorithm. However, since its imple-
mentation requires the evaluation of three DP recurrences, its
actual running time and space requirements are about 50%
increased over the ones of HCDynL2. Finally, a streaming

variant of the HCDynL2∗ algorithm can be obtained in a man-
ner analogous to that of HCDynL2. Similarly, an approxima-
tion algorithm for the HCDynL2∗ algorithm can be obtained
in a manner analogous to the approximation algorithm of
HCDynL2 (presented in Sect. 4).

4 HCApprL2: an approximation algorithm

In this section, we propose an approximation algorithm for
efficiently constructing hierarchically compressed wavelet
synopses. Our algorithm, termed HCApprL2, offers significant
improvements in time and space requirements over HCDynL2

while providing tunable error guarantees. The HCApprL2

algorithm constructs a HCWS that has a benefit that does not
exceed the optimal synopsis, but definitely not less than 1

1+ε

of the optimal benefit, for some given parameter ε. Clearly,
smaller values for ε lead to more accurate synopses; HCAp-

prL2 solves Problem 2 optimally for ε = 0.
The HCApprL2 algorithm constructs functions apprM[],

apprF[] and computes their values at some space allotment
in a similar manner to how HCDynL2 computes M[] and F[]
values (i.e., the values at a non-leaf node depend on the values
of its children) but does so for a sparse set of space allotments,
termed breakpoints, rather than for all possible allotments.

The HCApprL2 algorithm operates on the error tree in a
bottom-up manner. At each node it creates a set of candidate
breakpoints by combining breakpoints from the children of
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Table 4 Notation used in HCApprL2 algorithm

Symbol Description

apprM[i, x] Approximate value for optimal benefit when assigning

at most space x to the subtree rooted at coefficient ci

apprF[i, x] Approximate value for optimal benefit when assigning

at most space x to the subtree rooted at coefficient ci

and when ci is forced to be stored

{pi
j } Set of breakpoints for apprM[i, ·]

{qi
k} Set of breakpoints for apprF[i, ·]

ε Approximation factor

δ Degradation factor incurred at each level

the node. Then, in a two-phase trimming process it eliminates
some of these candidates to obtain the actual breakpoints of
the node. This trimming process is responsible for bounding
the error incurred by not examining all space allotments, as
it will become apparent in the next section. The notation
introduced is summarized in Table 4.

4.1 Breakpoint calculation

The crux of the HCApprL2 algorithm lies in the calculation
of the breakpoints and their corresponding benefit values for
functions apprM[] and apprF[] at each node. The algorithm
proceeds in a bottom-up manner, starting from the leaf nodes
at height 1.

Assume that node ci , at height 1, is a non-zero leaf coef-
ficient. In this case there are two breakpoints 0 and S1 with
approximate benefits 0 and (c∗

i )2 respectively for both appro-
ximation functions. In the case of a zero valued leaf coeffi-
cient apprM[i, ·] has only breakpoint 0 with zero benefit,
whereas apprF[i, ·] has breakpoints 0, S1 with benefits −∞
and 0 respectively.

For all non-leaf nodes the breakpoint calculation proceeds
following the same steps: (i) a set of candidate breakpoints
is created by combining all breakpoints of the children; (ii)
a trimming process reduces this set to the actual breakpoints
to be used as input for the first step in the parent node.

Consider a non-leaf node ci at height l; since HCApprL2

proceeds bottom up all breakpoints for nodes lower in the tree
have been calculated. Thus, let {pL

j }, {q L
k } denote the set of

breakpoints for apprM[2i, ·] and apprF[2i, ·] functions for
the left child of ci and let {pR

j }, {q R
k } denote the set of break-

points for apprM[2i + 1, ·] and apprF[2i + 1, ·] functions
for the right child of ci .

apprF[i, pL
j + pR

k + S1] =(c∗
i )2+apprM[2i,pL

j ]+apprM[2i+1,pR
k ]

apprF[i, q L
j + pR

k + S2] =(c∗
i )2+apprF[2i,q L

j ]+apprM[2i+1,pR
k ]

apprF[i, pL
j + q R

k + S2] =(c∗
i )2+apprM[2i,pL

j ]+apprF[2i+1,q R
k ]

⎫
⎪⎬

⎪⎭

(3)

The candidate breakpoints for apprF[i, ·] and the corre-
sponding benefit values are calculated combining all break-
points from sets {pL

j }, {q L
k }, {pR

j }, {q R
k } as shown in Eq. 3—

candidate breakpoints of space more than B are easily iden-
tified and rejected. Observe that these equations correspond
to the non-trivial cases of the defining recurrence for F[i, ·]
(Eq. 1). The algorithm considers the following cases for all
j, k:

• Store ci using space S1 and combine all (approximately)
optimal solutions apprM[2i, pL

j ], apprM[2i + 1, pR
j ].

• Store ci using space S2 and combine all (approximately)
optimal when forced to store c2i solutions apprF[2i, q L

k ]
with all (approximately) optimal solutions apprM[2i +
1, pR

j ].
• Store ci using space S2 and combine all (approximately)

optimal solutions apprM[2i, pL
j ]with all (approximately)

optimal when forced to store c2i+1 solutions apprF[2i +
1, q R

k ].

apprM[i, pL
j + pR

k + S1] =apprF[i,pL
j +pR

k +S1]
apprM[i, q L

j + pR
k + S2] =apprF[i,q L

j +pR
k +S2]

apprM[i, pL
j + q R

k + S2] =apprF[i,pL
j +q R

k +S2]
apprM[i, pL

j + pR
k ] =apprM[2i,pL

j ]+apprM[2i+1,pR
k ]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4)

Similarly, the candidate breakpoints for apprM[i, ·] and
their corresponding benefit values are also calculated com-
bining all breakpoints from sets {pL

j }, {q L
k }, {pR

j }, {q R
k } as

shown in Eq. 4—candidate breakpoints of space more than B
are easily identified and rejected. Again, observe that these
equations correspond to the non-trivial cases of the defin-
ing recurrence for M[i, ·] (see Eq. 1), which in addition to
the candidate breakpoints considered for apprF[i, ·] con-
siders the following case, for all j, k: Do not store ci and
combine all (approximately) optimal solutions, i.e., the pairs
apprM[2i, pL

j ], apprM[2i + 1, pR
j ].

Once all candidate breakpoints have been calculated we
perform a two-phase trimming process for each approxima-
tion function, to reduce the number of breakpoints.

First phase. We remove the useless configurations—those
that cost more but have less benefit than others. This can be
done by a simple ordering of the configurations increasingly
by their approximate benefit values and a subsequent linear
scan.

Second phase. The final breakpoints {pi
j }, {qi

k} are set as fol-
lows. Consider the case of the approximate benefit function
apprM[i, ·]. Set pi

1 equal to the first candidate breakpoint
(after sorting); it is easy to see that this breakpoint always
corresponds to space 0. The rest of the breakpoints are discov-
ered iteratively: assuming breakpoint pi

k−1 has been found,
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breakpoint pi
k is the smallest candidate breakpoint such that

apprM[i, pi
k] > (1+δ)apprM[i, pi

k−1], for some parameter
δ which depends on the desired approximation factor ε and
whose value will be determined later in this section.

The following lemmas are a direct result of the trimming
process.

Lemma 2 For any node that belongs at height j of the error
tree, there can be at most R j = O

(
min{B, 2 j , 1

δ
log ||WA||})

breakpoints.

Proof Certainly, there can be no more than B breakpoints for
each approximation function. Similarly, since there can be at
most 2 j − 1 coefficients in the subtree rooted at each node
that belongs at height j , the total number of space entries, and
thus breakpoints, cannot exceed 2 j S1 = O(2 j ). Additionally,
there can be no more than log1+δ M[i, B] breakpoints for
apprM[i, ·] (and no more than log1+δ F[i, B] for apprF[i, ·]),
as M[i, B] (resp. F[i, B]) is the highest possible benefit that
can be attained at node ci for space B. Since this benefit
cannot be more than the energy of the wavelet transform
||WA||2, the lemma easily follows for small δ values. 
�
Lemma 3 Let {pi

j } be the set of breakpoints for approxima-
tion benefit function apprM[i, ·]. If b is a candidate break-
point such that b ∈ [pi

k, pi
k+1), then apprM[i, b] ≤ (1 + δ)·

apprM[i, pi
k]—i.e., b is covered by pi

k within a (1+δ) degra-
dation. Analogous result holds for function apprF[].
Proof If b is not discarded in the first phase of the trimming
process it is straightforward to see that the lemma holds.
Now, assume that b was discarded in the first phase. There-
fore, there must exist a candidate breakpoint b′ < b not dis-
carded in the first phase with apprM[i, b′] ≥ apprM[i, b]
such that b′ is the highest non-discarded breakpoint smaller
than b. Observe that b′ and b are covered by the same break-
point pi

k (b′ might be the breakpoint pi
k): b, b′ ∈ [pi

k, pi
k+1)

and that the lemma holds for b′. Therefore, apprM[i, b] ≤
apprM[i, b′] ≤ (1 + δ)apprM[i, pi

k] and the lemma holds
for b. 
�

By aggregating the degradation occurred at all descen-
dants of a node we obtain the following.

Lemma 4 Assume node ci is at height h of the error tree
(equivalently at level log N − h), and let {pi

j } and {qi
j }

be the set of breakpoints for apprM[i, ·] and apprF[i, ·]
respectively. Also let x, y be some arbitrary space allotments
and let breakpoints pi

k, qi
k be such that x ∈ [pi

k, pi
k+1) (or

x ≥ pi
k , if pi

k is the last breakpoint) and y ∈ [qi
k, qi

k+1)

(or y ≥ qi
k , if qi

k is the last breakpoint). The approximate
benefit value computed at node ci (the approximate benefit
value when ci is forced to be stored) for space pi

k (resp. qi
k)

is not less than 1
(1+δ)h−1 of the optimal value (resp. optimal

value when ci is forced to be stored). That is, M[i, x] ≤ (1+
δ)h−1apprM[i, pi

k] and F[i, y] ≤ (1 + δ)h−1apprF[i, qi
k].

Proof We prove the lemma for apprF[i, ·] and apprM[i, ·],
by induction on the height h of the error tree node ci belongs
to. The base case h = 1 holds by construction: Assume
coefficient ci is non-zero; thus only breakpoints pi

1 = 0,
pi

2 = S1 and qi
1 = 0, qi

2 = S1 exist for approximation
functions apprM[i, ·] and apprF[i, ·] respectively. Clearly,
(i) when x ∈ [pi

1, pi
2), apprM[i, pi

1] = M[i, x]; (ii) when
y ∈ [qi

1, qi
2), apprF[i, qi

1] = F[i, y]; (iii) when x ≥ pi
2,

apprM[i, pi
2] = M[i, x]; and (iv) when y ≥ qi

2, apprF[i,
qi

2] = F[i, y]. In the case of a zero valued coefficient ci , only
breakpoint pi

1 exists and the reasoning is similar.
Assuming the hypothesis holds for all nodes at height h we

will show that it holds for nodes at height h +1. We will only
consider the approximation function apprF[i, ·] for node ci

at height h+1, as the proof for apprM[i, ·] is similar. Further,
assume that the optimal benefit F[i, y] when ci is forced to be
stored for a space budget of y is constructed from the second
non-trivial clause of Eq. 1 by allotting space S2 to coefficient
ci , yL to the left subtree and y − yL − S2 to the right subtree;
that is, F[i, y] = (c∗

i )2 +F[2i, yL ]+M[2i +1, y − yL − S2].
The proof is similar for the other clauses and thus omitted.

If {q L
j } and {pR

j } denote the sets of breakpoints for func-

tions apprF[2i, ·] and apprM[2i + 1, ·] respectively, let q L
k

be the highest breakpoint not exceeding yL and let pR
k be the

highest breakpoint less than y − yL − S2. By the induction
hypothesis

F[2i, yL ] ≤ (1 + δ)h−1apprF[2i, q L
k ] and

M[2i + 1, y − yL − S1] ≤ (1 + δ)h−1apprM[2i + 1, pR
k ].

Define b = q L
k + pR

k + S1. Certainly, b was a candidate
breakpoint for function apprF[i, ·] and considered by our
HCApprL2 algorithm (see Eq. 3):

apprF[i, b]=(c∗
i )2+apprF[2i, q L

k ]+apprM[2i + 1, pR
k ].

Using the above equation and the induction hypothesis, opti-
mal value F[i, y] is bounded as follows.

F[i, y] = (c∗
i )2 + F[2i, yL ] + M[2i + 1, y − yL − S2]

≤ (c∗
i )2 + (1 + δ)h−1

(
apprF[2i, q L

k ]
+apprM[2i + 1, pR

k ]
)

≤ (1 + δ)h−1apprF[i, b]
Now, either b belongs to [qi

k, qi
k+1) or not. Consider the

first case. By Lemma 3 apprF[i, b] ≤ (1 + δ)apprF[i, qi
k]

and thus:

F[i, y] ≤ (1 + δ)h−1apprF[i, b] ≤ (1 + δ)happrF[i, qi
k].

In the other case, observe that b must be smaller than qi
k ,

because b ≤ y ∈ [qi
k, qi

k+1). Therefore, since apprF[i, b]
≤ apprF[i, qi

k]:
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F[i, y] ≤ (1 + δ)h−1apprF[i, b] ≤ (1 + δ)h−1apprF[i, qi
k].

Thus, in either case F[i, y] ≤ (1 + δ)happrF[i, qi
k]. 
�

Finally, we obtain the following.

Theorem 6 The HCApprL2 algorithm provides a HC synop-
sis to Problem 2 that needs space not more than B and has
benefit not less than 1

1+ε
of the optimal benefit. Assuming p0

k
is the highest breakpoint of function apprM[0, ·] not exceed-
ing B, we have M[0, B] ≤ (1 + ε)apprM[0, p0

k ].
Proof Apply Lemma 4 for M[0, B] setting δ = ε

log N . 
�

4.2 Space and running time complexities

The space and time complexity of the HCApprL2 algorithm
depend on the number of breakpoints R j (rather than solely
on B) for each approximation function at each node that
belongs at height j of the error tree. Lemma 2 provides
a bound for this number, if one sets δ = ε

log N : Rmax =
O

(
min{B, 2 j , 1

ε
log N log ||WA||}).

At each node and for each approximation function, the
HCApprL2 algorithm first computes candidate breakpoints by
combining all breakpoints from the children nodes (in O(R2

j )

time and space), sorts them (in O(R2
j log R j ) time) and per-

forms the trimming process (in O(R2
j ) time and space). Thus,

the time requirement is O(R2
j log R j ) per node at height j

of the error tree. HCApprL2 requires a temporary space of
O(R2

j ) to perform the trimming process, but registers only
O(R j ) space per node. Using similar reasoning with the
complexity analysis of the HCDynL2 algorithm we derive
the following running time complexity our algorithm (by
setting K = min{B, 1

ε
log N log ||WA||} - observe the time

requirement increases by a factor of log R j due to the sorting
involved during the breakpoint calculation):

O

⎛

⎝
log N∑

j=1

N

2 j

((
min{2 j , K }

)2
log min{2 j , K }

)
⎞

⎠

= O

⎛

⎝
log K∑

j=1

N

2 j
j22 j +

log N∑

j=log K+1

N

2 j
K 2 log K

⎞

⎠

= O

⎛

⎝N
log K∑

j=1

j2 j + N K 2 log K
log N∑

j=log K+1

1

2 j

⎞

⎠

= O(N K log K ).

Using a similar calculation for the space requirements of the
algorithm, the following Theorem easily follows.

Theorem 7 Given space budget B, the HCApprL2 algorithm
constructs a HCWS, in O(N K log K ) time using O(N log K )

space, where K = min{B, 1
ε

log N log ||WA||}. The stream-
ing variant of this algorithm requires only O(K 2 log N )

space.

Note that the streaming variant of the algorithm is anal-
ogous to the corresponding variant of the optimal DP algo-
rithm, and is thus omitted from our presentation.

5 HCGreedyL2: a greedy heuristic

Due to the large space and running time requirements of the
HCDynL2 and HCApprL2 algorithms, we now seek to devise
a more efficient greedy solution for the same optimization
problem. At first sight our optimization problem looks similar
to the classical knapsack problem. However, our optimiza-
tion problem is much more difficult for two reasons. First,
even though the benefit of including any given coefficient
in the synopsis is fixed, its space requirement depends on
the position of the coefficient it the hierarchical path; it may
require either S1 or S2 space. Second, considering the search
space of all possible HCCs, observe that once a HCC is cho-
sen, there is a large number of HCCs which become invalid
and cannot be part of the solution; these are the hierarchically
compressed coefficients that overlap with the chosen HCC.
This dependency amongst the candidate HCCs is not typi-
cal in knapsack-like problems for which there exist greedy
algorithms with tight approximation bounds.

In analogy to most greedy heuristics for knapsack-like
problems, we try to formulate candidate solutions and utilize
a per-space benefit heuristic at each step of the algorithm.
In particular, our proposed HCGreedyL2 algorithm greedily
allocates its available space by continuously selecting (until
the space budget is exhausted) for storage the candidate path
that (i) does not overlap any of the already selected for stor-
age paths; and (ii) is estimated to exhibit the largest per space
benefit, if included in the solution. To increase the effective-
ness of the algorithm, it is crucial that, whenever possible,
candidate paths be combined with paths already selected for
storage, and that such storage dependencies be exploited. As
we will explain shortly, this can be achieved by some careful
book-keeping.

The operation of the algorithm is based on two main steps,
that are repeated several times, and that we will detail shortly:
(i) selecting good candidate paths per subtree; and (ii) mark-
ing candidate paths for storage and properly adjusting the
benefits of non-stored candidate paths. The first of these
phases first occurs at the initialization phase of the algo-
rithm by visiting all the nodes of the error tree, in order to
setup the values of several variables at each node. Table 5
provides a synopsis of these variables, and of the notation
used in the entire HCGreedyL2 algorithm. Appropriate defin-
itions will be provided in our discussion whenever necessary.
After this initialization phase, the coefficients in the path that
is estimated at the root node to exhibit the best per space
benefit are visited and marked for inclusion in the final solu-
tion (by modifying the State bitmap of these nodes). This is
achieved by the second phase. Following each such marking
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Table 5 Notation used in HCGreedyL2 algorithm

Symbol Description

Gr Mi Non-stored candidate path in ci ’s subtree with

the estimated maximum per space benefit

Gr Fi Non-stored candidate path in ci ’s subtree with the

estimated maximum per space benefit when storing ci

Owneri The hierarchically compressed coefficient in which ci

belongs to (Ø if ci has not been stored)

Gr Mi .b Benefit of Gr Mi

Gr Mi .sp Needed space for Gr Mi

Gr Fi .b Benefit of Gr Fi

Gr Fi .sp Needed space for Gr Fi

Statei [0..2] Bitmap of node i , consisting of 3 bits:

If State(0) is set, ci has already been selected for
storage

If State(0) and State(1) are set, ci = bottom
(Owneri )

Otherwise, if State(0) is set, State(2) denotes if set
(not set)

that ci is part of a path through its left (right) subtree

chMi , 2-bit bitmaps for retracing the algorithm choices
(determine

chFi through which action the paths Gr Mi and Gr Fi were
formed)

process, the first phase needs to be called for each visited
node of the error tree. Observe that calls to the second phase
and all subsequent calls to the first phase only visit nodes in
the currently selected path.

Before proceeding to our discussion, it is important to
emphasize that the paths Gr Mi , Gr Fi and Owneri (refer-
enced in Table 5) are not stored at each node, but can rather
be reconstructed by an appropriate traversal of the error tree.

5.1 Candidate path selection

The computation of the best candidate path in a subtree of
the error-tree structure is a bottom-up procedure. At each step
of the algorithm, at each node ci of the error tree we store
the benefit and the corresponding space of two candidate
paths: (i) the candidate path Gr Mi in the subtree of ci that is
estimated to achieve, if stored, the best per space benefit; and
(ii) the candidate path Gr Fi of ci ’s subtree that is estimated to
achieve the best per space benefit while storing the coefficient
ci . This implies that Gr Mi might be any path of the subtree
rooted at ci , whereas Gr Fi has to be a path containing ci .

In order to compute these two candidate paths along with
their corresponding benefits and their needed space, the
HCGreedyL2 algorithm considers combining the coefficient
value ci with the candidate paths computed at ci ’s two sub-
trees. This process utilizes some information that is produced

during the operation of the algorithm and is stored as a bitmap
State in each node, whereas the choices made are stored in
chF, chM (see Table 5).

In the following, we omit discussion on what happens in
the case of the root node for exposition purposes; the required
changes due to the root having a single child are straightfor-
ward.

5.1.1 Computing Gr Fi

The computation of Gr Fi depends on whether ci has been
stored (i.e., whether Statei (0) is set).

Coefficient ci has been stored. In this case there is no can-
didate path that can store ci . Thus, in this case we have
Gr Fi = Ø and we set Gr Fi .b = Gr Fi .sp = 0 and chFi =
00.

Coefficient ci has not been stored. The following choices
should be considered and the one with the highest per space
benefit is selected (by appropriately setting the value of chFi ):

1. Storing simply ci (chFi = 01). The space requirements
of this solution depends on whether ci can be attached
to an already selected path. If ci is a non-leaf node in
the error tree and either State2i (0) or State2i+1(0) is
set, then ci can be attached to such a path (through the
corresponding subtree) and Gr Fi .sp = S2. Otherwise,
we set Gr Fi .sp = S1. This solution has a benefit equal to
(c∗

i )2 if the available space (at the step of the algorithm
when this computation is performed) is at least Gr Fi .sp,
or 0 otherwise.

2. Storing ci and combining it with Gr F2i (chFi = 10) (or
combining it with Gr F2i+1 (chFi =11)). This solution
has an overall space requirement of S2+Gr F2i .sp (resp.,
S2+ Gr F2i+1.sp) and a benefit of (c∗

i )2+Gr Fi .b (resp.,
(c∗

i )2 + Gr F2i+1.b) if the available space (at the step of
the algorithm when this computation is performed) is at
least Gr Fi .sp, or −∞ otherwise.

Moreover, in all three cases presented above, we decrease
the Gr F.sp values by S1−S2 if the parent node of ci has been
marked for storage and is also the bottom-most coefficient in
its HCC. This is because Gr Fi can help reduce, if selected
for storage, the storage overhead for the parent node of ci .

5.1.2 Computing Gr Mi

The computation of Gr Mi also depends on whether ci has
been stored (i.e., whether Statei (0) is set).

Coefficient ci has not been stored. The following choices
should be considered and the one with the highest per space
benefit is selected (by appropriately setting the chMi

value):
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Table 6 Computed values at initialization phase

Node Gr Mi .b Gr Mi .sp Gr Fi .b Gr Fi .sp Statei chMi chFi

8 288 65 288 65 000 11 01

9 2 65 2 65 000 11 01

10 0 65 0 65 000 11 01

11 242 65 242 65 000 11 01

12 0 65 0 65 000 11 01

13 0 65 0 65 000 11 01

14 0 65 0 65 000 11 01

15 648 65 648 65 000 11 01

4 288 65 292 98 000 01 10

5 242 65 342 98 000 10 11

6 0 65 0 65 000 11 01

7 648 65 972 98 000 10 11

2 584 131 584 131 000 11 11

3 648 65 1134 131 000 10 11

1 3844 65 3844 65 000 11 01

0 10244 98 10244 98 000 11 11

1. The candidate path of solution Gr Fi (chMi = 11).
2. For non-leaf nodes, Gr Mi copies a candidate path from

one of its children, either Gr M2i (chMi =01) or Gr M2i+1

(chMi =10), selecting the one with the highest per space
benefit.

Coefficient ci has been stored. If ci is a leaf node, then
Gr Mi = Ø and we set Gr Mi .b = Gr Mi .sp = 0 and chMi =
00. For non-leaf nodes, Gr Mi examines the candidate paths
Gr M2i and Gr M2i+1 from its children nodes and copies the
one that exhibits the largest per space benefit.

Example 8 In Table 6 we depict the calculated Gr Mi , Gr Fi ,
Statei , chMi and chFi values and bitmaps computed at
each node of Fig. 1 during the initialization phase of the
HCGreedyL2 algorithm. Based on the normalized coefficient
values presented in Sect. 2, the benefit of storing each of the
16 coefficients is: [6400, 3844, 242, 162, 4, 100, 0, 324,

288, 2, 0, 242, 0, 0, 0, 648]. In this example, the size required
to store a coefficient coordinate or a coefficient value has been
set to 32 bits. The nodes in Table 6 have been ordered accord-
ing to their resolution level. Details on the selected HCCs are
provided later in this section. However, it is interesting to note
that, even though the final selection of the HCCs has been
presented in Sect. 2, the stored HCCs are produced by suc-
cessive steps where smaller HCCs are merged. For example,
by examining the Gr F1 values we observe that the HCC that
is estimated to achieve the best per space benefit at node c1

while also storing c1 contains only the node c1, and not the
entire path c15, c7, c3, c1. This path will gradually be formed
by the algorithm.

5.2 Marking paths for storage

After the path with the overall per space benefit has been
estimated (Gr M0), and its space Gr M0.sp is subtracted from
the available space, the process of traversing the error tree
to mark the coefficients in Gr M0 for storage is simple, due
to the storage of the chM and chF bitmaps at each node.
This top-down recursive process starts at the root node and
descends the path that leads to the node bottom(Gr M0). The
steps of this process are:

1. At each node ci of this path, we are asked to reconstruct
either the path Gr Mi or the path Gr Fi . Notice that recon-
structing Gr Mi may lead to reconstructing Gr Fi if chMi

= 11.
2. This process will never visit a node where the corre-

sponding chMi or chFi values are equal to ‘00’.
3. If reconstructing Gr Fi and chFi = 01, then ci is marked

as stored by setting the bit Statei (0) to 1. If in this case
Gr Fi .sp = S1, then Statei (1) is set and we recomputed
the Gr F and Gr M values at the two children nodes of ci ,
as described in Sect. 5.1. Otherwise, we reset State(1)
and assign the value of Statei (2) depending on which
path ci can be attached to (if it can be attached to paths
from both subtrees, pick any one of them randomly).

4. If reconstructing Gr Fi and chFi = 10 (11), we mark
ci for storage by setting Statei (0) to 1, resetting the
value of Statei (1) and setting the value of Statei (2) to
1 (0, respectively). We also recurse to reconstruct Gr F2i

(Gr F2i+1).
5. If reconstructing Gr Mi and chMi = 01 (10), then we

recurse to reconstruct Gr M2i (Gr M2i+1). After this
recursion, we need to check if the newly stored path in the
subtree of c2i (c2i+1) can be attached to ci . By following
the process described in Sect. 5.1, if this is detected the
value of Statei (1) is reset and the value of Statei (2) is
set to 1 (0, correspondingly). Also, in this case, the Gr F
and Gr M values of c2i+1 (c2i ) need to be recalculated,
since any path containing c2i+1 (c2i ) cannot lower, any
more, the storage cost of ci .

6. After possibly recursing to solutions in subtrees of ci , the
algorithm needs to recalculate the values of Gr Mi and
Gr Fi , and all the corresponding chMi and chFi variables
by executing the Candidate Path Selection phase on the
visited nodes.

The only detail that we have not discussed is what happens
if the selected path does not fit within the remaining space
budget. In this case we simply traverse the selected path but
mark for inclusion in the final solution only the highest coeffi-
cients in the path, such that the space constraint is not violated
(we thus omit coefficients at the bottom of the path).
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Table 7 Computed values after marking the first selected HCC for
storage

Node Gr Mi .b Gr Mi .sp Gr Fi .b Gr Fi .sp Statei chMi chFi

8 288 65 288 65 000 11 01

9 2 65 2 65 000 11 01

10 0 65 0 65 000 11 01

11 242 65 242 65 000 11 01

12 0 65 0 65 000 11 01

13 0 65 0 65 000 11 01

14 0 65 0 65 000 11 01

15 648 65 648 65 000 11 01

4 288 65 292 98 000 01 10

5 242 65 342 98 000 10 11

6 0 65 0 65 000 11 01

7 648 65 972 98 000 10 11

2 242 33 242 33 000 11 01

3 1134 99 1134 99 000 11 11

1 1134 99 0 0 110 10 00

0 1134 99 0 0 100 10 00

Example 9 Returning our attention to Table 6, we notice that
based on the chM0 and chF0 bitmaps, the selected solution
will need to store the coefficient c0 and combine it with an
HCC at its subtree (since chF0=11). The bit State0(0) is thus
set, while the bit State0(1) remains unset since this coeffi-
cient will surely not be the bottom-most coefficient in its
HCC. Since node 0 has only one child node in the error tree,
we must decide whether to consider that node 1 lies in its

Table 8 Computed values after marking the second selected HCC for
storage

Node Gr Mi .b Gr Mi .sp Gr Fi .b Gr Fi .sp Statei chMi chFi

8 288 65 288 65 000 11 01

9 2 65 2 65 000 11 01

10 0 65 0 65 000 11 01

11 242 65 242 65 000 11 01

12 0 65 0 65 000 11 01

13 0 65 0 65 000 11 01

14 0 65 0 65 000 11 01

15 0 0 0 0 110 00 00

4 288 65 292 98 000 01 10

5 242 65 342 98 000 10 11

6 0 65 0 65 000 11 01

7 0 65 0 0 100 01 00

2 584 131 584 131 000 11 11

3 0 65 0 0 100 01 00

1 584 131 0 0 100 01 00

0 584 131 0 0 100 10 00

left or right subtree. We have selected the latter option and,
thus, do not set the State0(2) bit. By recursing at node 1, we
see based on the chM1 and chF1 bitmaps, that the coefficient
c1 needs to be stored, and that we do not need to recurse to
children nodes. In this case, the bits State1(0) and State1(1)
need to be set. Since c1 became a new bottom-most coeffi-
cient at a new HCC, we recompute the Gr F and Gr M values
at its two children nodes, in order to take into account that
Gr F paths from these subtrees could help lower the stor-
age cost of c1. Please note that the Gr F values at nodes c2

and c3 both change (see Table 7), compared to the values in
Table 6. Then, moving bottom-up we need to compute the
Gr F1, Gr M1, Gr F0 and Gr M0 values, while properly set-
ting the chM and chF bitmaps at nodes c1 and c0. The calcu-
lated entries at each node after marking for storage nodes c0

and c1 are depicted in Table 7.
In Table 8, we depict the calculated entries after the algo-

rithm stores the next HCC, which contains the coefficients
c15, c7 and c3, and combines it with the first selected HCC.
This can be easily identified by examining the State bitmaps.
The five entries that are set at the first bit (from the left) of
these bitmaps translate to 5 stored coefficient values. The 1
entry that is set at the second bit of these bitmaps translates
to 1 different HCCs. Since c15 does not have any children
nodes, we do not needs to recompute the Gr F and Gr M at
any of its descendant nodes. However, since c1 seizes to be
the bottom-most coefficient at a HCC, the Gr F2 and Gr M2

values are recalculated to take into account that no path stor-
ing c2 can lower the storage cost of c1.

At this stage of the algorithm, the last HCC, containing
nodes c11, c5 and c2 can be stored.

5.3 Storing the selected solution

The process of storing the selected HCCs follows a preorder
traversal of the nodes in the error tree. At each visited node
ci , its input is a set (possibly empty) of straddling coefficient
values. This set corresponds to coefficient values that belong
to the same HCC, but where the lowest node in that HCC
has not yet been visited. Any time the algorithms reaches a
node ci where the two bits Statei (0) and Statei (1) are both
set, then the index/coordinate of ci and its coefficient value
along with the straddling coefficient values form a HCC. In
this case, the input list to the both subtrees of ci will be empty.

If only the Statei (0) is set, but not the bit Statei (1), then
depending on the value of Statei (2) the value ci is attached
to the list of straddling coefficient values for the appropriate
subtree of ci (the input list to the other subtree will be empty).
If, finally, Statei (0) is not set, then we simply recurse to the
two subtrees with their inputs being empty lists of straddling
coefficients.
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5.4 Space and running time complexities

For each node of the error tree there are O(1) stored variables.
Thus, the needed space is O(N ). At the initialization step,
the calculation of the Gr Mi , Gr Fi , chMi and chFi variables
requires O(1) time. Then, the algorithm repeatedly marks at
least one coefficient for storage. Thus, at most O( B

S2
) steps

can be performed. At each step a path originating at the root
of the error tree is traversed in order to mark for storage the
nodes in Gr M0. This process visits at most O(log N ) nodes.
At each node, the recalculation of the Gr Mi , Gr Fi , chMi

and chFi variables requires O(1) time. Finally, the storage
of the marked coefficients can be achieved in a single pass
of the error tree. Thus, the overall running time complex-
ity is O(N + B

S2
log N ) = O(N + B log N ). Note that the

running time complexity are on par with that of constructing
a conventional synopsis—hence, no significant increase in
data processing time is expected (see also Sect. 8).

Theorem 10 The HCGreedyL2 algorithm constructs a
HCWS given a space budget of B, in O(N + B log N ) time
using O(N ) space.

6 HCGreedyL2-Str: a streaming greedy algorithm

In order for our algorithms to adapt to streaming environ-
ments, we propose a streaming greedy algorithm, termed as
HCGreedyL2-Str in our discussion, for our optimization prob-
lem. As expected, the HCGreedyL2-Str algorithm shares some
common characteristics with the HCGreedyL2 algorithm in
the way that it constructs candidate HCCs for storage.

6.1 Order of processed wavelet coefficients

The algorithms proceeds by reading the data values one by
one and by updating the (normalized) values of the wavelet
coefficients. Note that the total number of data values to be
read does not need to be known in advance, since the nor-
malized value of a coefficient depends only on the number
of data values that lie beneath it in the error tree (and, thus,
from the difference in levels between the node and leaf coef-
ficient values in the error tree). This process has well been
documented in prior work [15].

When reading the n-th data value, the values of the wavelet
coefficients that lie in path(n) are updated. According to
Definition 3, a wavelet coefficient is closed only when all
the data values that beneath it in its error tree have been
read. Depending on the value of n, the number of coefficients
that become closed due to a new data value ranges from
0 to log n + 1. These newly closed coefficients all belong
to the bottom portion of path(n) that originates from the
last read data value and proceeds upwards in the error tree

until path(n) reaches the last error tree node for which the
data value belongs to its right subtree. Our HCGreedyL2-Str

algorithm processes these newly closed nodes of the error
tree in a bottom-up fashion.

6.2 Used data structures

At each step of the algorithm, the current selection of HCCs
is stored in a min-heap structure where the HCCs are ordered
based on their per space benefit.4 Each HCC is identified by
its bottommost coefficient. We defer a detailed description
and the implementation of this min-heap structure until later
in this section.

The min-heap does not store each HCC explicitly, but
rather a pointer to a structure containing: (i) the HCC; (ii)
the benefit of the HCC; and (iii) the required space for the
HCC. Please note that in order to guarantee that swapping
any pair of HCCs in the min-heap can be performed in O(1)

time (and thus guarantee the worst time complexity of the
First(), Pop() and Insert() operations, described in Sect. 6.4),
we cannot simply store the HCCs in the min-heap, due to their
variable size. We finally note that the number of different
HCCs stored in the min-heap is obviously O( B

S2
) = O(B).

Another important characteristic of our HCGreedyL2-Str

algorithm is that it does not fully combine the stored HCCs,
even though it accurately estimates their space requirements.
This means that there may exist pairs of HCCs (i.e., HCC h A

and HCC hB) in the min-heap such that parent(top(h A)) =
bottom(hB). In such a case, even though h A and hB are not
combined in one HCC, the storage overhead for bottom(hB)

is correctly set to S2 in our algorithm. We explain in Sect. 6.5
why our HCGreedyL2-Str algorithm utilizes such an approach
of storing HCCs.

Besides the min-heap structure our HCGreedyL2-Str algo-
rithm also utilizes two hash tables, termed as TopCoeff and
BottomCoeff, with a maximum of O( B

S2
) entries each. The

TopCoeff (BottomCoeff ) hash table maps the coordinate ci

of a coefficient to the stored HCC h A in the min-heap, such
that ci = top(h A) (ci = bottom(h A)). If the coordinate ci

is not the top (bottom) coefficient value stored in any HCC,
then the TopCoeff (BottomCoeff ) hash table does not contain
an entry for it.

6.3 Operations at each node

For each processed node ci our HCGreedyL2-Str algorithm
generates a straddling candidate HCC, termed as SGr Fi .
This straddling HCC is similar to Gr Fi , in that it corresponds

4 We can alternatively use any data structure, such as an AVL-tree,
which provides a worst case cost of O(log B) for the (i) search of the
stored item with the minimum per space benefit; (ii) the insertion of an
item; and (iii) the deletion of an item.
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to the non-stored candidate path in the node’s subtree with
the estimated maximum per space benefit when storing ci .
Thus, its computation is similar, with the only difference that
due to the streaming nature of the algorithm and the bottom-
up way of processing closed coefficients, there is no way that
ci has already been stored in a HCC. Thus, the only choices
considered for generating SGr Fi are restricted to:

– Simply storing ci . The space requirements of this choice
is S2 if either c2i or c2i+1 has been stored, or S1, other-
wise. Please note that if c2i or c2i+1 has been stored, then
these coefficients must be the top coefficients in a stored
HCC. This can be checked in O(1) time by looking at
the TopCoeff hash table. Let Ben1 denote the per space
benefit of this choice.

– Combining ci with SGr F2i (SGr F2i+1). The space
requirements for SGr Fi in this case is S2+SGr F2i .sp
(resp., S2+ SGr F2i+1.sp). Let Ben2 (resp., Ben3) denote
the per space benefit of this combination.

Given the aforementioned choices, SGr Fi is set to:

1. ci∪ SGr F2i , if Ben2 = max{Ben1, Ben2, Ben3} and
Ben2 is larger or equal to the per space benefit of SGr F2i .
In this case, SGr F2i+1 cannot be of any further use in
upper levels of the error tree. Thus, it is checked for inser-
tion to the min-heap, by comparing its per space benefit
to that of the stored HCC with the minimum per space
benefit (see Sect. 6.4).

2. ci∪ SGr F2i+1, if Ben3 = max{Ben1, Ben2, Ben3}
and, further, Ben3 is larger or equal to the per space
benefit of SGr F2i+1. In this case, SGr F2i cannot be of
any further use in upper levels of the error tree. Thus, it
is checked for insertion to the min-heap, by comparing
its per space benefit to that of the stored HCC with the
minimum per space benefit.

3. ci , otherwise. In this case, SGr F2i , SGr F2i+1 are
checked in succession for insertion to the min-heap, by
comparing their per space benefit to that of the stored
HCC with the minimum per space benefit.

Please note that, in the HCGreedyL2-Str algorithm, once
we have computed the SGr Fi coefficient for any node ci , we
no longer need to keep in main memory the straddling paths
of its two subtrees.

6.4 Detailing the operations of the Min-Heap

We now present the basic operations of the Min-Heap
structure.

1. First(): Returns the stored HCC with the minimum per
space benefit. This is straightforward. The operation
requires O(1) time.

2. Pop(): Removes the First() item. The operation adjusts
the size of the Min-Heap, based on two factors:
– The size of the removed HCC, termed as h A in our

discussion. This is available in the third field of the
item (see Sect. 6.2 on how HCCs are stored).

– Whether removing this item requires adjusting the
space of some other HCC hB . This case occurs when
parent(top(h A)) = bottom(hB) and the other child
coefficient of bottom(hB) is not currently stored in
the Min-Heap. The former can be tested by first prob-
ing the BottomCoeff hash table to see if parent
(top(h A)) exists as the bottom-most coefficient in a
stored HCC. The latter can be tested by then prob-
ing the TopCoeff hash table for the other child of
bottom(hB). If both conditions are satisfied, then the
space requirements of hB are adjusted and the stan-
dard heap procedure heapifyUp() is invoked in order
to make sure that no conditions are violated in the
path of the heap between the updated node and the
root of the heap. This heapifyUp() operation requires
O(log B) time.

Thus, the Pop() operation requires a total of O(log B)

time.
3. Insert(h A): Inserts the given HCC h A in the Min-Heap.

This operation is presented in Fig. 2. The running time
requirements of the Insert() operation depend on the size
of the inserted HCC and the number of popped HCCs
(lines 6–10). In the worst case, for a HCC containing
O(log n) coefficient values, the operation may require
O(log n × log B) time. However, an interesting obser-
vation is that for any HCC containing more than one
coefficient values, the insert operation is performed only
for the top coefficient value of the HCC. Thus, the amor-
tized cost of the insert operation per processed wavelet
coefficient remains O(log B).

4. Parse(): Scans the min-heap and extracts the stored HCCs
in a compact form with size at most B. In order to per-
form this step we need to combine the HCCs stored in
the Min-Heap. When checking each stored HCC h A, we
also check to see if there exists another unprocessed HCC
hB that needs to be processed before h A, and such that
h A can be attached on top of hB (so that their bitmaps
are combined). This requires checking the TopCoeff hash
table for the two children of bottom(h A). This step essen-
tially creates a recursive processing of the HCCs simi-
larly to a topological sort. Since the min-heap cannot
store more than O( B

S2
) entries, this operation requires a

total of O(B) time.
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Fig. 2 Sketch of insert algorithm

6.5 Details and remarks

A question that naturally arises is why we chose to store the
current selection of the HCCs in a way that does not aggres-
sively combine them, even though storage dependencies are
indeed exploited. If we had pursued to aggressively merge
stored HCCs, coefficient values with large benefits might end
up in HCCs with several other small coefficient values, e.g., a
HCC containing the coefficient values 〈800, 10, 20, 5〉. This
could potentially lead to HCCs with small to medium overall
per space benefit, even though a part of them exhibits a large
per space benefit. Please note that in the HCGreedyL2 algo-
rithm, such a problem did not exist, as HCCs were attached to
existing HCCs after exhibiting globally the best estimated per
space benefit. Due to the streaming nature of the HCGreedyL2-

Str algorithm, this global estimate cannot be achieved since
future parts of the error tree have not been unveiled yet. Thus,
we need to be careful in our decisions to aggressively merge
HCCs.

6.6 Running time and space requirements

Based on the analysis presented in Sect. 6.4, the operations
associated with inserting a HCC in the Min-Heap cost a total
of O(log B) time. The insert operation at some nodes may
exhibit a higher cost but, as we explained in Sect. 6.4, this
cost is amortized over the coefficient values that comprise
the HCC. The space requirements are those of the Min-
Heap, the two hash tables and the straddling coefficients. The
Min-Heap and each hash table requires O(B) space. Parsing
the Min-Heap to extract the synopsis also requires O(B)

time. There can be at most O(log n) straddling coefficients,
of total size O(log2 n). Thus, the amortized running time

requirements per processed data item are O(log B), while
the space requirements are O(B + log2 n).

7 Extensions and remarks

7.1 Multiple dimensions

The Haar decomposition of a D-dimensional data array A
results in a D-dimensional wavelet-coefficient array WA with
the same dimension ranges and number of entries. (The full
details as well as efficient decomposition algorithms can be
found in [2,28].) Consider a D-dimensional wavelet coeffi-
cient W in the wavelet-coefficient array WA. W contributes
to the reconstruction of a D-dimensional rectangular region
of cells in the data array A (i.e., W ’s support region). Further,
the sign of W ’s contribution (+W or −W ) can vary along
the quadrants of its support region. The blank areas for each
coefficient correspond to regions of A whose reconstruction
is independent of the coefficient, i.e., the coefficient’s con-
tribution is 0. Each data cell in A can be accurately recon-
structed by adding up the contributions (with the appropriate
signs) of those coefficients whose support regions include
the cell.

Error-tree structures for multi-dimensional Haar wavelets
can be constructed (in linear time) in a manner similar to
those for the one-dimensional case, but their semantics and
structure are somewhat more complex. A major difference
is that, in a D-dimensional error tree, each node (except for
the root, i.e., the overall average) actually corresponds to a
set of 2D − 1 wavelet coefficients that have the same sup-
port region but different quadrant signs and magnitudes for
their contribution. Furthermore, each (non-root) node t in a
D-dimensional error tree has 2D children corresponding to
the quadrants of the (common) support region of all coeffi-
cients in t .5 If the maximum domain size amongst all dimen-
sions is Nmax, the height of the error tree will be equal to
log Nmax. Note that the total domain size N can be as high
as N = N D

max when all dimensions have equal domain size.
Figure 3 depicts an example error-tree structure for a two-
dimensional 4 × 4 data set.

7.1.1 Multi-dimensional hierarchically compressed wavelet
synopses

A multidimensional hierarchically compressed wavelet syn-
opsis (MHCWS) groups nodes (not coefficients) into paths

5 The number of children (coefficients) for an internal error-tree node
can actually be less than 2D (respectively, 2D − 1) when the sizes of
the data dimensions are not all equal. In these situations, the exponent
for 2 is determined by the number of dimensions that are “active” at the
current level of the decomposition (i.e., those dimensions that are still
being recursively split by averaging/differencing).
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Fig. 3 Error-tree structure for the sixteen two-dimensional Haar coef-
ficients for a 4 × 4 data array (data values omitted for clarity)

and thus requires additional information as to which coeffi-
cients of each node are included in the synopsis.

Definition 4 The composite value N V of some node in the
multidimensional error-tree is a pair 〈NVBit, V 〉 consisting
of:

• A bitmap NVBit of size 2D −1 identifying which coeffi-
cient values are stored. The number of stored coefficient
values is equal to the bits of NVBit that are set.

• The set V of stored coefficient values.

Having properly defined the composite value of a node
we can now define a multidimensional hierarchically com-
pressed wavelet coefficient as follows.

Definition 5 A multidimensional hierarchically compressed
(MHCC) wavelet coefficient is a triplet 〈Bit, C, NV 〉 con-
sisting of:

• A bitmap Bit of size |Bit| ≥ 1, denoting the storage of
exactly |Bit| node values.

• The coordinate/index C of any stored coefficient in the
bottommost stored node.

• A set NV of |Bit| stored composite values.

We must note here that at any MHCC the coordinate of
any stored coefficient in its bottommost stored node can be
used, since the bitmap of that node’s composite value can
help determine which other coefficient values from the same
node have also been stored.

7.1.2 Changes to the algorithms

We now describe the necessary changes to the HCDynL2

and HCGreedyL2 algorithms for multi-dimensional data sets.
The modifications to HCApprL2 are similar to the ones of
HCDynL2.

Changes to HCDynL2. The extensions to the HCDynL2 algo-
rithm are analogous to the corresponding extensions of prior
DP techniques [9] to multi-dimensional data sets. In particu-
lar, when obtaining an optimal MHCWS given a space budget

B, the algorithm given budget B should consider (i) the opti-
mal benefit M[i, B] assigning space B to the subtree rooted
at node i ; and (ii) the optimal benefit F[i, B] assigning space
B to the subtree rooted at node i when at least one of the
coefficients of node i is forced to be stored (i.e., a compos-
ite value of the node is stored). The principle of optimality
also holds in this case for M[i, B] and F[i, B], implying that
optimal benefits at a node can be computed from optimal
solutions of the node’s subtrees.

At each node of the error tree, the optimal algorithm needs
to decide how many coefficients, if any, of this node should
be stored, whether they should be attached to some path of
its children subtrees, and how much space to allocate to each
child subtree. It should be noted that we only need to decide
how many coefficients (from 1 to 2D −1) of each node should
be stored, as it can be easily shown that among all coefficient
sets of k values, the set containing the coefficients with the k
highest absolute normalized values exhibits the best benefit.

When the algorithm checks if a node should be included
in the optimal solution but cannot be attached to any path of
the children subtrees, the space requirement for this node is
a function of the number k ≤ 2D − 1 of coefficients to be
included (a choice to be made): S1(k) = sizeof(Coords) +
2D +k ·sizeof(V alue). Similarly, when the node at question
can be attached to some path the space requirement is again
a function of the number k of selected coefficients: S2(k) =
2D + k · sizeof(V alue). Note that only in the first case the
node “pays” for the overhead sizeof(Coords) of creating a
new MHCC.

At each node of the error tree the algorithm must perform
two tasks: (i) sort the 2D − 1 coefficients of this node in
O(D2D) time and O(2D) space; and (ii) for each space bud-
get 0 ≤ b ≤ B∗ choose the optimal split of space among
the coefficients of this node and the 2D children nodes. Note
that, because a subtree rooted at a node at height l of the
error tree can have up to O(2Dl) nodes, the maximum alloted
space at such a node is B∗ = min{B, O(2Dl)}. The second
task can be performed in O(2D B∗2), by solving a dynamic
programming recurrence on a binary tree of height D con-
structed over the children nodes—for details refer to [9].
Using similar analysis with Sect. 3 and since there are at

most N D
max

2Dl = N
2Dl nodes at height l it follows that the space

complexity becomes O(2D N log B), whereas the time com-
plexity becomes O(2D N B).

Finally, note that the ratio of benefits between the HCDynL2

algorithm and the traditional technique can become as high

as 1+log Nmax×(2D−1)
m for m = � S1+log Nmax×(2D−1)×S2

S1−1 �. The
increased maximum value of the above ratio, when compared
to the one-dimensional case, is not surprising, as in multi-
dimensional data sets the existence of multiple coefficient
values within each node of the error tree provides far more
opportunities to exploit hierarchical relationships amongst
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stored coefficients, in order to reduce the storage overhead
of their coordinates. Also, note that in the multidimensional
case this storage overhead (and thus the size of S1) increases
with the number of dimensions, due to the increase in the
number of the coefficient coordinates.

Changes to HCGreedyL2. For the HCGreedyL2 algorithm,
when considering whether to include a node in a MHCC,
or to attach it to a MHCC originating from one of the node’s
subtrees, we utilize the node’s composite value that results
in the best per space benefit. This can be accomplished by
(i) sorting the node’s coefficient values based on their nor-
malized value; (ii) for 1 ≤ j ≤ 2D − 1 computing the per
space benefit of the composite value that stores the node’s j
largest normalized values; and (iii) selecting the composite
value with the overall best per space benefit. For nodes where,
at some point of the algorithm’s execution, some coefficient
values have already been selected for storage, we only need
to consider in the above case coefficient values that have not
already been included in the solution and properly determine
the space needed for their storage. The HCGreedyL2 algo-
rithm, given a budget of B, requires O(2D N ) space and only
O(D2D N + 2D B log Nmax) time.

7.2 Dealing with massive data sets

In order to improve the running time and space requirements
of our algorithms for massive data sets, we can employ an
initial thresholding step to discard coefficients with small
values and apply our algorithms to the remaining Nz � N
coefficients. Such an approach is commonly followed for
constructing wavelet synopses; the work in [28], for exam-
ple, maintains only Nz coefficients after the decomposition
to deal with sparse data sets of Nz � N tuples. Preserv-
ing only Nz coefficients means that there can be at most
Nz “important” nodes in the wavelet tree (in practice much
fewer, as many large coefficients usually reside in a single
node), which is a significant decrease compared to N/2D ,
the total number of nodes.

More precisely, it is easy to see that all of our algorithms
need to perform some computations to nodes that either (i)
contain a non-zero coefficient value; or (ii) contain non-zero
coefficient values at (at least) two of their subtrees. Thus,
the total number of nodes where some computation needs
to be performed is O(2Nz − 1) = O(Nz). By sorting these
nodes using a pre-order traversal it is easy to mark for each
node: (i) the closest ancestor anc(i) of i where computation
needs to be performed; (ii) the subtree of anc(i) that follows
i ; and (iii) the first descendant of i where computation needs
to be performed. This process requires O(Nz log Nz) time,
but allows for the execution of the algorithms with complex-
ities that depend on Nz rather than N . Of course, some care
is needed because the children of each node in the above

“sparse” error-tree are not direct descendants, thus requiring
proper calculation of the space needed when storing a node’s
composite value and combining it with a MHCC originat-
ing from one of the node’s subtrees. Thus, when attaching
a composite value to a MHCC that lies j levels below it in
the sparse error tree, the value of S2 must be set as follows:
S2(k) = j ×(2D −1)+ j +k ·sizeof(V alue). The first sum-
mand in the above formula is due to the storage of the NVBit
bitmaps for both the current node and all the intermediate,
missing nodes until reaching the MHCC of the descendant
node. The second summand determines the number of these
bitmaps, while the third summand is due to the storage of k
coefficient values in the node. Please note that each node of
the sparse error-tree may exhibit different S2 values for each
of its subtrees, due to the potentially different resolution lev-
els of each subtree’s root node.

7.3 Optimizing for other error metrics

All algorithms presented here can be made to optimize for
any weighted Lw

2 error metric. These error metrics include
the sum squared relative error with sanity bound s (set wi =

1
max{di ,s} ), and the expected sum squared error when queries
are drawn from a workload distribution, in which case the
weights correspond to the probability of occurrence for each
query (set wi = pi ).

For the weighted Lw
2 metric and using the standard Haar

decomposition process the Parseval theorem does not apply
and hence Problem 2 does not follow from Problem 1. How-
ever the recent work of [27] demonstrated that the Parseval
theorem applies when the decomposition process is altered to
incorporate the weights. The result is a modified Haar basis
for which the Parseval applies and, therefore, an analogous
to Problem 2 formulation exists and our algorithms require
no additional changes.

7.4 Query performance issues

For a synopsis size of B, due to the use of a variable-length
header for the stored HCC coefficients, the retrieval of a
single coefficient value requires O(B) time, in contrast to
O(min{B, log N }) time for the conventional wavelet synop-
ses, where binary search is employed if the stored coefficients
are sorted based on their coordinates. While this may seem
as a potentially large increase in the resulting query time,
we need to make two important observations: (i) the used
synopses are typically memory resident and of small size
(B � N ); and (ii) to answer even point queries, O(log N )

coefficients need to be retrieved. The number of retrieved
coefficients is increased even more if a query that requires
the evaluation of multiple individual data values (or data
values in multiple areas of the data) is issued. This has the
effect that a linear scan of the synopsis, to retrieve at batch
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all the desired coefficients, even in conventional wavelet syn-
opses, is often as efficient as performing a logarithmic (or
larger) number of binary searches in the synopsis. Thus,
we expect that any potential running time deterioration due
to the use of our proposed technique will be minimal. On
the other hand, the improvements in the obtained accuracy
achieved by the use of HCWS can be significant, as shown in
Sect. 8.

8 Experimental study

In this section, we present an extensive experimental study of
our proposed algorithms for constructing hierarchically com-
pressed wavelet synopses over large data sets. Our objective
is to evaluate the scalability and the obtained accuracy of our
algorithms when compared to conventional synopses. Our
main findings include:

• Improved space utilization. The algorithms presented
in this work create HCWS that consistently exhibit sig-
nificant reductions in terms of the sum squared error of
the approximation due to the improved storage utilization
of the selected wavelet coefficients.

• Efficient, near-optimal greedy HCWS construction.
Even though the HCGreedyL2 algorithm does not provide
any guarantees on the quality of the obtained solution, in
all of our experiments it provided near optimal results.
At the same time, the HCGreedyL2 algorithm exhibits
running time and space requirements on par with the
conventional synopsis construction method. Moreover,
our proposed HCGreedyL2-Str algorithm consistently
produces HCWS with errors very close to those of the
HCGreedyL2 algorithm.

8.1 Testbed and methodology

Techniques and implementation details. We compare the
algorithms HCDynL2, HCApprL2, HCGreedyL2, HCGreedyL2-

Str introduced in this paper against the conventional synop-
sis construction algorithm denoted as Classic. The Classic

algorithm utilizes a heap to identify the coefficients with the
largest absolute normalized values, while not exceeding the
available space budget. All algorithms were implemented in
C++ and the experiments reported here were performed on a
2.4 GHz machine.

Data sets. We have performed an extensive experimental
study with several one-dimensional synthetic and real-life
data sets; we present here the most significant findings. Each
synthetic data set, termed Zipfian, is produced by generat-
ing 50 different zipfian distributions with the same skew para-
meter (where the values are placed in random locations of the

data) and then summing up these 50 smaller data sets. We
vary the domain size from N = 214 up to 224 = 16, 777, 216
and examine two values of the zipfian parameter, z = 0.7 and
z = 1.2, i.e., average and high skew respectively. The first
real data set, denoted as Weather,6 contains N = 65, 536
solar irradiance measurements obtained from a station at the
University of Washington. The second real data set, denoted
as Light, consists of light measurements from the Intel Labs
data set [7]. In all experiments involving Light, we use the
measurements of the sixth mote (sensor) of this data set.

Performance metrics. We first investigate the running time
scalability of our algorithms when varying the available syn-
opsis budget, the data domain size and the ε parameter for the
HCApprL2 algorithm. In order to assess the quality of the con-
structed HCWS we measure the sum squared error (SSE). To
emphasize on the effectiveness over conventional synopses:
(i) we explicitly measure the SSE increase of Classic relative
to HCGreedyL2; and (ii) show how much more space (space
savings) we would need to allocate to a conventional synop-
sis in order for it to become as accurate as our constructed
HCWS. In a graph depicting the resulting SSE by all algo-
rithms when varying the synopsis size, the SSE increase in
absolute value can be measured at each point by the ver-
tical distance between the graph of the Classic technique
from the graph of either the HCDynL2, the HCApprL2, the
HCGreedyL2 or the HCGreedyL2-Str algorithm. Correspond-
ingly, in the same graph, the space savings of our algorithms
can be (roughly) measured, for any space budget assigned to
our algorithms, by the horizontal distance to the right, start-
ing of course at the point of the graph corresponding to our
technique and for the desired space budget, until we meet the
graph (error) of the Classic algorithm. Recall that the goal
of deploying a HCWS is to achieve better storage utiliza-
tion and to improve the accuracy of the synopsis by storing,
within a given space budget, a larger number of “impor-
tant” coefficient values than a traditional wavelet synopsis.
The space savings essentially provide us with an insight on
how many “important” wavelet coefficients the HCWS con-
tains, in addition to the ones selected by the Classic algo-
rithm, that are responsible for the achieved SSE reduction
(and, thus, how much can our algorithms exploit hierarchi-
cal relationships amongst coefficient values selected for stor-
age). The combination of the two performance metrics also
reveals some helpful characteristics on the distribution of the
coefficient values. For example, assume that our algorithms
consistently result in half the error achieved by the Classic

algorithm, but that the space savings increase (decrease) as
the synopsis size increases. This implies that as the synop-
sis size increases, and more coefficient values are stored, the
number of non-stored coefficient values that are responsible

6 Data available at:http://www-k12.atmos.washington.edu/k12/
grayskies/.
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for half of the remaining SSE also increases (decreases),
since the Classic algorithm requires increasingly more (less)
space to reduce its SSE by 50%.

Further, we explicitly measure the deviation of the error
exhibited by the solution of our HCGreedyL2 algorithm, when
compared to the corresponding optimal error exhibited by the
solution of our HCDynL2 algorithm, when varying either the
available synopsis budget, or the data domain size. We also
measure the errors achieved by our HCGreedyL2-Str algo-
rithm, when compared to the corresponding errors of our
HCGreedyL2 algorithm. Finally, we plot the approximation
ratio achieved by the HCApprL2 algorithm against the theo-
retical bound.

8.2 Experimental results

Scalability. Figure 4 investigates the scalability, in terms of
the total running time, for all methods while the synopsis size
and the domain size is varied. For the HCApprL2 algorithm
we also plot its running time when varying the approxima-
tion parameter. Figure 4a presents the running time for the
Weather data set when the available synopsis size increases
from 512 to 32,768 bytes. The approximation parameter for
the HCApprL2 algorithm was set to ε = 0.05 and 0.01.
Please note that logarithmic axes are used for both the result-
ing running time and the synopsis size. In this experiment,
the HCGreedyL2 and HCGreedyL2-Str algorithms consistently
construct a HCWS within a few hundredths of a second, and
almost as fast (with an increase in running time by a fac-
tor between 2 and 5) as Classic constructs a conventional
synopsis. The HCDynL2 algorithm could not construct large
HCWSs within a reasonable time, as depicted on Fig. 4a, due
to its linear dependency on B. Similar trends were observed
for all data sets and, thus, the graphs for the HCDynL2 algo-
rithm are often omitted.

Figure 4b illustrates the scalability of the algorithms as
the domain size increases from 214 up to 224 for the Zipfian
data set with a skew parameter of 1.2. The synopsis size is set
to a fixed percentage (4%) of the original data size. There-
fore, the time complexity of HCDynL2 essentially becomes
quadratic on the domain size. This is depicted on Fig. 4b,
as the running time of HCDynL2 for domains larger than
216 becomes prohibitive, while HCGreedyL2 can construct a
HCWS in about 3.5 s, even for a domain size of 224. The run-
ning time of the streaming variant HCGreedyL2-Str increases
at a lower rate than that of HCGreedyL2, as the domain size
increases. This is attributed to the fact that the running time
complexity for the HCGreedyL2-Str algorithm is based on a
pessimistic case where every HCC tested for insertion in the
min-heap requires O(log B) time. In practice, most of the
HCCs in large domains do not have a sufficiently large per
space benefit to be inserted into the min-heap, thus requiring

only O(1) time for them. Finally, note that even if it exhibits
running times that are up to 2 orders of magnitude larger
than the ones of HCGreedyL2, the HCApprL2 algorithm scales
significantly better than the HCDynL2 algorithm.

Figure 4c plots the running time of HCApprL2 as the appro-
ximation parameter ranges from ε = 0.0001 to 0.2 for the
Zipfian data set with a skew parameter of 1.2, N = 220 data
values and a fixed value of B = 32768. As the approximation
requirements relax, the running time of HCApprL2 decreases
exponentially.

HCWS Quality. In Figs. 5, 6, 7 and 8 we investigate the
quality of the HCWS synopses for the four data sets described
in Sect. 8.1, as we vary the synopsis size from 512 to 32,768
bytes. For all data sets, we measure the SSE of the resulting
synopses.

Figure 5a plots the SSE for all methods on the Zipfian

data set with the average skew value. The HCGreedyL2 algo-
rithm consistently constructs a synopsis with significantly
smaller errors compared to a conventional synopsis. More-
over, the HCGreedyL2-Str algorithm achieves similar bene-
fits, as its performance closely matches that of HCGreedyL2.
On the other hand, the accuracy of the HCApprL2 algorithm
quickly approaches the point where the algorithm manages
to construct a synopsis that has captured a sufficiently large
fraction 1/(1 + ε) of the data’s energy (and it is, thus, cer-
tainly also within the same 1/(1 + ε) factor from the opti-
mal algorithm)—hence, further increasing the budget leads
to the HCApprL2 algorithm constructing the same synopsis.
Figure 5b plots the SSE increase (i.e., the ratio of the SSE
errors) of Classic and HCGreedyL2-Str over HCGreedyL2. We
first observe that for a space budget of B = 4096, HCGreedyL2

constructs an HCWS that has almost 4.5 times less SSE than
a conventional synopsis. HCGreedyL2-Str constructs synop-
ses with similar SSE compared to HCGreedyL2. Comparing
the two greedy heuristics, HCGreedyL2-Str achieves 2% lower
SSE in the best case (B = 4096), and 7.4% larger SSE in
the worst case (B = 2048), than HCGreedyL2. Figure 5b
illustrates the space savings of the two greedy algorithms
compared to a conventional synopsis that would achieve the
same SSE. As the synopsis size increases, the space savings
of our algorithms in absolute values (i.e., in bytes) increase
as well. In relative terms (i.e., as a percentage to the syn-
opsis size), the best case for our methods appears for B =
4, 096, where a HCWS requires 57.4% less space than a
conventional synopsis. The space savings of HCGreedyL2-Str

show a similar trend with a maximum savings of 58% for
B = 4, 096.

Figure 6 repeats the above setup using the Zipfian data
set with high skew (z = 1.2). The higher skew results in a
more compressible data set with the SSE decreasing rapidly
with B, as depicted on Fig. 6a. In this data set, constructing
hierarchically compressed synopses proves highly beneficial
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Fig. 5 HCWS quality versus synopsis size for Zipfian, z = 0.7, N = 220
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Fig. 6 HCWS quality versus synopsis size for Zipfian, z = 1.2, N = 220

as shown in Fig. 6b and c. HCGreedyL2 construct a synop-
sis with up to 8.3 times lower SSE than Classic (for B =
8, 192). Furthermore, the space savings of the HCGreedyL2

algorithm are significant (up to 64% for a synopsis size of
B = 4, 096). Note that HCGreedyL2-Str constructs synopses
with marginally increased SSE compared to HCGreedyL2 (up
to 7% increase, with an average increase of 2%).

Figures 7 and 8 repeat the previous experimental setup for
the real-life data sets, Weather and Light, respectively. For
both data sets, the benefits, in terms of the reduction in the
SSE, increase with the synopsis size. For the Weather data
set, the HCGreedyL2 algorithm results in up to 2.36 times
lower SSE (for B = 32768), as shown in Fig. 7b. On the
other hand, Fig. 8b shows that in the Light data set, the
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Fig. 7 HCWS quality versus synopsis size for Weather, N = 216
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Fig. 8 HCWS quality versus synopsis size for Light, N = 215

HCGreedyL2 algorithm achieves a reduction in SSE of up to
4.7 times (for B = 32, 768). For both real data sets, and for
synopsis sizes larger than 1,024 bytes, the space savings of
our methods are consistently high (please note our earlier
discussion that the benefits in absolute terms continuously
increase in these cases as well, even though the relative space
savings start decreasing at some point), as shown in Figs. 7c
and 8c.

The effect of the domain size in the performance of our
algorithms is illustrated in Fig. 9. In this setup we use the
Zipfian data set with the high skew value (z = 1.2) and
vary the domain size from N = 214 up 224, while maintaing
the synopsis size to 4% of N . Similar findings hold for other
space ratios as well as for the average skew data set. As seen in
Fig. 9a, both greedy variants consistently construct synopses
with lower SSE (up to 7.4 times) than Classic. Similarly,
our greedy heuristics are able to achieve significant space
savings (up to 69% for the HCGreedyL2 algorithm and up
to 66% for the HCGreedyL2-Str algorithm), compared to the
Classic algorithm.

HCGreedyL2, HCGreedyL2-Str and HCApprL2 Accuracy. The
HCGreedyL2 and HCGreedyL2-Str algorithms, as we have
seen, require only frugal time and space in order to construct

a wavelet synopsis when compared to the optimal HCDynL2

algorithm. A question that naturally arises is how close is the
error of a HCWS constructed by the greedy algorithms to the
one of the optimal HCWS. Thus, in the following set of exper-
iments we measure the SSE increase incurred by HCGreedyL2

and HCGreedyL2-Str when constructing a HCWS—this is,
essentially, the ratio between the errors of the greedy vari-
ants and the HCDynL2 algorithms.

Figure 10a shows the SSE increase ratio for the Weather
data set as the space budget is varied from 512 to 4,096 bytes.
It is easy to see that the error of the HCWS obtained by
HCGreedyL2 (HCGreedyL2-Str) is always within 1.6% (4.6%)
of the error achieved by the optimal HCWS. Figure 10b
shows the SSE increase for the Zipfian data set as the
domain size varies from 210 to 215, while the synopsis size is
set to 1% of the original data. Such a setup is chosen so that
the HCDynL2 algorithm, which provides the optimal HCWS,
can execute within the available memory and within a time
window of one hour. Again, the error of the HCWS obtained
by HCGreedyL2 is within 2.2% of the error achieved by the
optimal HCWS, while in three cases the HCGreedyL2 algo-
rithm produced the optimal solution. Regarding the accuracy
of HCGreedyL2-Str, note that in the worst case it produces
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Fig. 10 HCGreedyL2, HCGreedyL2-Str, and HCApprL2 accuracy

HCWS with error which is within 12% (and with an average
value of 4%) of the optimal.

To measure the quality of HCApprL2, we plot the approx-
imation ratio (benefit of constructed HCWS over the benefit
of the optimal HCWS) for HCApprL2 as ε varies in Fig. 10c.
Further, we also plot the theoretical bound of 1

1+ε
for refer-

ence. Observe that HCApprL2 consistently achieves a HCWS
with approximation ratio significantly larger than the theo-
retical bound.

9 Related work

The wavelet decomposition has been applied successfully
as a data reduction mechanism in a wide variety of appli-
cations. Wavelets have been used in answering range-sum
aggregate queries over data cubes [28,29] and in selectiv-
ity estimation [21]. The effectiveness of Haar wavelets as
a general-purpose approximate query processing tool was
demonstrated in [2]. For the case of data sets with multi-
ple measures the authors in [5,6] introduce the notion of
extended wavelets; some further improvements were

presented in [15], where a streaming algorithm for the above
problem is also introduced. A common characteristic of the
work in [5,6,15] with this paper is that all of these papers
seek to exploit storage dependencies amongst stored coeffi-
cient values. However, these storage dependencies are only
amongst coefficient values, of different measures, that corre-
spond to the same coefficient coordinates. Thus, the storage
overhead of a coefficient value is not influenced by whether
other coefficient values in the path towards the root of the
error tree have also been stored. This observation implied
that the error tree structure does not need to be taken into
account at all. Due to this crucial difference with the prob-
lem tackled in this paper, the techniques in [5,6,15] cannot be
used to solve our optimization problem, and are in fact com-
pletely different than the techniques that we propose here.
Similarly, extending our proposed algorithms of this paper
to multi-measure data sets requires significant modifications
and is an interesting topic of future work. I/O efficient algo-
rithms for maintenance tasks were presented in [16].

In a previous work [1], the authors proposed the storage of
coefficient values forming a rooted subtree of the error tree.
While such an approach was guaranteed to provide a worse
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benefit than the conventional thresholding process, their tech-
niques performed well for signal de-noising purposes. How-
ever, this work neither considered reducing the storage over-
head of the wavelet coefficients’ coordinates, nor did it incor-
porate such an objective in the thresholding process. More-
over, the requirement that rooted subtrees be stored, rather
than arbitrary paths of coefficient values, often required the
storage of many small coefficient values that simply hap-
pened to lie on root-to-leaf paths of other large coefficient
values.

A lot of recent work focus on constructing wavelet syn-
opses that minimize error metrics other than SSE. The work
in [8] constructs wavelet synopses that probabilistically min-
imize the maximum relative or absolute error incurred for
reconstructing any data value. The work in [4] provides a
sparse approximation scheme for the same problem. While
solving entirely an entirely different problem, our HCApprL2

algorithm shares in fact several common characteristics in its
operation with the algorithm in [4]. However, the HCApprL2

algorithm is slightly more complicated due to the two mutu-
ally recursive functions that it needs to approximate, and
the increased number of breakpoint combinations of chil-
dren nodes that it needs to consider in its operation. Such
details also lead to a more tedious proof of its correctness.
The work in [9] showed that it is possible to deterministi-
cally construct wavelet synopses for the same problem as
in [8] and provided a novel dynamic programming recur-
rence, extensible [10] to any distributive error metric. Similar
ideas were employed in [23] to construct optimal synopses in
sub-quadratic time for a particular class of error metrics. Fur-
ther, the work in [12] improves the space requirements of the
aforementioned dynamic programming algorithms. For the
same problem of optimal weighted synopses, the work in [27]
constructs a wavelet-like basis so that the Parseval’s theorem
applies and, thus, the conventional greedy thresholding tech-
nique can be used. Assuming all range-sum queries are of
equal importance, the authors in [20] proved that the heuris-
tics employed in [21] are in fact optimal. The works in [13,14]
showed that for error metrics other than SSE, keeping the
original coefficient values is suboptimal. Hence, they pro-
pose approximation algorithms for constructing unrestricted
wavelet synopses that involve searching for the best value to
assign for each coefficient stored.

Wavelets have also found broad use in data stream envi-
ronments. The dynamic maintenance of Haar synopses was
first studied in [22]. The works in [3,11] use sketching tech-
niques for maintaining conventional wavelet synopses over
rapidly changing data streams. The approximation schemes
of [13,14] for unrestricted wavelet synopses are also exten-
sible for the case of time-series data streams. A fast greedy
algorithm for maximum-error metrics was introduced in [18]
for the problem of constructing wavelet synopses over time-
series data streams.

10 Conclusions

In this paper, we proposed a novel compression scheme for
constructing wavelet synopses, termed hierarchically com-
pressed wavelet synopses (HCWS). Our scheme seeks to
improve the storage utilization of the wavelet coefficients
and, thus, achieve improved accuracy to user queries by
reducing the storage overhead of their coordinates. To accom-
plish this goal, our techniques exploit the hierarchical depen-
dencies among wavelet coefficients that often arise in real
data sets due to the existence of large spikes among neighbor-
ing data values and, more importantly, incorporate this goal
in the synopsis construction process. We initially presented
a dynamic programming algorithm, along with a streaming
version of this algorithm, for constructing an optimal HCWS
that minimizes the sum squared error given a space budget.
We demonstrated that while in the worst case the benefit of
our DP solution is only equal to the benefit of the conven-
tional thresholding approach, it can often be significantly
larger, thus achieving significantly reduced errors in the data
reconstruction. We then presented an approximation algo-
rithm with tunable guarantees leveraging a trade-off between
synopsis accuracy and running time. Finally, we presented a
fast greedy algorithm, along with a streaming version of this
algorithm. We demonstrated that both of our greedy heuris-
tics always exhibited near-optimal results in our experimen-
tal evaluation, with a running time on par with conventional
thresholding algorithms. Extensions for multi-dimensional
data sets, running time improvements for massive data sets
and generalization to other error metrics were also intro-
duced. Extensive experimental results demonstrate the effec-
tiveness of HCWS against conventional synopsis techniques.
As a concluding remark, future work directions include the
design of algorithms for creating HCWS that optimize for an
even wider class of error metrics.
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