
The VLDB Journal (2008) 17:443–467
DOI 10.1007/s00778-006-0016-z

REGULAR PAPER

Bandwidth-constrained queries in sensor networks

Antonios Deligiannakis · Yannis Kotidis ·
Nick Roussopoulos

Received: 4 March 2005 / Accepted: 3 December 2005 / Published online: 1 September 2006
© Springer-Verlag 2006

Abstract Sensor networks consist of battery-powered
wireless devices that are required to operate unattended
for long periods of time. Thus, reducing energy drain is
of utmost importance when designing algorithms and
applications for such networks. Aggregate queries are
often used by monitoring applications to assess the
status of the network and detect abnormal behavior.
Since radio transmission often constitutes the biggest
factor of energy drain in a node, in this paper we pro-
pose novel algorithms for the evaluation of bandwidth-
constrained queries over sensor networks. The goal of
our techniques is, given a target bandwidth utilization
factor, to program the sensor nodes in a way that seeks
to maximize the accuracy of the produced query results
at the monitoring node, while always providing strong
error guarantees to the monitoring application. This is
a distinct difference of our framework from previous
techniques that only provide probabilistic guarantees
on the accuracy of the query result. Our algorithms are
equally applicable when the nodes have ample power
resources, but bandwidth consumption needs to be min-
imized, for instance in densely distributed networks, to
ensure proper operation of the nodes. Our experiments
with real sensor data show that bandwidth-constrained
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queries can substantially reduce the number of messages
in the network while providing very tight error bounds
on the query result.
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1 Introduction

Sensor networks consist of hundreds or thousands of
inexpensive wireless sensor nodes. Their applications
span different domains, from habitat monitoring to loca-
tion tracking and inventory management. Each sensor
node is able to sense its surroundings by obtaining appro-
priate measurements, perform simple computations and
relay the results to other nodes in the network. Process-
ing in sensor networks is often driven by designated
monitoring nodes, which usually possess increased pro-
cessing, storage and energy resources, when compared
to the other nodes in the network. These monitoring no-
des often evaluate the current state of the network by
issuing continuous queries [5,37] over the data collected
by the sensors.

Because of the multi-hop communication between
nodes in sensor networks, the broadcast nature of the
transmitted messages and the high density of nodes in a
typical installation, collecting individual node measure-
ments at the monitoring node is immensely expensive.
Aggregation is an effective means to reduce the data
measurements into a much smaller set of comprehen-
sive statistics, like sum, average etc. In order to obtain
the full benefits of data aggregation, recent proposals
perform the process inside the network [4,19,24,34].
First, a routing path, which is commonly referred to
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as the aggregation tree, to the monitoring node is
established. Then, through the use of a carefully de-
signed transmission schedule, nodes are programmed
to combine measurements that they receive from their
descendants in the topology and propagate a single value
to their ancestors. With proper synchronization [24], the
number of messages required to update the aggregate
at the monitoring node is equal to the number of edges
in the aggregation tree.

In-network data aggregation has been shown to re-
duce the number of messages in the network, often by
more than an order of magnitude [24,32]. However, in
large networks, especially when the monitoring node
is several wireless hops away, the cost of aggregation
may still be significant. In densely distributed networks,
proper control on the bandwidth consumed by each
running query is essential to guarantee that parts of the
network are not overburdened and that all required pro-
cessing can be performed by the network. For instance,
a continuous user query that aggressively computes the
average temperature readings of all sensors nodes every
second may consume all available bandwidth and essen-
tially block out other significant processing assigned
to the nodes. As our experimental evaluation demon-
strates, often a substantial reduction in the consumed
bandwidth during aggregate computation, achieved by
suppressing some update messages, only slightly impacts
the accuracy of the produced results.

Having control over the bandwidth consumed by a
posed aggregate query is also important to ensure the
longevity of the network, since transmission is the big-
gest source of energy drain in sensor nodes [14]. This
may not be a major concern when sensor nodes are
attached to larger devices with ample power supply,
but becomes critical when nodes are powered by small
batteries. The reduction in bandwidth consumption re-
sults in an equally important reduction in the energy
consumption of the sensor nodes, since this is often di-
rectly proportional to the number of transmitted and re-
ceived bits [17,23,36]. We need to note that, depending
on the radio technology used, each transmitted message
may drain energy not only from the transmitting
node and the intended recipient, but also from other
nodes in the vicinity of the transmitting node which also
receive the message due to the wireless nature of the
communication.

1.1 Limitations of prior techniques

A straightforward method to limit the bandwidth con-
sumption of a query would be to increase the sampling
period (often called epoch duration[24]) of collecting a
new measurement. However, such an approach leaves

us unable to observe and react quickly to changes in
the behavior of nodes within the longer epoch duration.
Recently, novel algorithms that build probabilistic mod-
els of the observed data and then use these models to
probe the sensors for their measurements in a limited
amount of epochs, depending on the confidence of the
constructed model, have been proposed [13,22]. How-
ever, these techniques cannot provide strong determin-
istic guarantees on the quality of the produced result.
The provided guarantees are only probabilistic ones, and
the accuracy of these guarantees depends on whether
the real-time observed data are similar to the training
data used for building the model. As the authors of [13]
state, “for models to perform accurate predictions they
must be trained in the kind of environment where they
will be used”. While the acquisition of the appropri-
ate set of training data may be feasible in scenarios of
controlled environments, such as temperature monitor-
ing applications within a lab, in applications where the
sensors are thrown over hostile environments or disas-
ter areas this is an unrealistic assumption. Moreover,
the techniques in [13] cannot be used for the detection
of outliers, meaning events or measurements that devi-
ate significantly from either the corresponding values
observed in other sensors, or in the same sensor but over
prior time periods. However, the purpose of monitoring
applications is often to detect such large deviations from
the normal behavior, since these deviations may trigger
some alert or require appropriate action to be taken.
Alternative techniques that perform some sort of sam-
pling (uniform or biased) of the data sources face similar
drawbacks.

1.2 Our proposal

A more robust approach to limit the bandwidth con-
sumption of a query is to let the application define the
required epoch duration and a bandwidth utilization
factor B_Util. This is a single parameter with a value
between 0 and 1. A value of 1 for B_Util corresponds
to an unrestricted evaluation of the query, where each
node makes one transmission per epoch. This results in
an exact computation of the aggregate at the monitoring
node using T transmissions, where T is the number of
nodes used in the query, besides the monitoring node. A
value of B_Util lower than 1 corresponds to a bandwidth
constrained query evaluation, during which the average
number of transmissions per epoch will be B_Util×T.

In a bandwidth constrained query evaluation, we
would like the aggregate value V̂ reported to the moni-
toring node to be as close as possible to the true aggre-
gate value V of the measurements collected by the
sensor nodes. In order to provide strong deterministic
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guarantees, the objective of our algorithm will be to
minimize the maximum possible error |V −V̂| and make
it available at the monitoring node. The existence of
these error guarantees at each time epoch, indepen-
dently of the characteristics of the monitored data, is
a distinct difference of our approach from prior proba-
bilistic techniques.

A premise when designing algorithms for sensor net-
work applications is that they should require minimum
state information and that this information should be
readily available in each node. Collecting individual
node statistics at a central node for (re-)programming
the nodes is not efficient because of the overhead for
communicating this information, which cannot be aggre-
gated since individual node statistics are required. In
our work we will, thus, seek to develop an algorithm
that bases its decisions on a small number of easy to
calculate statistics that can be aggregated during query
processing.

In this paper we propose the marginal gains adjust-
ment (MGA) algorithm, a localized algorithm based on
the idea of marginal gains, for the problem of bandwidth-
constrained aggregate continuous queries over sensor
networks. Similarly to prior approaches [10,27,32] that
seeked to reduce the bandwidth consumption in sensor
networks, our MGA algorithm initially installs an error
filter in each node. What is important though is the way
that, depending on the actual bandwidth consumption,
our MGA algorithm periodically modifies these filters
in order to try to equate the actual bandwidth consump-
tion to the desired one, but also to provide as strict
error guarantees as possible. These error guarantees are
always known to the monitoring node.

1.3 Contributions

Our contributions are summarized as follows:

1. We introduce the notion of bandwidth-constrained
queries as a means of reducing the bandwidth con-
sumption and energy drain during query evalua-
tion, while providing deterministic error guarantees
to the monitoring application. We illustrate how
the reduction in the number of messages transmit-
ted during query execution translates to reduced
energy drain in the network using a simplified cost
model. This allows the application to properly mod-
ify the bandwidth alloted to a continuous query
based on the desired average energy consumption
in the network.

2. We introduce the notion of the marginal gain of a
node or an entire subtree and use it in our algorithm
to determine the amount of bandwidth allocated to

each node or subtree. The operation of our
algorithm is symmetric for the cases of both pos-
sible under-utilization and over-utilization of the
bandwidth. The algorithm proceeds by disseminat-
ing positive or negative bandwidth amounts in a
localized manner between parent and child nodes
in the aggregation tree. Each node then translates
the received bandwidth amount to an appropriate
decrease or increase, respectively, of its filter width.
This procedure is performed using simple, local sta-
tistics maintained by the nodes during the execution
of the query.

3. While our algorithm is designed to limit the aver-
age bandwidth consumption during query execu-
tion, we also discuss simple extensions that allow
us to provide strict bandwidth guarantees to all or
parts of the aggregation tree. These extensions are
often necessary to ensure that individual areas of
the network are not over-burdened during query
execution. We also discuss the necessary extensions
in case the aggregation tree is modified, for example
when nodes join or leave the query.

4. We present adaptations of prior techniques for the
evaluation of bandwidth-constrained queries in
sensor networks and draw direct comparisons to our
MGA algorithm.

5. We present an extensive experimental analysis of
our algorithm in comparison to previous techniques
using real and synthetic sensor data. Our experi-
ments validate our approach and demonstrate that,
for the same average bandwidth consumption of the
query, our techniques outperform previous tech-
niques by providing significantly more tight, often
by more than an order of magnitude, error guar-
antees. In one case, using a bandwidth constrained
query we achieved a relative error in the approxi-
mation of just 0.1% using 5% of the bandwidth that
an unconstrained evaluation would require. Thus,
many applications can benefit from our framework
by substantially reducing the number of messages,
with little sacrifice in the quality of the aggregates.

The rest of the paper is organized as follows.
Section 2 presents related work. In Sect. 3 we com-
ment on the sources of energy drain in sensor nodes
and show that bandwidth constrained queries can have
a significant impact in the network’s lifetime. In Sect. 4
we detail our problem and present our framework. In
Sect. 5 we present our MGA algorithm for dynami-
cally programming the sensor nodes to operate in band-
width-constrained queries and also discuss interesting
extensions to the original algorithm. In Sect. 6 we pres-
ent alternative techniques for our application, discuss
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their advantages and shortcomings, and draw direct
comparisons to our method. Section 7 contains our
experiments, while Sect. 8 contains concluding remarks.

2 Related work

There have been several recent proposals, such as COU-
GAR [38] and TinyDB [24], on using embedded data-
base systems in sensor networks. A declarative query
language like SQL provides far greater flexibility than
hand-coded programs that are pre-installed at the sen-
sor nodes [25]. Another advantage is that the database
system can be used to provide energy-based query opti-
mization. In [24], nodes of the aggregation tree care-
fully synchronize the periods when they transmit data.
The idea is to subdivide each epoch into intervals and
have parent nodes in the tree listen for messages from
their children during pre-defined time-slots. This allows
the nodes to power-down their radios when not neces-
sary and reduce their energy and bandwidth consump-
tion. Another notable method for synchronizing the
transmission periods of nodes is the recently proposed
wave scheduling approach of [12]. These optimizations
are orthogonal to our framework. In fact, our algo-
rithm should be implemented on top of a protocol like
TAG [24] to obtain its maximum benefits.

The networking aspects of wireless sensor nodes is a
topic that has gained a lot of attention in the network-
ing community. Because of the unattended nature of
these networks, nodes must co-operate to perform the
task at hand. Thus, nodes must be able to self-config-
ure [3], discover their surrounding nodes [14,16] and
compute energy-efficient data routing paths (such as
the aggregation tree [19]) [4,17,23,24,34,36]. The tech-
niques developed in the above work are complementary
to our work, since while the above techniques help deter-
mine energy-efficient aggregation trees, our algorithms
further reduce the amount of information flowing in
the network. In [8], a framework for compensating for
packet loss and node failures during query evaluation
is proposed. In the database community additional is-
sues such as data modeling and acquisition [13,21] and
data compression [9,11] have been recently addressed.
Distributed storage management is another topic that
brings together the networking and database communi-
ties [12,15,31].

Our work is also related to the area of continuous que-
ries over data streams, which has been broadly studied
in recent years [5,18,26]. Olston et al. [28–30] investi-
gated the tradeoffs between precision and performance
in cached and replicated data. In [30] the emphasis is
on determining when cached objects of remote data

sources should be refreshed in order to minimize the
average divergence of the cached objects given a server-
size bandwidth constraint. The used divergence func-
tion can either represent the staleness or the update lag
of the cached object, or the value deviation between
the object’s cached and current values. In our experi-
ments (Sect. 7) we present a modification of this algo-
rithm, that we term as the threshold-based adjustment
algorithm (TBA), for the case of sensor networks and
compare its performance to our MGA algorithm. The
work in [27] also discusses extensions for the execution
of multiple concurrent continuous queries. Several of
these ideas can also be combined with our algorithms.
On the other hand, earlier work in distributed constraint
checking [1,35] cannot be directly applied in our setting,
because of the different communication model and the
limited resources at the sensors. The evaluation of prob-
abilistic queries over imprecise data was studied in [6,7].
Extending this work to hierarchical topologies, such as
the ones studied in our paper, is an open research topic.
Finally, [2,20] investigate decentralized algorithms for
aggregate computations with applications in P2P and
sensor networks.

The problem of minimizing the number of messages
exchanged in the network for a given error constraint
has been studied in [10,32]. This is the dual problem
of the one that we consider in this paper. In [32] the
authors suggest using a uniform distribution of the error,
while [10] distributes the error based on local statistics
collected on a node. The problem that we study here is
harder than the dual worked in [10] for hierarchical net-
works and in [27] for flat topologies. In the dual problem,
both the given constraint and the quantity controlled
at each node are the same; namely the error of either
the application or of individual nodes. Moreover, in the
dual problem the overall error of the application cannot
change based on the underlying data distribution, and
no guarantees are given for the bandwidth consumption.
On the contrary, in the evaluation of bandwidth-con-
strained queries, the given constraint is the bandwidth,
which is different than the quantity that we control on
each node: the node’s filter setup. As is explained in
Sect. 5, the overall bandwidth consumption needs to be
carefully monitored and then properly disseminated to
nodes and translated in them to update their error filters.

While in [10] all nodes have the same behavior during
updates (they all shrink their filters to generate the error
budget, as was suggested in [27]), in our algorithm a node
may shrink or expand its filter. This decision depends on
the observed bandwidth consumption, its atomic behav-
ior in the past few epochs and the computed marginal
gains of a change in its filter. Moreover, note that the
techniques in [10] possess two main drawbacks when
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applied to bandwidth-constrained queries. In [10] even
when the data characteristics do not vary and a good
filter configuration has been reached, a considerable
amount of messages needs to be transmitted in each
update period due to the constant modification of the
filters. This makes it practically impossible to achieve
small bandwidth targets. On the contrary, in our case
if the bandwidth consumption is close to the target no
update messages are sent. Moreover, the error dissemi-
nation process in [10] considers only the potential gain of
nodes/subtrees and not the size of the error filters, thus
making the process biased towards nodes with large fil-
ters. The algorithms in this paper do not suffer from the
same drawback, thus allowing for the judicial allocation
of bandwidth on each sensor node.

3 Benefits of constrained bandwidth utilization

In this section we provide some background information
needed in the discussion of this paper. We first present a
description of the characteristics of sensor nodes, focus-
ing on the sources of energy drain in sensor networks,
and then provide an analysis of the expected benefits
on the network’s lifetime when applying techniques that
constrain the bandwidth consumption in these networks.

3.1 Characteristics of sensor nodes

Each sensor node may be composed of several parts
including, among others, a processing unit (CPU), a
memory component, a battery that supplies the sensor
with the required energy for its operation, a radio trans-
mitter that facilitates the communication with other
sensor nodes, and any sensing elements required for
the collection of the sensor measurements. Examples of
such sensing elements include microphones for acoustic
sensing, accelerometers and temperature sensors.

Most sensor network applications face severe energy
and bandwidth constraints. The deployment of the sen-
sor nodes is typically unattended, and replacing the sen-
sor batteries may not only be expensive, but sometimes
impossible to do right away (e.g. disaster areas). More-
over, while the processing and memory capabilities of
sensor nodes increase at a rate similar to Moore’s law,
the amount of energy stored in the batteries used in such
nodes has exhibited a mere 2–3% annual growth. On the
other hand, using sensor nodes with large battery units,
and therefore more energy, is often not a viable solu-
tion due to the associated increased size and cost of the
sensor nodes. Therefore, unless the sensors are attached
to and powered by a larger unit, designing energy effi-
cient protocols is essential to increase the lifetime of the
sensor network.

The actual energy consumption by each sensor node
depends on its current state. In general, each sensor
node can be in one of the following states:

1. Low-duty cycle: In this state the node is at a sleep
mode, consuming a minimal amount of energy. The
sensor node performs no processing or communica-
tion during this state.

2. Receiving/Transmitting/Idle Listening: In this state
the node either receives, transmits or listens for data
or control messages intended for the node. The cost
of transmission increases rapidly with its range, that
is the maximum distance from the transmitting node
within which other sensors are able to receive the
message. For long-distance radios, the transmission
cost dominates the receiving and idle listening costs.
For short-range radios, these costs are comparable.
For example, in the Berkeley MICA2 motes (Fig. 1),
the power consumption ratio of transmitting/receiv-
ing at 433 MHz with RF signal power of 1mW is
1.41:1 [39]. This ratio becomes larger than 3:1 when
the radio transmission power is increased [33]. The
idle listening cost is substantial and often compara-
ble to the energy of receiving data.

3. Processing: The node performs computation based
on its obtained measurements and its received data.
The cost of processing can be significant but is gen-
erally much lower than the cost of transmission.
For example, in the Berkeley MICA nodes sending
one bit of data costs as much energy as 1,000 CPU
instructions [25].

The actual energy consumption in any of the above
states depends on the actual model of the sensor node
and its radio and CPU characteristics. Table 1 summa-
rizes some of the characteristics for the MICA2 mote.
To increase the lifetime of the network, some common
goals of sensor network applications are (in order of

Fig. 1 The MICA2 Mote
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Table 1 Characteristics of the MICA2 mote

Characteristic Value

CPU 7.3828 MHz
Memory 4 KB SRAM, 128 KB FLASH
Additional storage 32 KB EEPROM
Transmission range 1000 ft
Battery 2 AA Batteries
Radio current draw 25 mA (Transmission max power)

8 mA (receiving)
<1 uA (sleep)

importance) to maximize the time when a node is in a
low-duty cycle, to reduce the amount of transmitted and
received data, to reduce the idle listening time and to
reduce processing.

3.2 Energy benefits of bandwidth-constrained queries

We now seek to evaluate how bandwidth-constrained
queries reduce the energy drain in sensor nodes. We
construct a simple model that estimates the current
total energy of the nodes participating in the evaluation
of the continuous query. The calculations are based on
the number of transmitted and received messages and
the corresponding average transmission and reception
costs per message (ET and ER, respectively). Also, let
EI denote the cost of idle listening, which occurs when
a sensor node listens to its channel awaiting for mes-
sages. The transmission cost ET incorporates any addi-
tional energy consumed in order to reserve the channel
for the transmission of a message, or to send/receive
acknowledgments for successfully receiving each mes-
sage. For simplicity, we do not take into account the
computational costs, due to the small power consump-
tion required to perform the simple aggregation step in
each node (see Sect. 3.1).

Let ET = k × ER, where k denotes the ratio between
the average energy consumed during the transmission
of a message and the corresponding energy consumed
while receiving a message. Also, let ER = p × EI, where
p denotes the ratio between the average energy con-
sumed while receiving a message and the corresponding
energy consumed during idle listening.

Consider, for simplicity, that in our model each non-
leaf node has on average f children nodes. Since all the
nodes in the aggregation tree besides the monitoring
node are the children of some other node, we can extract
the following relationship between the total number of
nodes T and the number of non-leaf nodes Tnon−leaf:

Tnon−leaf × f = Tleaf + Tnon−leaf − 1 = T − 1.

Using a protocol like TAG [24], in an unconstrained
query evaluation each non-leaf node needs to keep its
radio open during an epoch for enough time in order
to receive the f messages from its children nodes con-
taining the updated value of the partial aggregate cor-
responding to their subtrees (see the following sections
for details). This listening cost is not incurred by the
leaf nodes of the tree. In our model, the total cost of
receiving will thus be exactly:

RCuncon = Tnon−leaf × (f × ER) = (T − 1) × ER

while the cost of transmitting the aggregate values will
be equal to (the Monitor node does not make a trans-
mission):

TCuncon = (T − 1) × ET = k × RCuncon.

A protocol implemented on top of TAG that restricts
the bandwidth consumed for the execution of the con-
tinuous aggregate query to a fraction B_Util of the
bandwidth required by an unconstrained evaluation, will
result in 1−B_Util of the messages not being transmit-
ted and the transmission energy drain will be:

TCcon = (T − 1)×B_Util×ET = B_Util × k × RCuncon.

The total energy drain spent when either receiving
packets or performing idle listening will be:

RCcon = Tnon−leaf×f ×(B_Util×ER+EI(1−B_Util))

= (T − 1) × ER × (B_Util + (1 − B_Util)/p)

= (B_Util + (1 − B_Util)/p) × RCuncon.

If we consider the time needed for network’s energy
to reach a value y, when the total initial energy was C(t0),
the unconstrained evaluation will require

tuncon = C(t0) − y
TCuncon + RCuncon

= C(t0) − y
RCuncon(1 + k)

epochs, while the bandwidth-constrained execution will
reach this energy level after

tcon = C(t0) − y
RCuncon((1 + k − 1/p) × B_Util + 1/p)

epochs. Therefore, for any total initial energy level C(t0),
the bandwidth-constrained execution will reach this
level y after

1 + k
(1 + k − 1/p) × B_Util + 1/p

times more epochs than an unconstrained query execu-
tion.

Of course, this is an oversimplified calculation, assum-
ing that all nodes have sufficient initial energy levels for
the duration of the query and that the aggregation tree
is not modified. In Sect. 5.4 we discuss extensions of
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our algorithm in the case of areas of the network with
strict bandwidth constraints, nodes with severe energy
constrains and node movement.

Example 1. Assuming use of MICA2 nodes at their
default and maximum transmission powers (Table 1) we
get k = 1.41 and 3, respectively (ignoring the cost of con-
trol messages, retransmissions and acknowledgments),
while p = 1. For B_Util = 6%, a bandwidth constraint
query evaluation will reach the same energy level in 2.25
and 3.48 times, respectively, more epochs. However, as
our experimental evaluation demonstrates, the aggre-
gate computation during this constrained query execu-
tion may often incur only a small error (i.e., only 0.1%
relative error in Table 7).

Depending on the type of protocol (scheduled or con-
tention [39]) being used by the sensor nodes, each trans-
mitted message may have many hidden costs associated
with it. In many protocols (i.e., the CSMA/CA protocol),
prior to the transmission of each message some control
messages (RTS/CTS) need to be exchanged in order for
the transmitting node to gain access to the channel. Sim-
ilarly, acknowledgments for each received packet often
need to be sent. Collisions between transmitted mes-
sages may occur and retransmissions (which may result
in a significant energy waste) are necessary. By reduc-
ing the number of transmitted messages, the number
of transmitted control messages and the probability of
collisions occurring are greatly reduced. Note that all
these costs (including the corresponding receiving costs
for all these messages) have been incorporated into the
ET parameter in our model, and thus the actual k value
is significantly larger (often by more than a factor of 5)
than simply the power ratio between the transmit and
receive modes used in the example above. Finally, we
note that in a constrained query execution, each node
that decides not to transmit a message may immediately
go into a low-duty cycle state and, thus, preserve large
amounts of energy.

A point worth mentioning is that our algorithms and
analysis focuses on the average energy drain on the net-
work without concern on individual nodes whereabouts.
The extensions that we discuss in Sect. 5 allow our tech-
niques to provide for nodes that face severe energy con-
straints. However, it is our belief that applications are
better not utilizing strict controls on the operations of
individual nodes. Sensor networks often contain redun-
dant nodes to ensure, for instance, coverage on regions
with non-uniform communication density and cope with
unexpected node failures. Thus, our focus should not
be on extending the lifetime of individual nodes but
on ensuring that the network as a whole has enough
resources to perform the task at hand. Prior work on sen-

sor networks (for instance [3,14,17,21]) has built upon
these ideas and has been our inspiration for focusing
instead on the average energy drain among all nodes in
the aggregation tree.

4 A Framework for evaluation
of bandwidth-constrained queries

Problem definition and setup. We consider the case of
bandwidth-constrained aggregate continuous queries in
error-tolerant monitoring applications. In our discussion
we focus on queries containing the SUM aggregate func-
tion. Weighted SUM aggregates can be computed in an
identical way, since in our framework the error filter
installed at each node is applied over the (weighted)
partial aggregate computed over the values observed in
the node’s subtree. The COUNT function can always be
computed exactly as the number of nodes in the aggre-
gation tree collecting data relevant to the query. For
the AVG function we can compute the SUM aggregate
and divide the resulting aggregate and the error guar-
antees by the value of the COUNT aggregate. Thus, for
the computation of the AVG aggregate any changes to
the COUNT aggregate due to node failures or nodes
joining/leaving the network need to be transmitted at
each epoch towards the monitoring node. As the work
in [27] demonstrated, adaptive filter adjustment algo-
rithms for the MAX and MIN aggregate functions make
sense only when considering a multi-query optimiza-
tion scenario. In single-query scenarios the optimal node
setup for these two aggregates is always to allow a maxi-
mum deviation at the aggregate value computed at each
node equal to the overall error guarantee. In subsect. 5.3
we discuss application of our algorithm to user-defined
aggregate functions. The notation used in this section is
summarized in Table 2.

In a bandwidth-constrained query evaluation, the user
specifies the desirable bandwidth utilization factor

Table 2 Notation used in the description of our framework

Symbol Description

B_Global Average number of transmissions in the aggregation
tree

B_Util Input bandwidth utilization factor (0 < B_Util < 1)
E_Toti Maximum deviation of the estimate at node Ni from

the actual partial aggregate value
LTAi Last transmitted partial aggregate by node Ni to its

parent
Erri Maximum deviation of the estimate at node Ni from

LTAi
Wi Width or error filter at node Ni (Wi=2×Erri)
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0 < B_Util < 1. Similarly to the notation used in
Sect. 3.2, let T denote the number of nodes in the aggre-
gation tree. In an unconstrained evaluation, each node
besides the Monitor node will transmit exactly one mes-
sage (ignoring re-transmissions due to collisions), result-
ing in a total of T − 1 transmissions per epoch. In a
bandwidth-constrained evaluation, the system will pro-
cess the query asserting that the average bandwidth
consumption per epoch (that is the average number of
transmissions over all nodes in the aggregation tree),
denoted as B_Global, will be

B_Global = B_Util × (T − 1). (1)

Since nodes do not transmit their measurements in
every epoch, absolute accuracy is not feasible. Thus, our
algorithm seeks to minimize the maximum possible devi-
ation |V − V̂| of the aggregate value V̂ that the Monitor
node estimates as the result to the query from the actual
current aggregate value V, when the overall average
bandwidth consumption is B_Global. Furthermore, our
algorithm will make this deviation available with each
new estimate of the aggregate, providing strong error
guarantees (ignoring message loss).

Description of our framework and node operation. At
the initial phase, the Monitor node poses a query that is
disseminated through the network in search of the sen-
sor nodes that collect data relevant to the posed query.
While each such node may have received the announce-
ment of the query through multiple nodes, it only selects
one of these nodes as its parent node, through which
it will propagate its results towards the Monitor node.
The flow of the query results forms a tree, rooted at
the Monitor node, which is commonly known as the
aggregation tree [14,19,24]. A sample aggregation tree
is depicted in Fig. 2. The nodes in the aggregation tree
can be classified as either active or passive. Active nodes
(marked grey in the figure) collect measurements rel-
evant to the query, while passive nodes (marked white
in the figure) simply facilitate the propagation of results
towards the Monitor node. An example of passive nodes
arises when the posed query aggregates values observed
by nodes in a limited, but distant from the Monitor node,
area of the network. In this case the results will need to
be propagated back to the Monitor node through nodes
that will not collect data relevant to the query.

At each epoch, each sensor node Ni maintains an
estimate of the partial aggregate of the measurements
obtained by its descendant nodes in the aggregation tree.
The node also keeps an error guarantee E_Toti that spec-
ifies the maximum deviation of this estimate from the
actual partial aggregate value. The difference between

2 3Err  = 2.52Err  = 3

Err  = 14 Err  = 45 Err  = 26 Err  = 17 8Err  = 3

E_Tot  = 14 E_Tot  = 45 E_Tot  = 26 E_Tot  = 17 E_Tot  = 38

2E_Tot  = 8 E_Tot  = 8.53

Err  = 01

E_Tot  = 16.51

1

4 5 6 7 8

3

Fig. 2 Sample aggregation tree

the actual and the estimated partial aggregate values is
due to the non-continuous transmission of data values
from the sensor nodes due to the installation of error
filters on them. An error filter is an interval of width
Wi=2×Erri that is centered around the last transmit-
ted partial aggregate LTAi by node Ni to its parent in
the aggregation tree. At each epoch, node Ni transmit
its estimated partial aggregate to its father, only if this
value deviates by more than the filter’s error Erri from
its last transmitted partial aggregate LTAi (i.e., the new
partial estimate lies outside its filter). We here need to
emphasize that the values of E_Toti and Erri are not the
same. For example, for the SUM aggregate function,

E_Toti =
∑

j:Nj∈subtree(Ni)

Errj =Erri+
∑

j:Nj∈children(Ni)

E_Totj.

(2)

Example 2. Figure 2 shows the maximum error E_Toti
and the error filters Erri installed at the nodes, in our
running example for the SUM aggregate function. For all
leaf nodes in the tree, E_Toti = Erri since the deviation
of the aggregate computed on a leaf node can only be
as big as the node’s filter. In this example, the measure-
ment collected by node 5 cannot deviate by more than
±4 from the last transmitted value to its parent node 2.
Any larger deviation will result in a new transmission
by node 5. In an intermediate node, the deviation of the
true aggregate from the last transmitted value is due to
all the error filters installed at the node’s subtree. Thus,
the maximum deviation of the aggregate in node’s 2 sub-
tree cannot exceed the sum of the filters in the nodes;
i.e., E_Tot2 = Err2 + Err4 + Err5 = 3 + 1 + 4 = 8.

Through the proper adjustment of the filters’ widths,
our algorithm seeks to achieve an average overall band-
width consumption of B_Global (a quantity derived at
the initialization of the query from B_Util and the size
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of the tree), while at the same time providing as tight
error guarantees as possible. To accomplish the speci-
fied average bandwidth consumption, our algorithm has
been designed to adjust the filter widths in cases when it
detects that the bandwidth consumption is either above
or below the given B_Global value, using a symmetric
process that does not favor either the underutilization
or the overutilization of the bandwidth. The decisions
of which error filters to adjust are based on simple local
statistics. Moreover, our algorithm is easy to configure
since it contains a single parameter. Details on our algo-
rithm for adjusting the filter widths are given in Sect. 5.

Example 3. Consider the subtree of the passive node
2 in Fig. 2, which is also depicted for clarity in Fig. 3.
Assume that the last transmitted partial aggregate value
of node 2 is LTA2 = 100, and that at the first epoch of
our example (left part of Fig. 3) nodes 4 and 5 transmit
their new partial aggregate values (which are equal to
the observations V4 and V5, correspondingly, of these
nodes) LTA4 = 40 and LTA5 = 59. Given these values
and the widths of the filters of these nodes as depicted
in Fig. 2, the new intervals specified by the error filters
in nodes 2, 4 and 5 now become:

− Node 2: [100 − 3, 100 + 3] = [97, 103]
− Node 4: [40 − 1, 40 + 1] = [39, 41]
− Node 5: [59 − 4, 59 + 4] = [55, 63]

The estimated partial aggregate value V̂2 at node 2 is
equal to 99 = 40 + 59 which lies within the interval
[97, 103] defined by the node’s error filter and, there-
fore, the value 99 is not propagated towards the Monitor
node.

Now consider that in the next epoch (right part of
Fig. 3), the measurement of node 4 is 37 and the mea-
surement of node 5 is 60. Node 4 will transmit the mea-
surement 37 to node 2, and re-center its filter around
that value: [36, 38]. Since node 5 will not make a trans-

22

to Node 2
MessageMessage

to Node 2

4 5

^

4 5V   = 40 V   = 59

LTA  = 595LTA  = 404

Filter = [55,63]Filter = [39,41]

V  = 992

LTA  = 1002

Filter = [97,103]

22

to Node 2
Message

Message
to Node 1

4 5

^

V  = 374

LTA  = 374

Filter = [36,38] Filter = [55,63]

LTA  = 595

V  = 605

Filter = [93,99]
LTA  = 96

V  = 96

2

2

First Epoch of Example 3 Second Epoch of Example 3

Fig. 3 Example of error filters

mission, the estimated partial aggregate V̂2 at node 2
is equal to 96 = 37 + 59, which lies outside the node’s
error filter. Therefore, node 2 will transmit the value 96
to the Monitor node and set its filter to cover the interval
[93, 99].

5 Our MGA algorithm

In this section we first describe the notion of a mar-
ginal gain and how it can be calculated at each node. We
then provide details on which statistics need to be main-
tained at each node by our MGA algorithm, how each
node calculates the cumulative bandwidth consumption
within its subtree, and how our MGA algorithm dynam-
ically adjusts the filter widths of the sensor nodes. Some
basic information on the node operation and the use of
the error filters was presented in Sect. 4. The notation
used throughout this section is summarized in Table 3.
A detailed description of these symbols is presented in
appropriate parts of this section. We finally discuss some
interesting extensions to our algorithm, including appli-
cation to user-defined aggregate functions and modi-
fications when node movement occurs or when local
bandwidth constraints exist.

5.1 Algorithm description

Intuition of our algorithm. Assume a simple schedule
in which the Monitor node decides how to adjust the
nodes’ error filters every U pd epochs. In our discussion
herein we refer to each epoch in which the Monitor node
decides to adjust the error filters as an update epoch.
We will also use the term update period to denote the
interval (of length equal to U pd epochs) between two

Table 3 Notation used in the MGA algorithm

Symbol Description

B_Cum Total bandwidth consumption in node’s subtree
DE Difference of filter widths between the two

anchor points used when calculating the node’s
marginal gain

DB Expected decrease in bandwidth when
increasing filter width by DE

CumDE Sum of DE values among all nodes with
DB �= 0 in subtree

CumDB Sum of DB values among all nodes in subtree
budget Total bandwidth (positive or negative) assigned

to the node’s subtree in the update process
Upd Update period (number of epochs between

adjusting the error filters)
Bactual Overall bandwidth consumption since the last

update epoch
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consecutive update epochs, and the term current update
period to denote the interval since the last update epoch.

Consider a snapshot of the network at an update
epoch. Let Bactual denote the overall bandwidth con-
sumption since the last update epoch. Let

B_Global×Upd = B_Util × T×Upd (3)

denote the targeted bandwidth consumption. If the net-
work bandwidth is underutilized (B_Global×Upd >

Bactual), the Monitor node may instruct some nodes
to increase their bandwidth consumption by decreas-
ing their error thresholds. This necessitates the exis-
tence of a method to translate the additional bandwidth
units in each node to changes in the node’s error fil-
ter. An important question that is also being raised is
which nodes should receive the most additional band-
width? Since we want to provide tight error guarantees,
it is evident that nodes which are expected to exhibit
the largest reduction in their error filters (per addi-
tional bandwidth unit) should be ordered to increase
their bandwidth consumption. Inversely, if the band-
width is overutilized, then some nodes will be ordered
to decrease their bandwidth utilization. In this case,
the nodes which will exhibit the smallest increase in
their error filters per reduced bandwidth unit should be
ordered to have the largest decrease in their bandwidth
consumption.

Marginal gains. In Fig. 4 we depict the expected width
of a sensor node’s error filter as we vary the desired num-
ber of transmitted messages by the node to its parent in
the aggregation tree, within a period of Upd epochs.
The maximum number of transmitted messages within
an update period is obviously equal to Upd. This may oc-
cur, for example, when the filter has zero width and the
partial aggregate value calculated by the node changes
at each epoch. As the desired bandwidth consumption
increases, the width of the filter that is expected to result
in this bandwidth consumption gradually decreases.

W

Number of Transmitted Messages

BB Upd

DE

DB

Width

DE

DB

W

expand shrink

expand

Wshrink

Fig. 4 Marginal gains of a node

Now, consider a randomly chosen node Ni in the
aggregation tree and let Wi denote the node’s error fil-
ter width. At each epoch, Ni decides whether to make
a transmission, based on the value of the current par-
tial aggregate calculated at Ni and its deviation from the
previously transmitted aggregate value LTAi (see Exam-
ple 3.). At the same time, the node also keeps track of
the number of transmissions it would have performed
had its filter width been either a smaller Wshrink < Wi

or a larger Wexpand > Wi value. We refer to these fil-
ter width values as the two anchor points, and defer the
discussion on how to determine their values for Sect. 5.2.

Let Bshrink and Bexpand denote the calculated number
of transmissions in each case, correspondingly, and also
let

DB = Bshrink − Bexpand, (4)

DE = Wexpand − Wshrink. (5)

Then, the ratio DE
DB is an indication of the decrease (in-

crease) on the node’s maximum error per additional
(reduced) bandwidth unit assigned to the node.

Statistics maintained at each node. Besides the values
of DB and DE that we described above, each node also
needs to maintain some additional statistics. We denote
as CumDEi the sum of the DE values among all nodes
in Ni’s subtree that have nonzero DB values; that is:

CumDEi =
∑

j : Nj ∈ subtree(Ni)
and DBj > 0

DEj (6)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DEi + ∑
j : Nj ∈ children(Ni)

CumDEj DBi >0

∑
j : Nj ∈ children(Ni)

CumDEj DBi =0

The reason why we exclude from the calculation of
the CumDE values those nodes which have zero DB
values will be made clear later in this section. We also
denote as CumDBi the corresponding sum of the DB
quantities among all nodes in Ni’s subtree. Each node
can, therefore, perform the calculation of the CumDBi

and CumDEi values using local statistics that its chil-
dren nodes can piggyback to messages transmitted by
them. This is a minimal amount of information needed
that is aggregated at each node. These two quantities
will be used, as we will explain later, by our algorithm
to dynamically adjust the widths of the error filters. We
here note that each node should not discard the latest
individual CumDB and CumDE statistics transmitted
by its children, as these quantities will also be used by our
MGA algorithm in the allocation of bandwidth among
the nodes in the aggregation tree.
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Computing the bandwidth consumption. Because of
the hierarchical topology and the limited transmission
ranges of nodes, the Monitor node has no way of deter-
mining by itself the actual bandwidth consumption in
the entire network. To resolve this, we use a simple intu-
itive idea. Each node maintains an estimate B_Cum of
the overall bandwidth consumed by nodes in its subtree
(including the node itself) during the current update pe-
riod. When a node transmits a message to its parent
node, it increments its calculated B_Cum value for its
subtree by one (to account for the new message) and
piggybacks this estimate in its message.1 The parent in
turn uses the last received bandwidth estimates from
its children to calculate its own B_Cum value. Think
of these values as “bubbles” that ascend the hierarchy
when nodes transmit. The Monitor node sums-up all the
values it receives from its children.

A small complication arises because some nodes in
the middle of the hierarchy, due to their error filters,
may have pruned messages. Thus, some statistics on the
bandwidth consumption of their descendant nodes may
not have been propagated towards the Monitor node. To
solve this problem, at the epoch immediately before the
invocation of the algorithm for adjusting the filters (dis-
cussed below), the statistics (bubbles) that still remain in
the network are transmitted towards the Monitor node.
Every node whose last transmitted value of B_Cum dif-
fers from the corresponding current value performs a
transmission, even if this is not required by its latest
measurement. This process goes on recursively until all
bubbles reach the Monitor node. Note that the above
procedure may only occur for non-leaf nodes of the
aggregation tree.

Adjusting the error filters. We now present the com-
plete MGA algorithm for dynamically adjusting the er-
ror filters installed in sensor nodes.

The algorithm starts at the Monitor node and progres-
sively distributes additional bandwidth (which is posi-
tive in case of bandwidth underutilization, or negative in
case of bandwidth overutilization) to subtrees and nodes
in a top-down fashion. Each node Ni awaits a message
containing the additional bandwidth budgeti (positive or
negative) to be distributed to the nodes in its subtree. If
such a message arrives and budgeti > 0, then this bud-
get is distributed among the node itself and the node’s
subtrees proportionally to the expected per bandwidth
unit benefit of each choice, which is in turn equal to
DEi
DBi

for the node itself (if DBi>0) and CumDEj
CumDBj

for each

1 Actually, as we explain in Sect. 6, it is often optimal, in terms
of energy consumption, to transmit the B_Cum, CumDE and
CumDB statistics only at the last epoch of each update period.

child subtree with CumDBj>0. Subtrees (nodes) having
CumDB=0 (DB=0) receive no bandwidth and no mes-
sage is being sent to them. For the remaining subtrees,
their budget is calculated as (assuming DB>0):

budgetj =
budgeti × CumDEj

CumDBj

DEi
DBi

+ ∑
Nk ∈ children(Ni)
and CumDBk > 0

CumDEk
CumDBk

(7)

and a message is transmitted to them with this value. The
formula for calculating the budget allocated for the filter
of node Ni itself is similar, but instead uses the quantity
DEi
DBi

on the nominator. The budget allocated to the node

is then multiplied by DEi
DBi

to determine the appropriate
increase in the error filter’s width. If the budget given
to some subtree is very small (for example, less than 1)
then there is no real benefit in such a budget assignment,
since the update message itself will outweigh any pos-
sible benefits of error filter adjustments in the subtree.
These small bandwidth budgets can be redistributed to
subtrees which are programmed to receive additional
bandwidth.

We now consider the case when either some node
does not receive any update message, or has DB = 0.
If DB = 0, then the node can decrease its error filter’s
width to Wshrink without this having an impact on the
expected bandwidth consumed by the node. If DB > 0
and no bandwidth is allocated to the node, then the node
does not modify its error filter.

The case when the bandwidth is overutilized (and
therefore the disseminated budget is negative) is
almost symmetric to our above discussion. The nodes
which are expected to exhibit the smallest increase in
their error filters per reduced bandwidth unit should
be ordered to have the largest decrease in their band-
width consumption. The distribution of the negative
budget is performed proportionally to the DB

DE quan-
tity in this case. For any node Ni, the equation of allo-
cating bandwidth to its children subtrees therefore
becomes:

budgetj =
budgeti × CumDBj

CumDEj

DBi
DEi

+ ∑
Nk∈children(Ni)

CumDBk
CumDEk

. (8)

The case when DB = 0 is handled almost identically to
the case of bandwidth underutilization (a small differ-
ence is discussed in Sect. 5.2). Therefore, independently
of whether the dispensed budget is positive or negative,
the behavior of nodes having DB = 0 remains the same.
This is the reason why they are not taken into account
when calculating the CumDE values at each node. It
is interesting to note that in the case of bandwidth
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overutilization, the width of a node’s error filter may
either increase (if negative budget is assigned to the
node), remain intact (if it receives zero budget), or even
decrease (if DB = 0).

In either case (positive or negative bandwidth bud-
get), each node Ni in the aggregation tree decides how to
distribute its budget to the node itself and to its children
subtrees by using only statistics received by its children
nodes. The tree topology is taken into account when cal-
culating the cumulative statistics (CumDE, CumDB and
B_Cum) of each subtree. Finally, we need to note that in
the first epoch after the reorganization, each node needs
to transmit the new error E_Toti of its entire subtree (cal-
culated bottom-up) so that the Monitor node will be able
to know the error guarantees of its estimated aggregate
value.

Example 4. We now present a simple example to dem-
onstrate the error filter adjustment process. Consider
the aggregation tree of Fig. 2 and assume that the bud-
get of node 1 is 30 (the bandwidth was therefore under-
utilized in our example in the previous update period)
and that the W, DE, DB, CumDE and CumDB values
of each node are the ones presented in Table 4. Note
that in two cases where DB = 0, the CumDE values
(marked in bold) have omitted from their calculations
the DE values of some nodes. At the beginning, node
1 disseminates its budget based on the values CumDE2

CumDB2

and CumDE3
CumDB3

. Using Eq. 7, the node dispenses budget 18
and 12 to nodes 2 and 3, respectively. The budget left
for node 1 is 0, because there is no point in using a non-
zero filter at the Monitor node. Now, considering just
the case of node 2, the node will dispense budget 13.5
to node 4, 0 budget to node 5 and keep the remaining
budget (4.5) for itself. Node 5 has DB5 = 0 and, there-
fore, decreases its error filter to Wshrink5 . Node 4 will
decrease its error filter by 0.9 = 13.5× 2

30 and set its new
width to 1.6. Similarly, node 2 will decrease its filter by
0.1 = 4.5 × 2

90 .

Table 4 Sample statistics

Node W DB CumDB DE CumDE

1 0 0 260 0 8
2 2.5 90 120 2 4
3 1.25 0 180 1 4
4 2.5 30 30 2 2
5 5 0 0 4 0
6 2.5 60 60 2 2
7 1.25 50 50 1 1
8 1.25 70 70 1 1

5.2 Algorithm details

We now present some details of our algorithm that are
either not covered by the above discussion, or have been
omitted to this point for ease of presentation.

Selecting the anchor points. While there is no opti-
mal way to select these two anchor points Wshrink and
Wexpand, there are some useful guidelines that help
determine their values. A simple technique would be to
select filters with widths smaller and larger than Wi by
a factor of a (0 < a < 1), i.e. setting Wshrink = (1 − a)Wi

and Wexpand = (1+a)Wi. However, using this setting, for
nodes with small error filters the distance of the two an-
chor points will be small. This prevents the collection of
useful statistics and often results in estimated DB values
of zero. A more robust approach would utilize the stan-
dard deviation σ (or equivalently the variance σ 2) of the
measurements collected at the node during the previous
update period (the update period defined by the last two
update epochs)2 thus setting Wshrink = max{Wi − σ , 0}
and Wexpand = Wi + σ . This technique, however, is slow
to react to nodes that exhibited a small variance in their
measurements during their previous update period and
which suddenly become more volatile in their measure-
ments. What is, thus, needed is a combination of the
aforementioned techniques.

In our MGA algorithm we use the following values
for the two anchor points:

Wshrink = max{0, min{Wi − σ , (1 − a)Wi}}, (9)

Wexpand =max{Wi+σ , (1+a)Wi, Wshrink+minDE}. (10)

The minDE value specifies a minimum distance of
the two anchor points and is needed in the case of nodes
with both small filters and small variance in their mea-
surements. Consider for example the case where the
readings in a sensor node are integer values. Then, if
the node’s filter is centered around an integer value, any
distance of the two anchor points smaller than 2 will
always result in DB = 0. Thus, the minDE value can be
determined by the granularity of the node observations.

Filter modification based on assigned budget. Let

DEshrink = W − Wshrink, (11)

DEexpand = Wexpand − W. (12)

Also, let DBshrink (DBexpand) denote the expected
increase (decrease) in the number of messages trans-
mitted by the node by decreasing (increasing) its error

2 The standard deviation at the current update period cannot be
used, since this would result in moving anchor points, based on
the observations during each, current, epoch.
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filter to Wshrink (Wexpand). Obviously, DB = DBshrink +
DBexpand. After determining the budget (positive or
negative) assigned to each node during the update pro-
cess, the desired modification of the error filter is more
accurately calculated if, instead of using the node’s DE
and DB values calculated by both anchor points, the
node utilizes just the statistics of the anchor point in
the direction of the filter modification. Therefore, when
zero budget is assigned to a node, the MGA algorithm
shrinks the node’s filter to Wshrink if DBshrink = 0. If neg-
ative bandwidth is allocated to the node, then the ratio
DEexpand
DBexpand

is used to determine the increase in the filter’s

width. If positive bandwidth is allocated to the node and
DBshrink>0, then the ratio DEshrink

DBshrink
is used to determine

the decrease in the filter’s width. Finally, if positive band-
width is allocated to the node and DBshrink = 0 (but
DB>0), then the MGA algorithm shrinks the node’s
filter to

min

{
Wshrink, max

{
W − |budget| × DE

DB
, 0

}}
. (13)

We here need to emphasize that the DEshrink,
DEexpand, DBshrink and DBexpand statistics are not trans-
mitted to other nodes (to limit the size of the transmitted
information), and that the bandwidth dissemination is
based solely on the DE and DB values, and the corre-
sponding cumulative statistics for the subtree. Further-
more, a straightforward extension would be to use more
anchor points, which would also not be transmitted in
order to limit the bandwidth consumption, but would
solely be used to better estimate the modification of
each node’s error filter, based on the assigned budget
to the node. However, such a modification would in-
cur a computational cost proportional to the number of
additional breakpoints. Even though this cost is usually
small, we did not find such an extension to significantly
impact the accuracy of the reported aggregate.

Additional details. The MGA algorithm also imposes a
set of restrictions concerning the budget dissemination
process.

• There is no point in assigning to a subtree negative
budget larger (in absolute value) than the bandwidth
B_Cum it consumed during the previous update pe-
riod. Moreover, we cannot assign to a node itself
more budget than what is necessary to drop its error
to 0.

• For passive nodes with a single child node, the error
filter is always set to zero, since one can easily dem-
onstrate that it is always more beneficial to “push”
the error budget of that node to its child.

5.3 Application to other aggregates

A question that naturally arises is whether the MGA
algorithm can also be applied to a broader range of
aggregate functions than the one described in Sect. 4.
A nice classification of aggregate functions is presented
in [24]. From the entire range of aggregate functions dis-
cussed in that paper, it would at first seem that the MGA
algorithm could be applied to many distributive and alge-
braic aggregates. In short, in a distributive aggregate,
the state that each node needs to maintain is the partial
aggregate for the measurements in its subtree. An exam-
ple of a distributive aggregate is the SUM function. On
the other hand, in algebraic aggregates, the state that
each node needs to maintain is not the partial aggre-
gate for its subtree, but is of constant size. An example
of an algebraic aggregate is the AVG function, where
each node needs to maintain the SUM and COUNT
aggregatess for its subtree.

The application of our MGA algorithm is not always
straightforward (or even possible) in all such aggre-
gates. In order for our algorithm to be effective, what
is required is a way to calculate the cumulative statis-
tic CumDE and the maximum error E_Tot at a node
based solely on the corresponding values of its children
nodes, and the DE and Err values, correspondingly, of
the node itself. However, depending on the aggregate
function, this is not always feasible.

Consider, for example, the aggregation tree of Fig. 5.
In this tiny aggregation tree, the monitoring node simply
computes the product of the values observed in nodes
2 and 3. If the reported values from these nodes have a
maximum deviation of Err2 and Err3, respectively, then
the estimated result in node 1 is V̂2×V̂3. Based on the Err
values, and assuming that the reported aggregates are
always non-negative, the minimum possible value of the
true aggregate is (V̂2 − Err2) × (V̂3 − Err3), a value that
can deviate at most by Err2×V̂3+Err3×V̂2−Err2×Err3
from the estimated aggregate. We thus have the compli-
cated scenario where the maximum error depends on
the values (aggregates) reported by the nodes in the
aggregation tree, and not simply by the maximum errors
of these nodes. Note that this behavior occurs at any
subtree of the aggregation tree, and not solely at the
Monitor node.

Fig. 5 Sample tiny
aggregation tree 1

2 3
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This, in turn, implies that to avoid violating the guar-
antees on the reported aggregate at the Monitor node,
messages that may increase the error at a subtree may
not be safely pruned, but may need to be propagated fur-
ther up in the aggregation tree. This would, of course,
significantly limit the benefits of our MGA algorithm,
not only because fewer messages can be spared, but also
because the need to transmit the maximum error of a
subtree increases the size of each message.

An alternative solution would require the nodes to
compensate, if possible, for changes in the maximum
errors of their subtrees. If a node receives a message that
indicates that the error guarantees at one (or more) of
its subtrees have been modified, the node may consider
whether it is possible to modify its error filter so that the
guarantees of its entire subtree remain unaffected. This
approach has the advantage that messages can still be
effectively pruned even at lower levels of the aggrega-
tion tree. On the other hand, this approach would result
in moving anchor points at each node and, therefore,
significantly less reliable statistics.

Below, we present a family of aggregate functions
that can be computed by our MGA algorithm. What
is important, is that the issues described above may not
always impact the operation of our algorithm if the error
function is properly selected. In the example that we pre-
sented above, a proper choice would have been to rep-
resent the reported maximum error as a fraction of the
estimated aggregate (instead of using a fixed absolute
value).

5.3.1 User-defined aggregates

In what follows we formally define the requirements for
running the MGA algorithm on a user-defined distrib-
utive aggregate function Aggr(V1, . . . , VT) calculated
over the measurements collected by the T nodes in the
aggregation tree.

Since Aggr is distributive, it must be easy to compute
(i.e., with limited partial state required at each node)
independently of the tree topology. A subtle result of
this requirement is that the aggregate function Aggr can-
not apply operators (’+’, ’−’, ’×’, ’/’) of different pre-
cedence to individual functions of each measurement
Vi. Examples of such individual functions are weighted
functions (i.e., a × Vi), exponential functions (i.e., Va

i or
aVi ), logarithmic functions (i.e., log Vi) etc.

To illustrate why Aggr may not simultaneously con-
tain two operators of different precedence, consider the
sample aggregation tree of Fig. 6 and let the desired
aggregate function be: Aggr = V2 × V3 + V4 × V6 +
V5 × V7. In this case, no in-network aggregation can
be performed, since the multiplications between pairs

4 5 6 7

1

32

Fig. 6 Sample binary aggregation tree

of measurements can be performed only when all these
measurements have reached the Monitor node. Thus,
the amount of state needed at each node when oper-
ators of different precedence exist is not bounded (as
required by distributive functions), but rather depends
on the exact definition of the aggregate function and the
location of the nodes within the aggregation tree. Even
if there exists an aggregation tree where such a function
can be computed with a bounded amount of state at
each node, changes to the aggregation tree (i.e., due to
node movement or nodes joining/leaving the network)
could violate the above condition.

Based on the above discussion, the aggregate func-
tion Aggr can either simultaneously contain: (i) the ’+’
and ’−’ operators; or (ii) the ’×’ and ’/’ operators. We
discuss these two cases below.

Aggr contains the ’+’ and ’−’ operators. The first type
of aggregate function Aggr is of the form

Aggr =
∑

i

di × fi(Vi), di = {−1, 0, 1}.

This is a case similar to the one discussed in our paper (a
simpler form can be derived if the ’−’ symbols are incor-
porated in the individual fi() functions, so that Aggr is
expressed simply as the sum of quantities). The case
when di = 0 corresponds to passive nodes within the
aggregation tree. Since the aggregate function is the sum
of individual functions fi() applied to the measurements
collected by the nodes, the error filters at each node
can similarly be applied to the partial aggregate that
the node estimates for its subtree. Note that the overall
maximum error is in this case equal to the sum of the
maximum errors over all the nodes in the aggregation
tree.
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Aggr contains the ’×’ and ’/’ operators. The second type
of aggregate function Aggr is of the form:

Aggr =
∏

i

(1 OPi fi(Vi)), OPi = {′×′,′ /′}.

In this case we first need to perform a transformation so
that Aggr is expressed as simply the product of individ-
ual functions. This can be easily achieved if we replace
each individual function fi() which is accompanied by
OPi =′ /′ to f ′

i (Vi) = (fi(Vi))
−1. Using this set of trans-

formations, we can similarly install error filters in all
nodes of the aggregation tree. However, the boundaries
of these filters will not be equidistant from the last trans-
mitted partial aggregate, as in the case discussed in our
paper. On the contrary, the distance of the upper and
lower bound of each error filter from the last transmit-
ted partial aggregate are expressed as a factor Erri ≥ 1
from that value:

Hi = LTAi × Erri,

Li = LTAi/Erri. (14)

Note that using the above filter setup, the maximum
error factor at the Monitor node is equal to

∏
i Erri.

A small complication arises in this case at the dissemi-
nation of bandwidth to each node. It is easy to see that an
increase dE to the error filter of a node with a small error
filter results in a larger increase of the overall error than
a corresponding increase at another node with a larger
error filter. In particular, by increasing the error factor
of node Ni by dE, the corresponding modification of the
overall error factor is equal to:

dE × E_Global
Erri

(15)

Thus, the decisions on how to disseminate the band-
width cannot solely depend on the DE

DB ratio (or the cor-
responding ratio of the cumulative statistics), but also
need to take into account the error factor of each node.
The only change that is, thus, required is to base the

decisions on the
DEi
Erri
DBi

ratio and, instead of computing
the CumDE statistics as in Section 5, calculate the cor-
responding sum of the DE

Err quantities over all nodes in
each subtree with DB > 0.

5.4 Extensions

We now describe interesting extensions to our frame-
work.

Node movement. In sensor networks the aggregation
tree often changes during the lifetime of a continu-
ous query. This may happen because of node and link

failures or, for instance, when nodes are attached to
moving objects. When the aggregation tree gets reorga-
nized, each node that experiences changes in the set of
its children nodes needs to:

1. Receive the partial aggregate and collected statistics
from its new children nodes.

2. Calculate the new partial aggregate and statistics of
its subtree by considering the newly acquired values
received from its new children nodes and by subtract-
ing the corresponding values of its children nodes
that were removed.

3. Make a transmission depending on the value of the
new calculated partial aggregate.

Nodes joining/leaving the network. The case of a node
joining the network is easily handled by assigning an
error filter of zero width to this node. Thus, the error
guarantees reported to the Monitor node are not vio-
lated. Moreover, the new node and its parent in the
aggregation tree need to follow the same steps men-
tioned above (for the case of node movement), since
the set of their children nodes has been modified.

The case of a node leaving the network is also dealt
similarly but introduces some minor complications. In
particular, when a node leaves the network the over-
all error guarantee becomes more tight. However, un-
less some notification is sent by the node leaving the
network about its time of departure, the modification
of the error guarantee cannot be performed until the
next update period. The error guarantees reported in
the Monitor node will not be violated in this case either,
since the actual error guarantees will be tighter than the
reported ones for a small period of time. Similarly, the
reported estimate of the overall bandwidth consump-
tion may be slightly lower than the actual one. Note that
the estimate will not include the number of messages
transmitted by the node leaving the network since the
last transmission of its B_Cum value. Obviously, no such
deviation will occur if the departing node notifies its par-
ent in the aggregation tree about its departure. In this
case the node’s parent is aware of the exact number of
messages that it has received by each of its children and
can, thus, accordingly compensate and adjust its B_Cum
value.

Strict bandwidth constraints in local areas. While our
MGA algorithm limits, on the average, the targeted
overall bandwidth consumption, it can be adapted to
provide a strict bandwidth guarantee in all or parts of
the aggregation tree. This will be useful when parts of
the network exhibit severe bandwidth or energy con-
straints. As mentioned in the previous section, each node
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maintains an estimate of the bandwidth consumption
B_Cum in its subtree. If this bandwidth consumption
exceeds the given strict constraint for the area, then suffi-
cient negative budget should be assigned to this node’s
subtree in the next update epoch, independently of the
overall bandwidth consumption.

Let B_Limi denote the bandwidth constraint in the
subtree of node Ni. If we do not wish to impose a band-
width constraint at certain subtrees, then B_Limi = ∞.
Each node Ni needs to maintain an additional statistic
B_Needi which denotes the minimum amount, in abso-
lute value, of negative budget needed to be disseminated
to descendant nodes of Ni. The value of B_Needi is cal-
culated as follows:

B_Needi =
∑

k:Nk∈children(Ni)

B_Needk

+ max{0, B_Cumi

−
∑

k:Nk∈children(Ni)

B_Needk − B_Limi}

. (16)

The first summand in the equation above represents the
budget needed by nodes in subtrees rooted at children
nodes of Ni. The second summand represents the bud-
get needed by node Ni itself and is more complicated.
To properly calculate this second summand, we need to
take into account not only the bandwidth consumption
and the bandwidth constraint in the entire subtree of Ni,
but also consider how much of the difference between
these two values will be offset by limiting the bandwidth
consumed by the subtrees of Ni. The MGA algorithm
now requires the following modifications:

• The Monitor node adds (since B_Need represents
needed negative budget, in absolute value) its com-
puted B_Need value to the budget that it will
disseminate to the sensor nodes. Therefore, the dis-
seminated budget is decided only after the Monitor
node takes into account the minimum negative band-
width needed by areas of the aggregation tree that
have exceeded their bandwidth limits.

• Each subtree with a B_Need value greater than zero
automatically receives at least this amount of nega-
tive budget. We here note that this negative budget
will not be assigned to the subtree by its parent node,
but is acquired automatically. Additional negative
budget may be assigned to this subtree if either the
budget disseminated by the Monitor node is nega-
tive, or if an ancestor node of this subtree with a
non-zero B_Need value has at least one child sub-
tree with a zero B_Need value. In the latter case, this
ancestor node will disseminate negative budget to

its subtrees, equal (only) to the max quantity that
it calculates from Equation 16 (since the minimum
negative budget needed by this node’s subtrees is
automatically acquired by them). Positive budget is
disseminated only to subtrees that have not exceeded
their bandwidth limit.

The above technique can also be used in situations
when the desired bandwidth constraint needs to be im-
posed on an area of the aggregation tree (i.e., in no-
des near the Monitor node). This requires the following
steps:

• A new B_Cum′ statistic is computed over the band-
width consumed solely by the nodes in the region of
interest.

• The Monitor node computes the negative bandwidth
B_Need′ that needs to be assigned to the nodes in the
area of interest.

• The Monitor node calculates the bandwidth budget
that it will distribute to the remaining nodes after
taking into account the B_Need′ value.

• Each node whose subtree contains at least one node
in the region of interest performs two budget dis-
semination processes: one for the negative budget
B_Need′ to all subtrees that contain nodes in the
area of interest and one for the bandwidth budget
received for the subtree. The latter budget is dissem-
inated towards all subtrees with at least one node
outside the region of interest.

• For the remaining nodes, the bandwidth dissemina-
tion process is not modified.

Energy-aware bandwidth allocation. An important is-
sue is whether the MGA algorithm can be adjusted in
order to take into account the remaining energy at each
node. Even at the initial stage of the posed query, there
might be nodes in the network that possess low energy
levels. These nodes should be spared, if possible, any
unnecessary work. To limit the power consumption of
such nodes one, or more, of the following approaches
can be taken:

• Reduce the number of messages received and trans-
mitted by these nodes. This can be achieved by
installing large filters on the nodes themselves and
to their immediate children in the aggregation tree.
This approach has the drawback that the resulting
error guarantees may be so large that the query will
end up being of little use.

• Place such nodes in lower levels of the aggrega-
tion tree. Note that this is already done by many
approaches (i.e., see [17]) that form and adjust the
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aggregation tree based on the available energy of
the nodes. For example, any node placed as a leaf
will not incur in our approach any listening cost to
receive partial aggregates by other nodes. Moreover,
the number of its transmissions will depend solely on
the node itself, and not on the values observed by any
descendant node.

• Have these nodes join the aggregation process only
in certain periods. For the remaining time intervals,
in which the nodes may preserve energy by operating
on a low-duty cycle mode, we can utilize a model (i.e.,
see [13,21]) to approximate their measurements.

Bandwidth reorganization in cases of stability. While
the MGA algorithm does not guarantee an optimal
bandwidth allocation policy to the nodes in the aggrega-
tion tree, its periodic dissemination of (positive or nega-
tive) bandwidth aims at reaching a good node setup that
achieves bandwidth consumptions close to the target
constraint.

However, it is possible that at some point of the oper-
ation of our MGA algorithm this periodic dissemination
process will not occur for a long time, simply because the
filter assignment to the nodes of the aggregation tree
may result in a bandwidth consumption that matches
(or is very close to) the target bandwidth consumption.
This will result in stable node setups (except from those
nodes with zero DB values).

While the aforementioned stability may be a result
of stable data distributions of the collected data and
good node setups, it might be possible to take a further
optimization step. In particular, any non-leaf node with
at least two child subtrees, and which has not received
any amount of bandwidth units for several update peri-
ods, may initiate a local reorganization of the bandwidth
consumed in its subtree. This process would include the
following steps:

• Find the subtree i (subtree j) with the largest (small-
est) ratio CumDE

CumDB . Consider only subtrees with non-
zero CumDB values. If these two ratios have similar
values, do nothing.

• Otherwise, instruct subtree i to increase its band-
width consumption by a given percentage (i.e., 20%)
of the overall bandwidth consumption B_Cumj of
subtree j. To keep the expected bandwidth consump-
tion in the entire subtree unaffected, also instruct
the subtree j to reduce its consumption by the same
percentage.

The above local reorganization process can prevent
the MGA algorithm from remaining in bad filter setups

that happen to achieve the target bandwidth consump-
tion. However, we need to emphasize that even with
stable distributions of the monitored data the above
situation is expected to happen very rarely. In all of
our experiments (even with synthetic data sets with
stable distributions over time) the overall bandwidth
consumption continuously fluctuated around the target
bandwidth constraint. Thus, the scenario where the filter
adjustment process was not invoked for several update
periods did not happen, even in this case.

6 Alternative techniques

We now provide a description of an alternative tech-
nique that can potentially be used, for the evaluation of
bandwidth-constrained aggregate queries. The thresh-
old-based adjustment (TBA) algorithm presented below
is motivated by the work of Olston et al. [30] on deter-
mining when cached objects should be refreshed based
on a defined priority function. A detailed description
of the algorithm and justification of its decisions can
be found in [30]. Compared to the algorithm described
in [30] for non-hierarchical node settings, our modified
version of the algorithm has two major differences:

− Nodes may be required to transmit their computed
partial aggregate due to transmissions performed by
their children nodes.

− The adjustments of the node filters can only be per-
formed periodically, since in a hierarchical setting we
need to get accurate estimates of the actual band-
width consumption.

These issues are discussed below and in Sect. 7.1.
We need to note that we also experimented with some

additional techniques that can also be used in our appli-
cation. These techniques are based on either uniform
or biased sampling of the data sources. However, due
to the inability of these alternate techniques to provide
strong deterministic error guarantees and their poor per-
formance in our experimental evaluation, we omit their
discussion.

6.1 Threshold-based adjustment (TBA)

We now describe how the TBA algorithm can be adapted
for the problem of bandwidth-constrained queries over
sensor networks. Each active node i in the aggregation
tree maintains the following statistics at each epoch ti:

• The value Vtnow of the node’s monitored quantity at
the current epoch.
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• The last transmitted measurement Vtlast of this node
and the time (epoch) of the last transmission tlast.

• A threshold value Thri that will help determine the
time of the node’s next transmission.

• A priority value Pri calculated as:

Pri = (tnow − tlast) × max
t∈[1+tlast,tnow]

|Vt − Vtlast |

−
∫ tnow

tlast

|Vt − Vtlast |dt. (17)

We here note that the definition of the priority function
has been slightly modified (to include the max quantity)
from the formula in [30], since in our case, the devia-
tion value |Vt − Vtlast | is not a non-decreasing function
of t. The max quantity is therefore needed to ensure that
the calculated priority is always an non-decreasing and
non-negative value, as required in [30].

Each time a node’s priority value Pri exceeds the
node’s threshold value Thri, the node performs the
following operations:

• Increases its threshold value by a factor θ (i.e., θ=1.1
in our experiments); that is: Thri = Thri × θ . The
parameter θ controls how quickly the node will slow
down its transmission rate, in the absence of feed-
back received by the Monitor node.

• Transmits the difference Vtnow − Vtlast and its current
threshold towards its parent node in the aggregation
tree.

• Sets Vtlast = Vtnow , tlast = tnow and Pri = 0.

Because the threshold values are applied to the node’s
observed value, and not to its partial aggregate, in a
hierarchical node setting each node Ni may also trans-
mit the difference Vtnow − Vtlast if one of its descendant
nodes makes a transmission. In this case, node Ni can
include the above difference at no cost (after aggregat-
ing it with the one received by its child node), since any
messages received from descendant nodes will need to
be propagated towards the Monitor node anyway. In
this case, the node performs most of the steps described
above, but does not increase its threshold value (neither
transmits it), since its transmission was due to another
node’s measurements.

The Monitor node monitors the thresholds received
from the nodes and, if it detects that the bandwidth
is underutilized (the estimation of the bandwidth con-
sumption can be performed in the same way as in our
algorithm), then it sends feedback messages to the nodes
with the highest thresholds to divide their thresholds by
a parameter ω>1. This ω parameter controls how aggres-
sively the Monitor node wants each notified node to

increase its transmissions. While this adjustment process
can be performed in a continuous fashion in [30], in hier-
archical node settings this process can be performed only
periodically, since after each adjustment phase we need
to collect accurate estimates of the resulting bandwidth
consumption. Trying to keep the thresholds of all active
nodes about equal was shown in [30] to be the optimal
solution, for a different problem though than the one
that we tackle in this paper, and in a non-hierarchical
setup of the nodes.

6.2 Comparison to TBA algorithm

We now provide a classification of the TBA algorithm
described in Sect. 6.1 based on several characteristics
and draw comparisons to the characteristics of our MGA
algorithm. Table 5 provides a synopsis of the character-
istics of these two algorithms.

Provided error-guarantees. The TBA algorithm pro-
vides deterministic error guarantees, since at each node
Ni, its current value cannot deviate by more than Thri

without resulting in a transmission by the node. There-
fore, the application error guarantee is equal to the sum
of threshold values by all active nodes in the aggregation
tree. Our MGA algorithm also provides deterministic
error guarantees, as discussed in previous sections, but
is significantly more accurate, as our experiments will
demonstrate.

Robustness to nodes with different characteristics. In a
large sensor network, nodes with widely different char-
acteristics may exist. For example, the measurements of
some nodes may either be significantly higher or exhibit
much larger variance than the measurements of some
other nodes. The TBA algorithm is only influenced by
the variance of the measurements, and not by their mag-
nitude. However, the TBA algorithm fails to take into
account that some nodes may be erratic, meaning no-
des that exhibit large variance in their measurements.
Such nodes tend to continuously make transmissions,
since their thresholds are usually not sufficiently large
to prune any messages. On the update phase of the TBA
algorithm, due to their increased threshold values, these
same nodes are the ones which the Monitor node will
ask to lower their thresholds. Non-erratic nodes will

Table 5 Characteristics of TBA and MGA

Technique Error Robust Utilizes Side
guarantee hierarchy info

TBA YES NO NO Considerable
MGA YES YES YES Limited
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gradually increase their thresholds to large values, thus
resulting in large maximum errors for the application.
However, it is obvious that the desired behavior would
be for the algorithm to eliminate the erratic nodes from
consideration (by assigning them a zero, or near-zero
threshold). This would still result in a continuous trans-
mission by these nodes, but the thresholds of the remain-
ing nodes would be considerably lower, returning tighter
error guarantees.

Our MGA method is not influenced by the existence
of sets of nodes with significantly different magnitude of
values. Furthermore, it is robust in dealing with erratic
nodes, which it easily manages to eliminate from con-
sideration. Erratic nodes tend to have, due to their large
variance, small DB values. Any erratic node with a large
error filter will exhibit a large DE

DB ratio. This makes it a
good candidate for receiving a lot of positive bandwidth
and, therefore, significantly decrease its error at the first
epoch when bandwidth is underutilized. Moreover, in
cases of bandwidth overutilization, little negative band-
width, if any, is given to erratic nodes with wide error
filters, due to their small DB

DE ratio.

Hierarchy consideration. One of the significant draw-
backs of using the TBA algorithm for evaluating band-
width-constrained queries is the fact that it does not
exploit or use the hierarchical structure of the aggre-
gation tree. Deciding the set of nodes whose threshold
values will be decreased is based solely on the threshold
values, and not on the topology of the nodes. However,
the tree topology should clearly be taken into account,
since the transmission by any node Ni causes the trans-
mission of messages by all the ancestors of Ni in the
aggregation tree. On the other hand, our MGA algo-
rithm takes into account the tree hierarchy in the way
that it calculates the cumulative statistics of each sub-
tree, and then uses this information in the update phase
to dispense the available budget.

Amount of side information needed. We now consider
the amount of additional information, besides the prop-
agated aggregate values, that the presented techniques
need in order to make their decisions.

In the TBA algorithm, each message from node Ni to
its parent node is accompanied by a potentially large list
of identifiers of nodes which increased their thresholds
in the subtree of Ni. This information may be quite large,
since it cannot be aggregated. Moreover, the algorithm
needs to estimate the amount of consumed bandwidth,
which requires some additional, but easy to aggregate,
information to be propagated as well. Our MGA algo-
rithm requires the transmission of the B_Cum, CumDE
and CumDB quantities which, however, is information
that can be easily aggregated.

We here need to emphasize that the statistics by both
the MGA and TBA algorithms can be transmitted only
periodically (i.e. in the last epoch of the update period)
to limit the amount of transmitted information and,
therefore, the energy drain in nodes. This is optimal
when using the cost model used by the LEACH [17] and
Pegasis [23] protocols, where the energy drain during the
transmission or reception of messages is proportional to
the number of transmitted/received bits. In this case, the
TBA algorithm will also adjust the thresholds of nodes
only periodically.

7 Experiments

We have developed a simulator for testing the TBA and
MGA algorithms that we discussed in this paper under
various conditions. The experiments that we present are
split in two parts. We first use synthetic data sets to test
the effect of various data characteristics. In the second
part we experiment with real sensor data.

7.1 Configuration parameter selection

We first ran a set of preliminary experiments for setting
up the configuration parameters of the algorithms. Both
algorithms had a large range of values for their config-
uration parameters that provided near-optimal results.
As an example, we show in Figs. 7 and 8 the average
error guarantee when varying the update period (Upd)
from 10 to 100 epochs for the light and temperature
measurements of the lab data set discussed in Sect. 7.3.
Using these results, we set the update period Upd for
TBA to 50 and for MGA to 40 epochs.

For TBA we found out that the parameters that were
originally proposed in [30] provided the best results
in most cases. We thus used initial values of θ=1.1 and
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ω=10. However, unlike the setting in [30], in hierarchical
topologies the amount of bandwidth can be measured
only periodically, unless statistics about the bandwidth
consumption are propagated continuously (which would
impose a significant bandwidth and energy overhead).
This fact significantly complicates the identification of
the correct parameters for the TBA algorithm in each
case, as one would expect the ω value to exhibit a depen-
dency on the period Upd between two consecutive
update operations. In order to achieve the specified
bandwidth constraint, we thus had to periodically adapt
these values during the execution of the TBA algorithm
based on the actual and the desired bandwidth consump-
tion. In cases of bandwidth underutilization, the number
of nodes that were chosen to lower their thresholds was
increased by 11%, while this number was decreased by
12% in cases of bandwidth over-utilization. Finally, if the
number of updated nodes exceeded half the number of
total nodes in the tree, the value of ω was multiplied by a
factor of 4. We found out that this setting was providing
the best results for TBA.

The MGA algorithm is not very sensitive in the used
value of the α parameter discussed in Sect. 5.2. As
an example, in Table 6 we show the error guarantee
of MGA for a lab data set, described analytically in
Sect. 7.3, which consists of a trace of readings from sen-
sors in the Intel Research, Berkeley lab [13], collecting
light, humidity and temperature readings. We varied for
this data set the α parameter from 1 to 99% when the
value of B_Global was set to 6. Based on these results,
we simply set α=40% in all our experiments. Our algo-
rithm is not very sensitive in the value of the parameter,
as long as this parameter is not set too low (values below
5%), or too high (80% and above). Note that this sensi-
tivity is observed only for the light data, where the filters
are relatively larger. For the temperature and humidity
data sets the filters are so small that the anchor points are

Table 6 Error Guarantee, varying α (lab data set)

α Temperature Light Humidity

0.01 2.49 225.71 4.64
0.05 2.44 213.11 4.40
0.1 2.55 188.15 4.28
0.2 2.57 192.93 4.20
0.3 2.33 179.04 4.31
0.4 2.39 189.69 4.08
0.5 2.35 183.64 4.35
0.6 2.31 214.39 4.27
0.7 2.52 237.44 4.21
0.8 2.51 301.47 4.39
0.9 2.33 391.68 4.98
0.95 3.54 513.78 6.86
0.99 5.70 604.51 8.77

almost always determined by either the minDE param-
eter or the variance of the measurements. For the light
data set, the lower sensitivity that we observe for smaller,
when compared to larger, values of α is because for small
values of α the anchor points are usually determined by
the variance of the measurements.

In all cases we used the first 10% of the epochs as a
warm-up period, in order for the algorithms to adjust
the filters/thresholds of the nodes. This period was also
enough for the TBA algorithm to discover a good ω

value for each bandwidth constraint.

7.2 Sensitivity analysis

There are two orthogonal dimensions that affect the
evaluation of a bandwidth constrained query. The first is
the hierarchical organization of the nodes and the sec-
ond is the data distribution. We have experimented with
several topologies for the aggregation tree. For brevity
we present results for the following configurations.

• T1: In this configuration the sensor nodes form a
balanced tree with fanout = 3 and 6 levels (364 no-
des overall). Only leaf nodes in the tree are active.
Intermediate nodes do not collect measurements but
rather aggregate results from their subtrees.

• T2: This is like T1 but now all nodes in the tree
collect measurements.

• T3: The nodes form a random tree with the fanout
of each node being randomly chosen between zero
(leaves) and 8 and with the maximum distance of a
leaf from the Monitor node equal to 6. The tree is
not balanced and leaf nodes are in different distances
from the Monitor node. The tree that we used had
644 nodes. Intermediate nodes are active with prob-
ability 20%. All leaf nodes are active by default.
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Table 7 Avg Error Guarantee, Avg Relative Error Guarantee, Avg Abs Error and B_used for T1

MGA TBA

Error guarantee Error guarantee

B_Global B_used Absolute Relative (%) Abs. error B_used Absolute Relative (%) Abs. error

20 19.5 3,667.0 1.44 279.2 19.0 35,013.7 13.76 245.9
30 28.9 2,506.8 0.99 195.7 28.5 9,527.5 3.74 203.7
40 38.6 1,914.2 0.75 155.4 38.1 5,221.6 2.05 217.1
50 48.4 993.1 0.39 75.7 46.8 4,255.7 1.67 218.6
60 58.0 442.2 0.17 46.9 55.7 3,439.0 1.35 208.1
70 67.5 217.6 0.09 21.4 62.2 2,438.8 0.96 161.5
80 77.7 121.5 0.05 10.9 72.7 1,417.7 0.56 101.7
90 87.8 71.5 0.03 5.7 77.4 1,463.2 0.58 107.2
100 97.6 26.1 0.01 1.8 89.9 675.0 0.27 54.1

The synchronization of the sensor nodes in the tree
is performed as described in TAG [24]. TAG reduces
the number of messages by combining, whenever possi-
ble, messages on a path to the Monitor node within the
same epoch. All algorithms are implemented on top of
this protocol.

In the synthetic data sets, we had the values of each
active node follow a random walk pattern. The maxi-
mum size of each step and the frequency of the steps
are controlled as follows. For the maximum step size we
split the nodes in two classes: regular nodes and erratic
nodes. Regular nodes have a maximum step size of 2,
while erratic nodes make much larger maximum steps,
up to 200 each time. Regarding the frequency of the
steps (that is an orthogonal aspect of the data) we had
two additional classes: sleepers and restless nodes. Sleep-
ers make very infrequent moves with a low probability
of 1%. Restless nodes make a random step at every
epoch. In our experiments we will vary the mix of reg-
ular/erratic and sleepers/restless nodes and study their
effects on the algorithms.

For the first set of experiments we used the SUM
aggregate function. In Sect. 7.3 we present results using
the AVG function.

Effect of bandwidth constraint. In Table 7 we show the
average error guarantee in absolute and relative terms
(over the SUM aggregate) and the average absolute er-
ror provided by the algorithms over 10,000 epochs for
different values of B_Global (bandwidth constraint) and
for the configuration T1. The corresponding values of
B_Util can be easily derived in each case by consider-
ing the number of nodes in each tested configuration.
The data we used had a 80/20 mix of regular/erratic no-
des (that is 80% of nodes were regular and 20% erratic)
and, similarly, a mix of 80/20 of sleepers/restless nodes.

In this table, the first column shows the constraint
used, while column B_used shows the average band-

width (number of messages per epoch) achieved per
algorithm.3 The numbers also include any control mes-
sages required by the algorithms. We notice that both
algorithms achieve a bandwidth consumption very close
to the input value. However, there are large differences
in the error guarantee provided per algorithm. The error
guarantee of algorithm MGA is up to 26 times smaller
than the one of TBA for the same bandwidth constraint.
In this table we also show the average absolute devia-
tion of the reported aggregate to the Monitor node from
the true aggregate value (corresponding to an uncon-
strained execution). We notice that both algorithms are
significantly more accurate than their reported error
guarantee; the (real) absolute error is typically an order
of magnitude smaller than the reported error guarantee.
This is a trend consistent in all our experiments. For brev-
ity, in the remainder of this section we are only reporting
the error guarantees. Also, note that, as expected, with
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Fig. 9 Error guarantee for T3

3 As mentioned, TBA does not aggregate the statistics sent to the
Monitor node and, thus, the size of each message is substantially
larger. We do not account for this overhead of TBA here.
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Table 8 Varying mix of regular/erratic nodes

Regular/erratic T1 (%) T2 (%) T3 (%)

MGA TBA MGA TBA MGA TBA

0.1 0.12 0.80 0.31 1.09 0.91 2.22
0.2 0.26 1.69 0.78 2.07 1.95 4.39
0.3 0.76 2.65 1.50 2.69 2.52 7.02
0.4 1.31 3.83 2.59 3.49 2.74 10.39
0.5 1.72 4.55 2.94 3.78 3.33 15.97
0.6 1.88 4.33 4.21 6.12 4.26 24.12
0.7 3.30 6.92 4.29 7.33 4.75 30.88
0.8 3.63 9.48 5.06 15.01 5.42 37.66
0.9 3.96 9.49 5.44 16.71 6.06 43.93

Table 9 Varying mix of sleeper/restless nodes

Sleeper/restless T1 (%) T2 (%) T3 (%)

MGA TBA MGA TBA MGA TBA

0.1 0.02 0.22 0.09 0.41 0.27 1.17
0.2 0.26 1.69 0.78 2.07 1.95 4.39
0.3 1.21 3.40 2.31 3.19 2.98 8.92
0.4 1.77 4.23 4.76 5.46 4.27 16.51
0.5 3.28 7.02 7.08 8.11 6.09 27.61
0.6 4.93 10.56 8.14 11.25 7.75 42.29
0.7 6.53 14.19 9.80 17.41 10.04 54.20
0.8 9.19 23.21 12.66 29.80 12.07 71.34
0.9 11.93 30.26 13.15 34.89 15.45 98.83

the increase of the desired bandwidth consumption the
error guarantees become tighter. Some deviations from
this behavior may be observed rarely in cases when the
error is very low, since the average error guarantees de-
pend on the actual bandwidth utilization during each
update period.

In Fig. 9 we plot the average error guarantee versus
B_Global for T3. The error guarantee of MGA, for the
same bandwidth constraint is smaller by a factor of up
to 75, depending on the used bandwidth constraint.

Table 10 Average relative error guarantee, varying Pmove

Pmove T1 (%) T2 (%) T3 (%)

0 1.06 2.63 2.38
0.1 1.19 2.75 2.71
0.2 1.27 2.87 2.73
0.3 1.34 2.92 3.39
0.4 1.45 2.80 2.91
0.5 1.75 3.01 3.53
0.6 2.14 3.06 3.49
0.7 1.94 3.62 3.88
0.8 2.16 3.75 3.44
0.9 1.99 3.21 4.16
1.0 2.55 4.45 5.21

Overall, the error guarantees provided by the algo-
rithms are very tight. The average value of the SUM
aggregate was 254,429 and 531,718 for T1 and T3 (T1
has fewer active nodes than T3). For B_Global=20 in T1,
MGA provides an average error guarantee of 3,667. In
relative terms this is just 1.5% of the aggregate value and
is obtained with just 19.5 messages per epoch, while an
unconstrained execution of the query, as in [24], would
require 363 messages per epoch. Thus, we obtain a 1.5%
error guarantee using about 5% of the bandwidth. The
actual error is just 0.1% for the same bandwidth.

Varying mix of nodes. In Table 8 we vary the propor-
tion of regular over erratic nodes and present the error
guarantee as a percentage of the real aggregate. The
proportion of sleepers/restless nodes was 80/20 and
B_Global= 60 in all cases. As the ratio of regular/erratic
nodes decreases, the error guarantees increase because
of the increased number of erratic nodes. Clearly, the
error guarantee provided by MGA are significantly
smaller than the ones provided by TBA.

In Table 9 we repeat the experiment varying this time
the mix of sleepers/restless nodes. The ratio of regu-
lar/erratic nodes was 80/20 and B_Global=60.

Node movement. In Table 10 we experiment with the
sensitivity of the MGA algorithm when the aggregation
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Table 11 Characteristics of
real data sets Measure Mean Variance Variance

(data measurements) (AVG aggregate)

Lab-temperature (Celsius) 21.81 11.55 1.72
Lab-light (Lux) 378.61 254,668.00 11,718.55
Lab-humidity (0-100%) 38.53 40.96 5.63
Weather-temperature (Fahrenheit) 70.25 225.93 2.54

tree changes during the execution of the query (the
ratios of regular/erratic and sleepers/restless nodes were
both set to 80/20, while B_Global=40).

We model node movement as follows. Between two
update periods, with probability Pmove a node Ni in the
tree changes its selection of parent node, by randomly
choosing a new parent from the tree (excluding of course
its descendants). This results in having the whole sub-
tree rooted at Ni moved to a new location. The main
implication of this change is that during the next update,
statistics accumulated by ancestors of Ni in the old/new
configuration do not accurately depict the behavior of
the nodes before and after the change in the topology.
However, from the table we can see that the effect on the
accuracy of MGA is not very large, even when the aggre-
gation tree changes rather frequently. We also observe
that the reported errors are not strictly monotonic with
Pmove as they depend on both the selection of Ni and its
randomly selected new location on the tree.

7.3 Experiments with real data

Sensor networks are frequently used in environmental
monitoring. Here, we present results on running exper-
iments over two real-world data sets. The first data set,
lab, is a trace of readings from sensors in the Intel
Research, Berkeley lab, collecting light, humidity and
temperature readings [13].4 We used trace data of 48
sensors for a period of 1 week. For setting up the aggre-
gation tree, we used the aggregate connectivity data
available with this trace. The sensors formed a tree
through a simple protocol that prioritized the choice
of a parent node based on the quality of the upload link.
The final aggregation tree is shown in Fig. 10.

The second data set, weather, provides temperature
measurements at a resolution of one minute for the year
2002 (a total of 525K measurements). The data was col-
lected at the weather station of the university of Wash-
ington as part of the Live From Earth and Mars Project.
We split the data into 53 non-overlapping sets. We tested
this set using a random aggregate tree consisting of 80

4 We would like to thank the authors for making their data pub-
licly available.

Fig. 10 Aggregation tree used in lab data set

nodes. Each intermediate node in the tree had between
one and four children while the maximum distance of a
leaf from the Monitor node was 5 (i.e., 6 levels). Inter-
mediate nodes were active with probability 20%.

For the interpretation of the performance of the algo-
rithms we provide in Table 11 the mean value and vari-
ance of the sensor measurements (calculated over all the
nodes) as well as the variance of the AVG function (cal-
culated at the Monitor node) used in all the aggregate
queries in this subsection. In Figures 11, 12 and 13 we
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Fig. 11 Error guarantee for temperature readings (lab data set)



466 A. Deligiannakis et al.

0

200

400

600

800

1000

1200

1400

1600

4 6 8 10 12 14 16 18 20

E
rr

or
 G

ua
ra

nt
ee

 (
Lu

x)

B_used (out of 48)

"TBA"
"MGA"

Fig. 12 Error guarantee for light readings (lab data set)

0

5

10

15

20

25

30

4 6 8 10 12 14 16 18 20

E
rr

or
 G

ua
ra

nt
ee

 (
%

)

B_used (out of 48)

"TBA"
"MGA"

Fig. 13 Error guarantee for humidity readings (lab data set)

0

20

40

60

80

100

120

140

160

4 6 8 10 12 14 16 18 20

E
rr

or
 G

ua
ra

nt
ee

 (
F

ah
re

nh
ei

t)

B_used (out of 53)

"TBA"
"MGA"

Fig. 14 Error guarantee for weather data set

show the average error guarantee for the lab data set,
while Fig. 14 depicts the performance for the weather
data set. We notice that with about 10% of the readings,
MGA provides strong deterministic guarantees that are
below the variance of the aggregate in most cases.

8 Conclusions

In this paper we introduced the notion of bandwidth
constrained queries in sensor networks. We proposed
a new algorithm that seeks to minimize the maximum
error of the approximation, while keeping the aver-
age bandwidth consumption under a given threshold.
We also discussed extensions that allow us to meet lo-
cal bandwidth constraints in the network. Unlike prior
work, our techniques provide strong deterministic guar-
antees for the deviation of each newly estimated aggre-
gate and make these guarantees available to the
monitoring node at each epoch. The algorithm operates
with simple but intuitive local statistics that are main-
tained by the nodes. Dissemination of positive or neg-
ative bandwidth is done in a localized manner between
parent and child nodes in the aggregation tree. While our
experiments have demonstrated that our algorithm is
substantially more accurate than alternative techniques
(often by more than an order of magnitude) the stron-
gest result is that quite often we can compute a very accu-
rate approximation of the requested aggregate with just
a fraction of the bandwidth that an unconstrained com-
putation of the aggregate would require. Thus, band-
width constrained queries can have a dramatic effect in
(i) reducing the bandwidth consumption of continuous
queries, allowing the network to handle a lot more que-
ries for the available bandwidth and (ii) in case nodes
are operated by batteries, prolonging the longevity of
the network by reducing the number of messages ex-
changed among the nodes of the network.
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