
The VLDB Journal (2007)
DOI 10.1007/s00778-005-0173-5

REGULAR PAPER

Antonios Deligiannakis · Yannis Kotidis ·
Nick Roussopoulos

Dissemination of compressed historical information
in sensor networks

Received: 1 December 2004 / Accepted: 2 August 2005 / Published online: 28 July 2006
c© Springer-Verlag 2006

Abstract Sensor nodes are small devices that “measure”
their environment and communicate feeds of low-level data
values to a base station for further processing and archiv-
ing. Dissemination of these multi-valued feeds is challeng-
ing because of the limited resources (processing, bandwidth,
energy) available in the nodes of the network. In this pa-
per, we first describe the SBR algorithm for compressing
multi-valued feeds containing historical data from each sen-
sor. The key to our technique is the base signal, a series
of values extracted from the real measurements that is used
to provide piece-wise approximation of the measurements.
While our basic technique exploits correlations among mea-
surements taken on a single node, we further show how it
can be adapted to exploit correlations among multiple nodes
in a localized setting. Sensor nodes may form clusters and,
within a cluster, a group leader identifies and coalesces sim-
ilar measurements taken by different nodes. This localized
mode of operation further improves the accuracy of the ap-
proximation, typically by a factor from 5 to 15. We pro-
vide detailed experiments of our algorithms and make direct
comparisons against standard approximation techniques like
Wavelets, Histograms and the Discrete Cosine Transform,
on a variety of error metrics and for real data sets from dif-
ferent domains.

Keywords Sensor Networks · Compression

1 Introduction

Recent advances in wireless technologies and microelec-
tronics have made feasible, from both a technological as
well as an economical point of view, the deployment of
densely distributed sensor networks [3, 56]. These networks

A. Deligiannakis (B) · N. Roussopoulos
University of Maryland
E-mail: {adeli,nick}@cs.umd.edu

Y. Kotidis
AT&T Labs-Research
E-mail: kotidis@research.att.com

are used in a variety of monitoring applications such as
military surveillance, habitat monitoring, location tracking
and inventory management. Each sensor node is typically
equipped with several sensing elements, such as micro-
phones, accelerometers and temperature sensors that allow it
to gather low-level measurements of its surroundings. Once
enough data is collected, it is processed locally and transmit-
ted to a base station for further analysis. A base station may
represent any node of the network with increased storage,
battery and processing capabilities.

Large-scale sensor networks require tight data handling
and data dissemination techniques. Transmitting a full-
resolution data feed from each sensor back to the base sta-
tion is often prohibitive due to (i) limited bandwidth that
may not be sufficient to sustain a continuous feed from all
sensors and (ii) increased power consumption due to the
wireless multi-hop communication. In order to minimize
the volume of the transmitted data, we can apply two well
known ideas: aggregation and approximation. Aggregation
works by summarizing the measurements in the form of sim-
ple statistics like average, maximum, minimum, etc. that are
then transmitted to the base station over regular intervals.
Aggregation is an effective means to reduce the volume of
data, but is rather crude for applications that need detailed
historical data, like military surveillance. Furthermore, when
data feeds exhibit a large degree of redundancy, approxima-
tion is a less intrusive form of data reduction in which the
underlying data feed is replaced by an approximate signal
tailored to the application needs. The trade-off is then be-
tween the size of the approximate signal and its precision
compared to the real-time information monitored by the sen-
sors.

In this paper we study the problem of disseminating de-
tailed historical information in sensor networks. This is a de-
parture from previous work that only focused on maintain-
ing simple aggregate statistics of the observed data. There
are several applications that can benefit from our techniques.
A prominent example involves habitat and environmental
monitoring applications [2, 39]. Deploying dense networks
consisting of hundreds or thousands of inexpensive sensors

439
16: 439 461–

A. Deligiannakis et al.

will allow us to gather detailed, localized measurements that
would have been hard, or even impossible to obtain other-
wise [3, 56]. Long-term historical records are invaluable for
detecting changing behavioral patterns or building models
on the observed eco-system. As is noted in [39], sensor net-
work deployment represent a substantially more economical
and less intrusive method for conducting long-term studies
than traditional personnel-rich methods.

Our techniques can also help in obtaining historical
data for training purposes in model-driven data acquisi-
tion [18, 34]. Data models trained by the sensor readings can
help reduce the cost of data acquisition in large scale net-
works during ad-hoc queries, identify sensors that are pro-
viding faulty data, and can extrapolate the values of sensor
readings at locations where sensors are no longer opera-
tional. A hidden cost in building models from sensor read-
ings is that of collecting all necessary data for training pur-
poses. In [18] the authors used detailed sensor readings from
six days to train their models. Extracting so much data will
be overwhelming for large-scale networks. Our techniques
fit nicely in this space by allowing us to obtain and dissem-
inate training data in a more energy-efficient manner.1 Our
data reduction framework can also leverage the computation
of temporal and top-k queries discussed in [60].

The techniques presented in this paper build on the Self-
Based Regression (SBR) data reduction algorithm intro-
duced in [14]. SBR identifies piece-wise linear correlations
among measurements generated at a single sensor node and
builds a data dictionary, called the base signal, which it then
uses in order to compress the collected data. During data
transmission, the collected data is carefully partitioned into
intervals of varying length that can be efficiently approxi-
mated as linear projections of some part of the base signal.

While SBR exploits correlations among measurements
taken on a single node, in this paper we show how it can also
be adapted to exploit correlations among multiple nodes in
a localized setting. Our solution is based on an adaptation
of the HEED protocol [58] that is used to cluster the sensor
nodes into groups and elect within each group a group leader
that instruments the execution of each SBR instance in the
nodes of its group and also handles the final transmission of
the compressed data to the base station. This form of local-
ized processing allows the nodes to exploit spatial correla-
tions and results in a reduction of the error of the approxi-
mation by a factor of up to 15, in our experiments, compared
to the case when nodes individually compress and transmit
their data. We further discuss modifications of the SBR algo-
rithm that allow us to minimize different error metrics than
the commonly used sum squared error.

The localized process is illustrated in Fig. 1. Under the
localized mode of operation the sensor nodes transmit their
compressed data feeds to the group leader, which in turn

1 Our lossy compression scheme can also be used to filter out out-
liers or abnormal readings during the transmission process, by utilizing
variants of a regression subroutine model where only a fraction (i.e.,
95%) of the data points is used to perform the approximation. How-
ever, the details of this process are beyond the scope of this paper.

k

k 1

2

3k

Group leader

BASE STATION

glk

k S1

Fig. 1 Dissemination using localized groups: nodes form groups and
elect a group leader. Using a localized algorithm each node in the group
obtains a compression ration ki so that the target overall compression
ratio is achieved, while the error of the approximation is minimized

applies the SBR algorithm to the incoming feeds (includ-
ing its own measurements). The group leader further co-
ordinates the allocation of bandwidth among the members
of its group in order to minimize the desirable error metric.
This localized framework allows the group leader to explore
correlations between measurements of different sensors and
achieve a significantly more accurate approximation for the
same overall compression ratio. Such correlations may be
due to either the small variations of the monitored physical
quantities because of the proximity of the sensors (for in-
stance, when obtaining temperature readings), or the nature
of the measurements (i.e., voice levels tend to fade gradually
with the distance from the source). We also propose an alter-
native framework for the operation of sensors within local-
ized groups, in which sensors with limited capabilities can
compress their data using the base signal constructed by the
group leader.

While our techniques are motivated by applications of
sensor networks, the same algorithms can also be used in
other domains for the lossy compression of multiple time
series. In addition to weather data that is common in sen-
sor network applications, we also provide experimental ev-
idence using phone-call and stock data sets. In these do-
mains where significantly more powerful processors can be
used than in sensor network applications, some of the opti-
mizations proposed in this paper may be relaxed in order to
achieve even better approximation.

The rest of the paper is organized as follows. Section 2
presents related work. In Sect. 3 we state our problem and
sketch the basics of our techniques, while in Sect. 4 we
describe our framework and the SBR algorithm in detail.
In Sect. 5 we describe the localized mode of operation.
Section 6 contains our experiments. Section 7 presents con-
cluding remarks and future directions.

2 Related work

In recent years there has been a flurry of research in the
area of sensor networks. Some of the most important is-
sues addressed include network self-configuration [6, 34],
discovery [19, 26] and computation of energy-efficient data

440

Dissemination of compressed historical information in sensor networks

routing paths [8, 27, 36, 37, 50, 52]. In the database commu-
nity there is ongoing effort in understanding how embedded
database systems can be used to provide energy-based query
optimization [38, 57]. In-network data aggregation is inves-
tigated in [15, 17, 20, 29, 37, 48, 57]. The main idea is to
build an aggregation tree, which partial results will follow.
Non-leaf nodes of the tree aggregate the values of their chil-
dren before transmitting the aggregate result to their parents,
thus substantially reducing the number of messages in the
network. A robust in-network aggregation framework that
handles packet loss and node failures has been presented
in [13]. Decentralized algorithms for aggregate computation
have also been proposed [4, 31]. Recent proposals for com-
bining data modeling with data acquisition can also help in
reducing the cost of aggregation [18, 34].

Sensor nodes are small devices that “measure” their en-
vironment and communicate streams of low-level values to
a base station for further processing and archiving. These
streams are then used to construct a higher-level model of
the environment. This process makes historical data equally
important to current values [2, 12, 60]. In this paper we pro-
pose approximation as a less intrusive form of data reduction
that is more suited for applications in which a long-term his-
torical record of measurements from each sensor is required.
Unlike aggregate queries that continuously transmit a few
values to the base station, in our framework the sensor nodes
wait till enough data has been gathered and only then is the
data compressed and transmitted over the network. This al-
lows the nodes to power-down their radios for long intervals,
thus substantially reducing the energy drain of their batter-
ies.

Recently, there has been increasing interest in un-
derstanding the principles of continuous queries in data
streams [9, 28, 41, 54, 59]. The work of [43] studies the
trade-off between precision and performance when query-
ing replicated, cached data. In [42] the users register con-
tinuous queries with strict precision constraints at a central
stream processor, which, in turn installs filters at the remote
data sources. These filters adapt to changes in the streams
to minimize update rates. The work in [15] investigates the
optimal assignment of error filters in order to minimize the
bandwidth consumption of continuous aggregate queries in
sensor networks. An online algorithm for minimizing the
update cost while the query can be answered within an er-
ror bound is presented in [32]. The authors of [11] study a
probabilistic query evaluation method that places appropri-
ate confidence in the query answer to quantify the uncer-
tainty of the recorded data values.

Approximate processing techniques have been widely
studied. The AQUA project explored sampling-based
techniques for building synopses and using them to provide
approximate answers at a fraction of the time that a real an-
swer would require [23, 24]. Histograms have been exten-
sively used by query optimizers to estimate the selectivity
of queries, and recently in tools for providing fast approx-
imate answers to queries [30, 44, 45, 47, 53]. Wavelets are
a mathematical tool for the hierarchical decomposition of

functions, with applications in image and signal process-
ing [51]. More recently, Wavelets have been applied suc-
cessfully in answering range-sum aggregate queries over
data cubes [55], in selectivity estimation [40] and in ap-
proximate query processing [7, 16, 22, 25]. The Discrete
Cosine Transform (DCT) [1] constitutes the basis of the
mpeg encoding algorithm and has also been used to con-
struct compressed multidimensional histograms [35]. Linear
regression has been recently used in [10] for on-line multi-
dimensional analysis of data streams.

In [14] we introduced the SBR algorithm, a method
for compressing measurements generated at a single sen-
sor node through a data dictionary, called the base signal.
In this paper we extend the SBR algorithm to also operate
on a localized organization of sensor nodes. The use of a
dictionary is a standard technique in data compression al-
gorithms (for example in gzip). As an abstraction, the base
signal of the SBR algorithm is a dynamic data dictionary
that is used to compress present and future values. A funda-
mental difference with compression techniques such as gzip
is that our compression is lossy, which allows us to achieve
significantly higher compression ratios. Furthermore, the de-
tails of our approximation (construction of the base signal,
approximation using regression etc.) differ at a fundamental
level from standard compression techniques. Many popular
transforms also use some form of basis that is either fixed
(i.e., Wavelets, DCT) or data dependent (i.e., SVD). We also
explore the use of such bases in our framework and present
the necessary modifications. However, the base signal con-
structed by our algorithms seems to always outperform these
bases, for the specific encoding we use in our approximation.

3 Preliminaries

In this section we first present a description of the charac-
teristics of sensor networks and their applications. We then
describe the operation of sensor nodes in our data reduction
framework and present the optimization problems that we
address in this paper.

3.1 Characteristics of sensor networks

Recent technological advances have made possible the de-
velopment of low-cost sensor nodes with heavily integrated
sensing, processing and communication capabilities. Infor-
mation about the environment is gathered using a series
of sensing elements connected to an analog-to-digital con-
verter. Examples include microphones for acoustic sensing,
accelerometers and temperature sensors. Once enough data
is collected, it is processed locally and periodically for-
warded to a base station, using a multi-hop routing proto-
col [49].

The processing subsystem on the nodes depends on
the nature of the application. Applications such as military

441 441

A. Deligiannakis et al.

reconnaissance that require significant processing to be per-
formed at the nodes use sensor nodes with significant pro-
cessing power. As an example, an improved model of the
commonly used StrongARM 1100 processor (µAMPS [49]
and HiDRA nodes) reaches a frequency of 400 MHz and can
support up to 64 MB of memory.

As the processing and storage capabilities of sensor
nodes tend to follow Moore’s Law, their communication and
power subsystems become the major bottleneck of their de-
sign. For example, over the last years, the energy capacity of
the batteries used in such nodes has exhibited a mere 2–3%
annual growth.2 The main source of energy consumption in
a node is the data transmission process. There are several
reasons for this:

1. The energy drain during transmission is much larger than
the consumption during processing [19]. As an example,
on a Berkeley MICA Mote sending one bit of data costs
as much energy as 1,000 CPU instructions [38].

2. Transmission ranges between nodes are fairly short. The
transmitted data may thus require to traverse multiple
hops to reach the base station. This retransmission pro-
cess at each intermediate node is very costly. Further-
more, because nodes often use broadcast protocols over
radio frequencies [37], transmitted messages are not only
received by the intended node, but by all nodes in the
vicinity of the sender, thus increasing the overall power
consumption.

Even on applications where battery lifetime is not a concern
(i.e., military surveillance sensing nodes attached to moving
vehicles with practically infinite power supply), the available
bandwidth may not sustain a continuous feed of measure-
ments for all sensors deployed in the terrain. The design of
data reduction protocols that effectively reduce the amount
of data transmitted in the network is thus essential when the
goal is to meet the application’s bandwidth constraints or to
increase the network’s lifetime.

3.2 Data model and processing

In order not to deplete their power supply and to conserve
bandwidth, the sensors do not continuously transmit every
new measurement they obtain but rather wait till enough data
is collected and then forward it to the base station [49]. This
form of batch processing allows them to power-down their
radio transmitter and prolong their lifetime in a way analo-
gous to [37].

Within a sensor, the recorded data is depicted in a two
dimensional array A where each row i stores sampled val-
ues of a distinct quantity. Informally, each row i is a time
series �Yi of samples from quantity i collected by the sen-
sor. The array has N rows, N being the number of recorded

2 http://nesl.ee.ucla.edu/courses/ee202a/2002f/lectures/
L07.ppt

quantities and M columns, where M depends on the avail-
able memory.3

As more measurements are obtained, the sensor’s mem-
ory buffers become full. At this point the latest N ×M values
are processed and each row i (of length M) is approximated
by a much smaller set of Bi values (i.e., Bi � M). The re-
sulting “compressed” representation, of total size equal to
B = ∑N

i=1 Bi , is then transmitted to the base station. The
base station maintains the data in this compact representa-
tion by appending the latest “chunk” to a log file. A separate
file exists for each sensor that is in contact with the base
station. The entire process is illustrated in Fig. 2.

Each sensor allocates a small amount of memory of size
Mbase for what we call the base signal. This is a compact or-
dered collection of values that we extract from the recorded
values and are used as a base reference in the approximate
representation that is transmitted to the base station (details
will be given in the next section). The data values that the
sensor transmits to the base station are encoded using the
in-memory values of the base signal at the time of the trans-
mission. The base signal may be updated at each transmis-
sion to ensure that it will be able to capture newly observed
data features (where the term “feature” is used in this paper
to denote data intervals which contain data value flunctua-
tions that are frequently encountered in the collected data),
and that the obtained approximation will be of good quality.
When such updates occur, they are transmitted along with
the data values and appended in a special log file that is
unique for each sensor. This allows the base station to re-
construct (approximately) the series �Yi at any given point in
the past.

3.3 Our optimization problem

We can think of the base signal as a dictionary of features
used to describe the data values. The richer the pool of fea-
tures we store in the base signal the better the approximation.
On the other hand, these features have to be (i) kept in the
memory of the sensor to be used as a reference by the data
reduction algorithm and (ii) sent to the base station in order
for it to be able to reconstruct the values. Thus, for a target
bandwidth constraint (number of values that can be transmit-
ted) the more insert and update operations on the base signal
that we perform, the less bandwidth is left available for ap-
proximating the data values. Moreover, the time to perform
the data approximation increases, in our algorithms, linearly
with the size of the base signal.

In the next section we present an efficient algorithm that
decides (i) how large the base signal needs to be at each
transmission, (ii) what new features to be included in it, (iii)
which older features are not relevant any more, and (iv) how
to best approximate the data measurements using these fea-
tures. The only user input needed by the algorithm is the

3 We here assume that all quantities are sampled with the same fre-
quency. This simplifies notation, however, our framework also applies
when each quantity is recorded on a different schedule.

442

Dissemination of compressed historical information in sensor networks

1

2

N

Base Signal

BaseM

M

Measurements Compressed Sensor Data Updates Sensor Data Update Log

Base Signal Updates Base Signal Update Log

Sensor Base Station

Fig. 2 Transfer of approximate data values and of the base signal from each sensor to the base station

target bandwidth constraint and the maximum buffer size of
the base signal values.

4 The SBR framework

We now describe our framework in more detail. We start
with a motivational example that demonstrates the intuition
behind our techniques. Section 4.2 presents the primitive op-
erations required by our framework while the SBR algorithm
is presented in Sect. 4.3. Table 1 contains a brief description
of the parameters used in our algorithms.

4.1 Motivational example

Many real signals are correlated. We expect this to be par-
ticularly true for measurements taken by a sensor, especially
if they are physical quantities like temperature, dew-point,
pressure etc. The same is often true in other domains. For
example, in Fig. 3 we plot the average Industrial and Insur-
ance indexes from the New York stock market for 128 con-
secutive days.4 Both signals show similar trends (i.e., they
go up and down together). Figure 4 depicts a XY scatter plot

4 Data at http://www.marketdata.nasdaq.com/mr4b.html

Table 1 Configuration, input and derived parameters of our algorithms

Configuration Parameters
N Number of input signals
M Measurements per input signal
A The N × M array of measurements

Input Parameters
T otal Band Total bandwidth per transmission
Mbase Buffer size for base signal values

Derived/Calculated Parameters
n = N × M Size of in-memory data
W = √

n Size of each base interval
B Compressed Data Size
max I ns Maximum number of base intervals

inserted during the current transmission
I ns Number of base intervals actually

inserted during the current transmission

380

400

420

440

460

480

500

520

540

560

580

600

0 20 40 60 80 100 120

"Industrial"
"Insurance"

Fig. 3 Example of two correlated signals (Stock Market)

420

440

460

480

500

520

540

560

580

600

380 400 420 440 460 480 500 520 540 560 580

"Industrial_vs_Insurance"

Fig. 4 XY scatter plot of Industrial (X axis) vs Insurance (Y axis)

of the same values. This is created by pairing values of the
Industrial (X-coordinate) and Insurance (Y-coordinate) in-
dexes of the same day and plotting these points in a two-
dimensional plane. The strong correlation among these val-
ues makes most points lie on a straight line. This observation
motivates our work. Assuming that the Industrial index (call
it �X) is given to us in a time-series of 128 values, we can
approximate the other time-series (Insurance: �Y) as:

�Y ′ = a ∗ �X + b

The coefficients a and b are determined by the condition that
the sum of the square residuals, or equivalently the L2 error
norm || �Y ′ − �Y ||2, is minimized. This is nothing more than

443 443

A. Deligiannakis et al.

standard linear regression. However, unlike previous meth-
ods, we will not attempt to approximate each time-series in-
dependently using regression. In Fig. 3 we see that the series
themselves are not linear (i.e., they would be poorly approx-
imated with a linear model). Instead, we will use regression
to approximate piece-wise correlations of each series to a
base signal that we will choose accordingly. In the exam-
ple of Fig. 4 the base signal can be the Industrial index (�X)
and the approximation of the Insurance index will be just
two values (a, b). In practice the base signal may be much
smaller than the complete time series, since it only needs to
contain the “important” trends of the target signal �Y . For in-
stance, in case �Y is periodic, a sample of the period would
suffice. Our algorithm breaks the latest measurements ob-
tained by the sensor into small intervals (of varying sizes)
and looks for intervals of the same length in the base signal
that are linearly correlated. At the same time, the base signal
values are evaluated and may get updated with features from
the newly collected measurements when necessary.

4.2 Primitives of our implementation

Piece-wise approximation of measurements

We here assume that the base signal �X is given to us; we
later describe how to construct the base signal. We will ap-
proximate the latest N × M measurements in �Y1, . . . , �YN
using B ≥ 4 × N values (thus using at least four values per
time series). Later in this section we describe how to deter-
mine the value of B given the desired size TotalBand of the
transmitted representation (including any updates to the base
signal).

To simplify notation, we model the collected data as a
single series �Y that is simply the concatenation of the N se-
ries �Yi . Our technique relies on breaking �Y into B/4 inter-
vals and “mapping” each one to an interval of the base signal
of equal length.5 The algorithm works recursively. It starts
with a single interval for each row of the collected data. In
each iteration, the interval with the largest error in the ap-
proximation is selected and divided in two halves, until the
“budget” of B/4 intervals is exhausted. An interval I is a
data structure with six entries:

– start, length: these define the scope of the interval; i.e., I
represents values of Y [i], with i in [start, start+ length).

– shift: it defines the part of the base signal that is used to
approximate the values of I ; the interval I is mapped to
segment [shift, shift + length) in �X .

– a, b, err : the first two are the regression parameters,
while err is the sum squared error (sse) of the approxi-
mation.

Subroutine Regression() shown in Algorithm 1 is at
the core of our method. This function pairs a segment of the

5 This mapping requires four values per interval, thus the division
by 4.

Algorithm 1 Regression Subroutine

Require: �X , �Y , start_x , start_y, length
1: {Compute Regression Parameters}
2: sum_x =

∑
0≤i<length X [i + start_x]

3: sum_y =
∑

0≤i<length Y [i + start_y]
4: sum_xy =

∑
0≤i<length X [i + start_x]Y [i + start_y]

5: sum_x2 =
∑

0≤i<length X [i + start_x]2

6: a = length×sum_x_y−sum_x×sum_y
length×sum_x2−sum_x×sum_x

7: b = sum_y−a×sum_x
length

{Compute sse of approximate signal �Y ′ = a �X + b in range
[start_y, start_y + length)}

8: err = ∑length−1
i=0 (Y [i + start_y] − (a X [i + start_x] + b))2

9: return (a,b,err)

base signal between values [start_x, start_x + length) with
values of �Y between [start_y, start_y +length), as in Fig. 4,
and computes the regression parameters a, b as well as the
(sse) error of the approximation �Y ′ = a �X + b in this range.
Each value Y [i] with index i in [start_y, start_y + length)
is approximated as a X [start_x + i − start_y] + b.

It should be noted that the Regression() subrou-
tine calculates the optimal a, b values that minimize the
sum squared error of the approximation. If the desired error
metric is different, then the formulas need to be appropri-
ately modified. In Sect. 4.6 we present the necessary mod-
ifications for two interesting optimization problems: mini-
mizing the sum squared relative error, and minimizing the
maximum absolute error of the approximation. The modi-
fied algorithms run in O(length) time and require O(1) and
O(length) space, respectively.

Subroutine BestMap() of Algorithm 2 looks for the
best way to approximate an interval I . It shifts I over �X
and calculates the regression parameters and the approxima-
tion error for the shift parameter that produces the small-
est error. This algorithm contains two deviations from our
previous discussion. First, it also considers approximating
each interval I using standard linear regression, and uses a
negative value for the I.shift parameter to denote this. Sec-
ond, it performs the shifting process over the base signal
only for intervals with a maximum length of 2 × W , where

Algorithm 2 BestMap Subroutine

Require: �X , �Y , Interval I , W
1: I.shi f t = −1
2: Perform standard linear regression on I and set the values of I.a,

I.b and I.err
3: if I.length ≤ 2 × W then
4: {Shift I over �X and find the segment for which the regression

error is minimized}
5: for shi f t in 0..length(�X) − I.length − 1 do
6: (a,b,err) = Regression(�X , �Y , shi f t , I.start , I.length)
7: if err is minimum error so far then
8: Update values of I.a, I.b, I.err and I.shi f t
9: end if

10: end for
11: end if

444

Dissemination of compressed historical information in sensor networks

W is a parameter that denotes the length of the intervals
that constitute the base signal.6 The last modification is per-
formed both to reduce the time complexity of the algorithm
to O(I.length + W × Mbase), and because of the reduced
likelihood that large intervals will be accurately mapped to
multiple consecutive intervals of the base signal.

The core approximation algorithm GetIntervals()
is given in Algorithm 3. The approximation obtained is re-
turned as a list of B/4 intervals in i_list . This list is main-
tained sorted (priority queue) based on the sse of each inter-
val. �X is the current base signal.

Theorem 1 The GetIntervals() algorithm runs in
O(N Mlog(B

N) + B × Mbase × W) time.

Proof The GetIntervals() algorithm repeatedly
breaks the interval with the largest error into two halves
and calls the BestMap() algorithm for each interval.
Retrieving the interval with the maximum error can be
done in O(1) time since the i_list is sorted. Since the
running time of the BestMap() algorithm increases with
the size of the mapped interval, the worst case complexity
of the GetIntervals() algorithm arises when the
algorithm continuously retrieves and breaks the interval
with the largest size. Since exactly B/4 − 1 breaks will be
performed, and N signals of size M exist, the algorithm will
perform in the worst case N breaks of intervals with size

M , 2 × N intervals of size M
2 , . . . , 2log B

4N −1 × N intervals
of size M

log B
4N −1

. Thus, the overall running time is:

log B
4N∑

i=1

(

N × 2i−1 × O

(
M

2i−1
+ W × Mbase

))

= O

(

N ×
log B

4N∑

i=1

(M + W × Mbase × 2i−1)

)

= O

(

M N log
B

4N
+ N × W × Mbase × B

4N

)

= O

(

M N log
B

N
+ B × W × Mbase

)

.

	

For each interval in i_list a record with four values

(I.start, I.shift, I.a, I.b) is transmitted to the base station.
The base station will sort the intervals based on I.start and,
thus, there is no need to transmit their length. It is interest-
ing to note that the GetIntervals() algorithm decides
dynamically how many intervals it will use to approximate
each of the N rows of the collected data, allocating more in-
tervals to signals that are harder to approximate accurately.

Selecting data features for inclusion in the base signal

We focus on the time when the sensor’s memory is filled
with N × M values, as depicted in Fig. 2. We assume that

6 This will become more clear later in our discussion.

Algorithm 3 GetIntervals Algorithm

Require: �X , �Y1,. . . , �YN , B, W
1: i_list = ()
2: �Y = concat (�Y1, . . . , �YN) {Virtual assignment}
3: {Create an interval for each row �Yi (M values each)}
4: for i in 1..N do
5: (I.start , I.length) = ((i-1) × M , M)
6: BestMap(�X , �Y , I , W)
7: i_list .push(I);
8: end for
9: num_intervals = N

10: while num_intervals++ < B / 4 do
11: {i_list is sorted on decreasing order of I.err}
12: I = i_list .pop()
13: {Break I in 2 pieces}
14: (Ile f t .start , Ile f t .length) = (I.start , I.length/2)
15: BestMap(�X , �Y , Ile f t , W)
16: (Iright .start , Iright .length) =

(I.start+I.length/2, I.length/2)
17: BestMap(�X , �Y , Iright , W)
18: i_list .push(Ile f t)
19: i_list .push(Iright)
20: end while
21: return i_list

Algorithm 4 GetBase() Algorithm

Require: �Y1, . . . , �YN , W , M , max I ns
1: Create K = N×M

W CBIs of width W
2: For each CBI Candi , set its benefit to 0
3: Maintain unsorted list Q with CBIs
4: Maintain list base_list with selected stored intervals
5: Linear Err(Cand j) is the error of approximating Cand j using

standard linear regression
6: for i in 1..K do
7: for j in 1..K do
8: {Calculate error of approximating the j-th CBI by using as

base the i-th CBI}
9: error=Regression(Candi ,Cand j ,0,0,W)

10: if error ≤ LinearErr(Cand j) then
11: Candi .bene f i t+=Linear Err(Cand j)-error
12: end if
13: end for
14: Q.insert(Candi)
15: end for
16: for i in 1..max I ns do
17: C = Q.popBestInterval()
18: base_list.insert(C)
19: for j in 1..|Q| do
20: adjust(Q[j].bene f i t , C)
21: end for
22: end for
23: return base_list

the buffer allocated to the base signal is of size Mbase. This
buffer is organized as a list of intervals (called base inter-
vals) of the same length W . For simplicity, we assume that
both M and Mbase are multiples of W . We note here that in
Algorithm 3 the base signal is presented as a series of Mbase
values, which is simply the concatenation of the base inter-
vals in the buffers.

The GetBase() algorithm (Algorithm 4) is called dur-
ing the initialization and update procedure of the base sig-
nal. The algorithm receives as inputs the N signals, each of

445 445

A. Deligiannakis et al.

size M , the size W of each base interval, and the maximum
number of intervals maxIns that can be inserted in our base
signal, where

maxIns = min{Mbase, TotalBand}
W

Each input signal �Yi is broken into M
W non-overlapping in-

tervals of size W . This provides a “dictionary” of N∗M
W

candidate base intervals (CBIs). The algorithm will choose
max I ns CBIs out of this dictionary to be inserted into a can-
didate update base signal. We will describe in Sect. 4.3 how
to determine how many of these CBIs will ultimately be in-
serted into the base signal.

Each CBI Candi can be used to approximate any other
CBI Cand j , which is in-fact part of some �Yk , using re-
gression. We consider such an approximation to be ben-
eficial, only if the error of the approximation is smaller
than the error of approximating Cand j using standard lin-
ear regression. In Algorithm 4 we denote the latter error as
LinearErr(Cand j). The benefit of using Candi to approxi-
mate Cand j is simply the reduction in error that we get com-
pared to LinearErr(Cand j).

The CBIs are stored in an unordered list Q. At each
step of the algorithm, the CBI in Q with the largest bene-
fit is selected for inclusion in the candidate update base sig-
nal stored in base_list. After each selection, the benefits of
the remaining CBIs in Q have to be properly updated. As
we mentioned, the benefit of using Candi to approximate
Cand j is originally equal to the reduction in error that we
get compared to LinearErr(Cand j). However, at an inter-
mediate step of the algorithm, some CBIs have already been
selected for inclusion in the candidate update base signal. By
using these stored CBIs, many of the remaining CBIs can
now be better approximated than by using standard linear
regression. Thus, the benefit of using Candi to approximate
Cand j has to be adjusted to depict the reduction in error that
we get when compared to the best approximation for Cand j
that we have so far, by using the current candidate update
base signal. Intuitively, this adjustment prohibits the inclu-
sion in the base signal of CBIs that help approximate well
similar parts of the data.

An example is presented in Fig. 5. In this small exam-
ple we consider just 3 CBIs, out of which we need to pick
which two to select. In the left part of the figure, we present
the benefits of each of the 3 CBIs. Recall that at each step
of the algorithm, the benefit of using the i-th CBI for the
approximation of the j-th CBI is defined as the reduction

Fig. 5 Example of the GetBase() Algorithm

in error that we achieve compared to the best approxima-
tion that we may achieve for the j-th CBI using either stan-
dard linear regression, or a mapping to an already selected
CBI. In our example, the first CBI has the largest total ben-
efit, and is thus selected. In the right part of the figure, the
adjusted benefits of the remaining CBIs are presented. For
example, the benefit of using the second CBI in order to ap-
proximate the third CBI is reduced to 0.55 − 0.50 = 0.05,
due to the improved approximation of the third CBI that we
can achieve using the recently selected first CBI. Notice that
now, the third CBI will be selected, even though initially it
had a lower benefit than the second CBI.

In the GetBase() algorithm, for each of the K =
N×M

W CBIs, we first estimate its benefit for approximating
all the other CBIs. Each such approximation requires O(W)

time, thus resulting in a total complexity of O(N 2 M2

W). Then,
for each of the maxIns selected CBIs, detecting the one
with the largest benefit requires O(K) time (we do not sort
the CBIs). After each selection, adjusting the benefits of
the remaining CBIs requires time O(K 2). Thus, the over-

all running time complexity of the algorithm is O(N 2 M2

W +
maxIns × N 2 M2

W 2), while its space requirements is O(N 2 M2

W 2).
For n = N × M being the size of the data, a value

of W = √
n used by the SBR algorithm (described in the

Sect. 4.3) results in a running time of O(n1.5) for GetBase()
and space of O(n), since maxIns × W ≤ TotalBand ≤ n. In
case of severe memory constraints, we can easily modify the
GetBase() algorithm to only store for each CBI the small-
est error of approximating it using at each step the current
base signal. The only modification will be to replace Lines
19-21 of the GetBase() algorithm with a double for-loop
similar to the one of Lines 6-15, and alter the calculation of
each CBI’s benefit to take into account the error of the best
approximation that we have for each CBI so far. This modi-
fied algorithm requires O(

√
n) space and has a running time

of O(maxIns × n1.5).

4.3 The SBR algorithm

We now present the Self-Based Regression (SBR) algorithm
that performs the approximation of the data values. The al-
gorithm receives as input the latest n = N ×M data values, a
bandwidth constraint TotalBand (number of values to trans-
mit, including any base signal values), the maximum size of
the base signal Mbase and the current base signal �X of size
| �X | ≤Mbase.7 From these parameters the user/application
has to provide only TotalBand and Mbase. The SBR algo-
rithm must then make the following decisions:

1. Decide how many, and which base intervals to insert into
the base signal. Recall that any such base interval has to
be transmitted to the base station.

2. If the above procedure causes the size of the base sig-
nal to exceed Mbase, then some base intervals need to be

7 At the first transmission the current base signal will be empty.

446

Dissemination of compressed historical information in sensor networks

Algorithm 5 SBR Algorithm

Require: �X , �Y1, . . . , �YN , M , TotalBand, Mbase

1: maxIns = min{Mbase,TotalBand}
W

2: W = √
N × M

3: base_list = GetBase(�Y1, . . . , �YN , W, M, maxIns)
4: {Errors[i] is the approximation error after inserting the first i

CBIs of base_list in the base signal}
5: Initialize Errors[i] = UNDEFINED ∀i ∈ [0..max I ns)
6: Ins = Search(�X , �Y1, . . . , �YN , W, M, TotalBand, base_list ,

Errors, 0, maxIns)
7: Form �Xnew by appending the I ns first intervals of the base_list to

�X
8: B = TotalBand − I ns × (W + 1)

9: GetIntervals(�Xnew, �Y1, . . . , �YN , B, W)

10: if | �Xnew| > Mbase then

11: Evict Repl = | �Xnew |−Mbase
W intervals of �Xnew that also belonged

to �X using a LFU replacement policy
12: Replace evicted intervals with the last Repl intervals of �Xnew
13: end if
14: �X = �Xnew
15: Transmit the inserted base intervals, their offsets in the base signal

and the regression intervals

Algorithm 6 CalculateError SubRoutine

Require: �X , �Y1, . . . , �YN , B, W, Errors, pos
1: if Errors[pos] == UNDEFINED then
2: list’ = GetIntervals(�X , �Y1, . . . , �YN , B − pos × W, W)
3: Errors[pos] = sum of errors in list’
4: end if

evicted from the base signal, in order to keep its maxi-
mum size at Mbase.

3. Decide how to best approximate the data values given
the updated base signal.

We here have to emphasize that it is not always desir-
able to insert a large number of base intervals into the base
signal. Since any inserted base interval needs to be commu-
nicated to the base station, the larger the number of such in-
tervals, the smaller the number of intervals that can be used
to approximate the N signals by the GetIntervals() al-
gorithm, since the overall bandwidth consumption is upper-
bounded by the TotalBand parameter.

The SBR algorithm is presented in Algorithm 5. It ini-
tially calls the GetBase() subroutine to select a set of
maxIns CBIs, where maxIns = min{Mbase,TotalBand}

W . It then
performs a binary search on this list, to determine the num-
ber of CBIs that will ultimately be inserted into the base sig-
nal. This search terminates when the algorithm determines a
number of intervals Ins, such that the error of the approxi-
mation when inserting the first Ins intervals of the aforemen-
tioned list in the base signal is lower than inserting either
the first I ns − 1 intervals, or the first Ins + 1 intervals into
the base signal. This is achieved through the call to function
Search() at Line 6, which is presented in Algorithm 7.
The approximation of the N signals is then performed by us-
ing the concatenation of the previous base signal with these
I ns intervals. After this step, if the size of the base signal

Algorithm 7 Search SubRoutine

Require: �X , �Y1, . . . , �YN , W, B, base_list, Errors, start, end
1: if end == start then
2: return start
3: end if
4: middle = (start + end) / 2
5: CalculateError(�X , �Y1, . . . , �YN , B, W, middle)
6: CalculateError(�X , �Y1, . . . , �YN , B, W, start)
7: if Errors[middle] > Errors[start] then
8: CalculateError(�X , �Y1, . . . , �YN , B, W, end)
9: if Errors[end] > Errors[start] then

10: return Search(�X , �Y1, . . . , �YN , W, M, B, base_list,
Errors, start, middle)

11: else
12: return Search(�X , �Y1, . . . , �YN , W, M, B, base_list,

Errors, middle, end)
13: end if
14: else
15: CalculateError(�X , �Y1, . . . , �YN , B, W, middle + 1)
16: if Errors[middle + 1] < Errors[middle] then
17: return Search(�X , �Y1, . . . , �YN , W, M, B, base_list,

Errors, middle + 1, end)
18: else
19: return Search(�X , �Y1, . . . , �YN , W, M, B, base_list,

Errors, start, middle)
20: end if
21: end if

now exceeds Mbase, then enough base intervals of the old
base signal are evicted from the base signal using a Least
Frequently Used (LFU) replacement policy. Any newly in-
serted base interval will thus either occupy an empty posi-
tion of the base signal, or replace another base interval. Each
transmission includes exactly TotalBand values:

1. The Ins newly inserted base intervals, and their position
in the base signal in which they were ultimately inserted
(I ns × (W + 1) values in total).

2. TotalBand−Ins×(W+1)
4 intervals of four values each (start,

shift plus the two regression parameters).

The running time complexity of the SBR algorithm is
O(n1.5 + (nlog(TotalBand

N) + TotalBand × √
n × Mbase) ×

log(maxIns)), where maxIns = min{Mbase,TotalBand}√
n

. Thus, the

entire algorithm has a modest O(n1.5) dependency on the
data size, while its running time scales linearly with the size
of the transmitted data TotalBand and the (maximum) size
of the base signal Mbase.

4.4 Design issues in SBR

Several decisions in the design of the SBR algorithm were
made in order to limit its running time complexity. We ini-
tially decided to simply look for and exploit linear piece-
wise dependencies between each data interval and some part
of the base signal. Obviously, we could alternatively have
used a more complex model (i.e., a polynomial function),
hoping that the increased expressiveness of the model could
lead to a more accurate compressed representation of the

447 447

A. Deligiannakis et al.

data. However, one of the main advantages of using a linear
model is that its parameters can be easily calculated in time
linear to the size of the approximated interval. Any model
which would require more than linear time for the calcula-
tion of its parameters would incur a similar increase in the
complexity of the SBR algorithm. Moreover, the use of a
linear model is intuitive. If two data series exhibit a similar
behavior, then if we appropriately scale and then shift one of
them we expect it to match the other one quite well. This is
exactly what a linear regression model achieves.

Similarly, in our GetIntervals() algorithm (Algo-
rithm 3) the interval with the largest error is broken in half.
This step is obviously suboptimal, since breaking the inter-
val into two subparts of uneven length might result in a better
approximation. However, such a modification would entail
two main disadvantages. Firstly, the running time complex-
ity of finding the best breakpoint for an interval of length
I.length will require O(I.length × (I.length + W × Mbase))
time. Moreover, the optimal breakpoint may lie near the
endpoints of the interval, which implies that the length of
one of the newly generated subinterval may be as high as
I.length − 2. This, in turn, results in higher running times,
since larger intervals are broken and mapped into the base
signal. Thus, the overall increase in the algorithm’s running
time complexity would be prohibitive in sensor network ap-
plications, even though it might be acceptable in other, less
constrained applications. For example, in our Phone data set
experiment in Sect. 6.1.1 (Table 4), this modification reduces
the error of SBR in the first transmission by 14.7%, while in-
creasing its running time 111 times.

A similar justification also motivated the design of our
GetBase() algorithm. An alternative choice would have
been to consider (M − W + 1) CBIs of length W for each
monitored quantity (signal) (instead of just M

W CBIs), where
the i-th CBI would cover the values in the range [i..i + W].
Using an increased number of CBIs would help in cases
when two CBIs corresponding to two different signals are
strongly correlated (i.e., follow a similar behavior), but with
a small time delay. The selection of the CBIs to include in
the candidate update base signal then has to be modified,
since two (or more) selected CBIs from the same signal may
correspond to ranges of data values that overlap. Thus, the
selection for inclusion should be based on the per storage
benefit of selecting a CBI, where the CBI’s storage cost is
defined as the number of its data values that are not already
included in the candidate update base signal, at the current
step of the algorithm. The SBR algorithm then requires the
following important changes:

1. The used CBIs in the binary search process may not have
the same length (due to the described possible overlap).

2. We need to make sure that overlapping CBIs are properly
stored (i.e., based on the index of their covered data val-
ues) in the candidate update base signal, independently
of the timing of their selection from the GetBase()
algorithm. This will force consecutive values from CBIs
of each signal to also lie consecutively in the candidate
update base signal, and increases the chance that larger

data intervals will be accurately mapped into the base
signal.

However, these changes would result in an increase of the
running times requirements of the GetBase() (and, thus,
the SBR algorithm) to O(n2.5), while its space requirements
also increase to O(n2), which would obviously make the al-
gorithm impractical for sensor network applications.

4.5 Understanding the complexity of SBR

We note that the SBR algorithm is only executed periodi-
cally, thus, its running-time complexity has to be evaluated
with respect to the size of the data and the frequency that the
algorithm is being executed in a real application. Using our
implementation of the algorithm on a 300MHz processor, it
takes about 30 seconds to process n = 20,480 data values
(10 time series of 2048 values each) for a 10% compression
ratio (see Sect. 6). Even if one measurement is being taken
every second, the above running time corresponds to mea-
surements collected over 34 minutes. This means that the
time required by the SBR algorithm for approximating the
data is just the 1/68 of the time it took the sensor to collect
it, thus making it easy for the SBR algorithm to run in par-
allel with the collection process. If a shorter running time
of SBR is desired, one can simply either execute the algo-
rithm with a smaller value of n,8 or decide not to update
the base signal, which is by far the most expensive part of
the SBR algorithm, in each invocation. The latter method is
not expected to affect the quality of the approximation sig-
nificantly, since our experiments have demonstrated that af-
ter the first transmissions few base intervals are inserted in
the base signal, because the current base signal is already of
good quality at that point. Notice that if the base signal is
not updated, then only the GetIntervals() algorithm is
invoked, resulting in an overall running time complexity of:
O(nlog(TotalBand

N) + TotalBand × √
n × Mbase). In this case

the algorithm exhibits a linear dependency on the size of the
processed data n.

4.6 Handling other error metrics

We now present the necessary modifications to the Regres-
sion algorithm of Sect. 4.2 when the desired error metric
involves minimizing the sum squared relative error, or the
maximum absolute error of the approximation.

The Regression algorithm approximates the data value
Y [i + start_y] as a × X [i + start_x]+b. The relative error
induced by this approximation is:

|Y [i + start_y] − a × X [i + start_x] − b|
max{c, |Y [i + start_y]|}

where the c value serves as a sanity bound, and helps avoid
very large relative error values when the Y [i + start_y]

8 For example, when reducing the value of n to 10,240 data values,
the corresponding running time of SBR is just 14.4 seconds.

448

Dissemination of compressed historical information in sensor networks

value is either zero, or close to zero. The Regression algo-
rithm that minimizes the sum squared relative error of the
approximation is presented in Algorithm 8.

Calculating the a, b parameters that minimize the max-
imum absolute error of the approximation is somewhat
harder to accomplish. The solution is based on the well
known Chebyshev approximation problem, which can be
solved with a randomized linear programming algorithm in
O(length) randomized expected time and O(length) space.

4.7 Providing strict error bounds

The SBR algorithm, as presented above, seeks to minimize
a user-defined error metric (i.e., sum squared error) given
a target bandwidth constraint. An interesting extension is
when the application requires strict error bounds. The typical
goal in such cases is to minimize the maximum error of the
approximation and provide this maximum error along with
the approximate signal. In this case, a Regression()
subroutine for minimizing the maximum error of the approx-
imation (see Sect. 4.6) should be used.

Another interesting case occurs when the application
provides a target size TargetBand and an error target with
which it will be satisfied. In this case, the application will
be satisfied with any approximation of size less or equal
to TargetBand that satisfies the error target (if such an ap-
proximation exists). In this case the recursive procedure of
the GetIntervals() algorithm may be stopped if the er-
ror target is achieved before the size of the transmitted data
reaches TargetBand.

It is important to emphasize that in these application sce-
narios, whenever the base signal is not updated, it is easy
for the sensor to also report to the base station the error of
the approximation for multiple synopses with size less than
TotalBand. Note that this is feasible because at each step
of the GetIntervals() algorithm we are fully aware of the ap-
proximation error for each data interval. Reporting the errors
for multiple synopses sizes can be helpful, since the applica-
tion can then properly select the size of the transmitted data
given its requirements on the accuracy of the compressed
representation.

4.8 Node operation when the bandwidth changes

In our discussion so far, each sensor is aware of the total
size TotalBand for its compressed, transmitted data. How-
ever, there might be situations when the value of TotalBand
may change. For example, the error of the compressed data
may be so small that the base station may decide that the
error would be acceptable if it decided to limit the desired
value of TotalBand. Moreover, in cases when the network
dynamics change due to either node/link failures or changes
in the available bandwidth due to cross-traffic, it might also
be desirable to modify the desired size of the transmitted
data. Obviously, if the node is notified for the new value
of TotalBand before it initiates the execution of SBR, no

Algorithm 8 Regression Subroutine that Minimizes the Sum
of the Squared Relative Errors

Require: �X , �Y , start_x , start_y, length, sanity
1: sum_x=

∑
0≤i<length

X [i+start_x]
max{sanity,|Y [i+start_y]|}

2: sum_y=
∑

0≤i<length
Y [i+start_y]

max{sanity,|Y [i+start_y]|}
3: sum_xy=

∑
0≤i<length

X [i+start_x]Y [i+start_y]
max{sanity,|Y [i+start_y]|}

4: sum_x2=
∑

0≤i<length
X [i+start_x]2

max{sanity,|Y [i+start_y]|}
5: sum_z=

∑
0≤i<length

1
max{sanity,|Y [i+start_y]|}

6: {Compute Regression Parameters}
7: a= sum_z×sum_x_y−sum_x×sum_y

sum_z×sum_x2−sum_x×sum_x

8: b= sum_y−a×sum_x
sum_z

{Compute sum squared relative error of signal �Y ′ = a �X + b in
range [start_y . . . start_y + length)}

9: err = ∑length−1
i=0 (

Y [i+start_y]−(a×X [i+start_x]+b)
max{sanity,|Y [i+start_y]|})2

10: return (a,b,err)

modifications are necessary to the algorithm. On the other
hand, when the new value of TotalBand is received during
the execution of the algorithm, it would be desirable if sev-
eral steps of the algorithm can be reused, in order to avoid
executing it from the beginning. Depending on whether the
sensor decided to update its base signal (or simply exe-
cuted the GetIntervals() algorithm), the following op-
timizations can be made:

1. If only the GetIntervals() algorithm is executed,
then if the size of the compressed data (calculated
by the number of created data intervals) is less than
TotalBand, then the algorithm simply continues its oper-
ation until it reaches this compressed data size. If, how-
ever, the size of the compressed data has exceeded the
value TotalBand/4, then we can either re-execute the
GetIntervals() algorithm (in which case we do not
reuse any of the algorithm’s steps), or keep a list of the
choices (Line 12 in Algorithm 3) that the algorithm has
made, in order to backtrack to a stage where the new
space constraint is met. For this list of choices we sim-
ply need to store the starting point of the split interval at
each step. This starting point will obviously be the same
as the starting point of the first subinterval created by
GetIntervals(), while the length of this first subin-
terval reveals the starting point (and the length) of the
second subinterval.

2. If the base signal is updated, then obviously the results
of the GetBase() algorithm, which is computationally
the most expensive part of SBR, can be reused. If the
change in the bandwidth constraint is not significant and
the SBR algorithm has already decided how many CBIs
to insert into the base signal, then we can simply execute
the GetIntervals() algorithm on the updated base
signal using the new value of TotalBand (and subtracting
the size of the newly inserted CBIs). If the change in the
bandwidth constraint is significant, then the errors calcu-
lated by SBR in Line 6 of the algorithm may differ sig-
nificantly from the true errors, given the new constraint.

449 449

A. Deligiannakis et al.

Thus, in this case only the results of GetBase() can be
reused.

5 Localized groups

5.1 Framework description

It would often be advantageous to collect the input of sev-
eral sensors on a single node, and perform the approximation
for all values simultaneously. We expect that several quanti-
ties (like temperature, pressure, etc.) observed by neighbor-
ing nodes in the network will exhibit similar trends. Thus,
many intervals of the base signal in one sensor could ap-
proximate well intervals of signals from its neighbors. A
non-localized algorithm would not be able to detect this, and
would include in the base signals of individual nodes inter-
vals of similar features. Moreover, a localized algorithm that
operates on the collected measurements of multiple sensors
can make better decisions involving the distribution of the
approximated intervals over them, thus further reducing the
error of the approximation.

Assume a group of S sensors that operate individually.
Each sensor i transmits an approximation of the N × M val-
ues it collects of size ki × (N × M). The ratio ki < 1 of the
size of the transmitted data over the size of the collected data
is called the “compression ratio”. For ease of exposition,
we first assume that for all sensors in the group the num-
ber of monitored quantities, their sampling rates and their
compression ratios ki are the same. We will deviate from
this latter assumption later in this section. If the base station
is, on average, H hops away then the volume of data sent is
(for ki = k)

datanon−localized = k × (N × M) × S × H

The alternative organization that we explore in this
section is depicted in Fig. 1. The sensors nodes are orga-
nized as a group and one of them is assigned to act as the
group leader. The rest of the sensors in the group (S-1 in
total) will send it an approximation of their measurements
using a compression ratio ki . For now, let us assume that all
values of ki are the same (i.e., equal to k1). Without loss of
generality, we also assume that the group leader is one hop
away from each sensor in the group (i.e., the group is of ra-
dius 1), as shown in the figure. While this later assumption is
made to simplify our presentation, the modifications to our
formulas for groups of larger radii are straightforward.

The group leader will approximate all values in the group
(S × N × M in total) with a compression ratio kgl . We note
that this process does not require for the group leader to de-
compress the values from the other nodes in the group. Our
algorithms can be rewritten to operate directly on the trans-
mitted approximate values that essentially describe a piece-
wise approximation of each series Yi . The approximation of
each data interval (from the other sensors) is easily com-
puted from the respective base interval of that sensor that is
used to approximate this interval using linear regression. It
is important to emphasize though that:

1. The group leader needs to maintain and update the base
intervals transmitted to it by the other sensors in its
group.

2. The base signal of the group leader is constructed using
the group leader’s collected data and the (approximate)
reconstructed data values received by the other sensors
of the group.

Using an organization of the sensors like the one depicted in
Fig. 1, the total volume of data transmitted will now be:

datasensors→group leader + datagroup leader→base station

= (k1 × (S − 1) + kgl × S × H) × (N × M)

The goal of our localized processing algorithm is to con-
struct a more accurate approximate data representation of
the data, while using at most as much bandwidth as in a non-
localized organization. To achieve the latter requirement, our
localized algorithm will control the values of kgl and k1
based on the overall data reduction factor k that the non-
localized organization would use, by enforcing that:

k1 × (S − 1) + kgl × S × H ≤ k × S × H

�⇒ k1 ≤ (k − kgl) × S

S − 1
H (1)

If, due to correlations among the measurements of the
sensors in the group, we can achieve a higher reduction in
the data transmitted from the group leader to the base sta-
tion (i.e., kgl < k), then we can use more bandwidth for
sending the initial measurements to the group leader (i.e.,
k1 > k). As an example, assume that we target an over-
all compression ratio k = 10% for a group of five sensors
(S = 5) and that H = 20. For kgl equal to e.g. 7% we get
k1 = 3 ∗ 5/4 ∗ 20 = 75% that is much higher than the target
k = 10%. Notice that the maximum value of k1 is linear to
the number of wireless hops. Thus, the further away the base
station is, the more leverage we get. In fact if

H >
S

S − 1

1

k − kgl

i.e., 27 hops for our example, we can afford sending the ex-
act, uncompressed data values to the group leader.

5.2 Tuning the compression ratios

Previously, we assumed that each sensor node in the group
(other than the group leader) uses the same compression ra-
tio k1 to summarize its values. There are many reasons why
this “uniform” allocation of bandwidth among the sensors
will be sub-optimal. For instance, all sensor nodes will not
necessarily monitor the same quantities. Some sensor nodes
within a group may obtain meteorological measurements,
while other nodes may obtain measurements involving noise
and chemical levels, number of detected objects etc. It is ex-
pected that some measured quantities will be harder to ac-
curately approximate than others. The same may also occur
even among nodes collecting the same type of data, simply

450

Dissemination of compressed historical information in sensor networks

because of some spatio-temporal characteristics of the mon-
itored quantities.

In what follows we describe an algorithm for tuning the
compression ratio used by each sensor to communicate with
the group leader. A high level view of the algorithm is as fol-
lows. Each sensor node in the group will execute the SBR al-
gorithm for a selected target bandwidth smaller than the one
required by the application and will inform the group leader
of the error of the approximation obtained. The group leader
will then adjust the individual compression ratios used by
the nodes in its group, allowing for more bandwidth on
nodes whose values are harder to approximate. During this
process the nodes will execute the SBR algorithm only once.
When additional bandwidth is given to a node, this node will
call a re-entrant version of the GetIntervals() subrou-
tine to further partition the previously created data intervals.

We assume as input to the algorithm the desired total
bandwidth consumption B, the number of nodes in the group
S, the distance of the group leader from the base station H .
Without loss of generality, we assume that all nodes have
the same amount of data N × M ; this only simplifies nota-
tion in the presentation. Bandwidth B includes the cost of
retransmissions. Thus, B translates to an overall (average)
compression ratio of

k = B

S × H × N × M

in the non-localized setting.
The group leader first determines the compression ratio

kgl that it will use for its own transmission. In our experi-
mental evaluation we demonstrate how the value of kgl can
be properly selected, given the bandwidth consumption B.
Each node in the group other than the group leader is initially
assigned the same compression ratio ki = (k −kgl)× S

S−1 H
(see Sect. 5.1). This implies a bandwidth Bi = ki × N × M
for the transmission of node i to the group leader.

The key part of the algorithm involves the adjustment
of the Bi bandwidth units to the S − 1 nodes of the group
(besides the group leader) for the transmission of their val-
ues to the group leader. The adjustment process distributes
a portion of the total bandwidth to the nodes that exhibit the
largest errors in their approximation, while also taking into
account the bandwidth consumed by each node in its pre-
vious transmission. To accomplish this, each sensor node i
executes the SBR algorithm and reports to the group leader
the resulting error using a smaller value for Bi than the one
used during its last transmission. In particular, it scales Bi
by a factor λ: Bi (t) = λ × Bi (t − 1) (e.g. λ = 0.80). In the
initial transmission, we set Bi (t − 1) = ki × N × M . Notice
that this step does not involve transmitting any compressed
data. Node i simply executes the algorithm, reports the error
and awaits for further instructions.

Since each node in the group has reported errors for a
reduced bandwidth Bi (t), there is a residual bandwidth of
Bresidual = (1 − λ)

∑
Bi (t − 1) that can be redistributed

among the S − 1 nodes. The group leader considers the re-
ported error of each node and continuously allocates to the

node with the largest error additional bandwidth Bresidual ×
α−1, where α is an integer parameter that controls the num-
ber of performed iterations. In our experiments we use α =
S − 1. Essentially, this process continuously allocates addi-
tional bandwidth to nodes that need it the most and results
in the reduction of the approximation error of these nodes.
Each node will ultimately transmit their compressed data to
the group leader only after this bandwidth partitioning pro-
cess has been completed, using the Bi value achieved at the
end of the process. An alternative bandwidth dissemination
option would have been to use a two-step dissemination pro-
cess, where the additional bandwidth assigned to each node
during the second step would be proportional to its data re-
construction error. This two-step bandwidth allocation pro-
cess leads to smaller execution times of the overall compres-
sion process, but may result in sub-optimal bandwidth dis-
tribution in cases where nodes can significantly reduce their
approximation error with a small increase in their bandwidth
consumption.

A key observation is that nodes that receive additional
bandwidth do not need to run the SBR algorithm again.
These nodes have already created a base signal and have par-
titioned their collected data into intervals approximated by
linear regression with some part of this base signal. When
additional bandwidth is given, the node may simply call
a modified GetIntervals() subroutine that continuous
partitioning the previously created data intervals (instead of
starting from the original data), until the new bandwidth
limit is reached. It then notifies the group leader for the new
error obtained. This incremental evaluation of the algorithm
is essential for the efficient execution of the compression
process.

When ki < 1, our localized schema assumes that the
group leader maintains an up-to-date replica of the base sig-
nal of sensor node i in the group, of size Mbase, in order
to be able to reverse the transmitted encodings. In the ex-
periments we see that real data need very small base signals
which suggest that this assumption is reasonable.

In Fig. 6 we demonstrate the end-to-end process. First,
the base station informs the group leader for the bandwidth
consumption limit B. The group leader then allocates the
same bandwidth Bi to all nodes in its group and each node
reports its error after running the SBR algorithm, Fig. 6(b,c).
In Fig. 6(d), the group leader assigns extra bandwidth to
the node with the largest error (node 2 in this example).
In turn, node 2 reports the new error E

′
2 obtained with the

extra bandwidth by a continuing execution of subroutine
GetIntervals() (Fig. 6(e)). These two steps are re-
peated α times, assigning each time additional bandwidth to
the node with the largest error. In Fig. 6(f), all nodes trans-
mit their values to the group leader. Finally, the group leader
executes the SBR algorithm and transmits the compressed
data to the base station.

5.3 Selecting the group leader

In our discussion so far we have not referenced the proce-
dure with which the sensor nodes (i) determine how many

451 451

A. Deligiannakis et al.

1

2

3

S−1

Group leader

Query, B

BASE STATION
1

2

3

S−1

B

B1

S−1

3B

2B Group leader

1

2

3

S−1

E1

E2

3E

S−1E

Group leader

1

2

3

S−1

B’2
Group leader

1

2

3

S−1

E’2
Group leader

1

2

3

S−1

Group leader

1

2

3

S−1

Group leader

Compressed Data

BASE STATION

Fig. 6 a Transmission of query and desired Bandwidth consumption B. b Group Leader assigns initial bandwidth limit to nodes in group. c
Nodes report error with given bandwidth limit. d and e Handshake procedure: Group Leader assigns additional bandwidth to node with largest
error, and receives from this node a new reported error. f At the end of the handshake process, nodes transmit their compressed data. g Group
leader compresses data from all nodes in group and transmits them towards the base station

localized groups to form, (ii) detect their localized group,
and (iii) select the group leader of each group. Our solution
to this problem is motivated by the recently proposed HEED
protocol, described in [58], which describes a distributed and
energy-efficient way of clustering sensor nodes in a way that
seeks to maximize the lifetime of the network. This clus-
tering phase is performed within a provably small number
(O(1)) of phases (iterations), thus ensuring high scalability
and low reorganization cost, While the cost model that we
will use in our localized scheme differs from the approach
envisioned in [58], the techniques proposed in [58] are still
applicable, with some modifications.

Consider that the base station issues a query over the data
collected by the sensor nodes in an area of the network over
the last M epochs, along with a desired average compres-
sion ratio k. The query is disseminated through the network
in search of the nodes that meet the query’s selection criteria.
The resulting set S of nodes, that will transmit their collected
data in response to the query initiate a process for selecting
the group leaders amongst all nodes in S. The number of
group leaders is not known beforehand. We will describe this
process shortly. After the set GL of group leaders has been
determined, each node in S − GL needs to inform one of the
nodes in GL that it will be a member of its group. Most sen-
sor nodes can adjust their transmission power based on the
distance of the node with which they wish to communicate
([58]). It is, thus, optimal in terms of energy consumption for
a node to select as group leader the node in GL which lies
the closest to it, since the energy drain during transmission
will be minimized with this approach.

Now, let us consider how the set of group leaders is
selected. The operation of the HEED protocol consists of

multiple steps (iterations), during which sensor nodes ini-
tially become tentative group leaders and, later, some of
these tentative group leaders will ultimately form the final
list of group leaders. Consider a scenario where all the sen-
sor nodes possess the same processing and memory charac-
teristics. If this is not the case, then only the most powerful
of the nodes will attempt to become group leaders.

Since the group leaders process larger amounts of data,
which, in turn, results in a larger energy drain, it would
be preferable if the group leaders are amongst the nodes
with the largest remaining energy. Consider a single sen-
sor node and let Einit denote its initial (maximum) energy,
while Ecurr denotes the current energy of the node. At each
iteration of the clustering protocol, if this sensor does not
lie within the radius of a group leader, it will elect to be-
come a group leader with an initial probability C Hprob =
Cprob × Ecurr

Einit
, where Cprob has a suggested value of 0.05

in [58]. This initial probability C Hprob is then doubled in
each iteration for all these “uncovered” nodes. A new group
leader is considered to be tentative if its C Hprob is lower
than 1 and final, otherwise. Each new group leader transmits
a message to the sensors within its transmission range con-
taining: (i) The estimated cost, in terms of energy, for all the
nodes in its radius to transmit their uncompressed measure-
ments to it (calculated using the transmission power needed
by each of these nodes to reach this group leader), and (ii)
The estimated distance (in the number of hops) of the group
leader from the base station.

Nodes within the radius of a set SGL of group leaders
elect the group leader with the minimum advertised cost
(described above) to join. In case of a tie, the group leader
that is the closest to the base station is selected (this could

452

Dissemination of compressed historical information in sensor networks

be the node itself). When the value of C Hprob reaches the
value 1, the selection of the group leader becomes final.
At the final step of the algorithm, all “uncovered” nodes
will elect to perform the compression of their measurements
individually.

There is one more detail that we have not discussed so
far. When the group leader of a sensor node Ni changes, the
sensor needs to construct a new base signal for its new group
leader GLi , since the new group leader is not aware of the
base intervals that the node transmitted to its previous group
leader. Even if the sensor Ni had used the same group leader
GLi in the past, it is not guaranteed that GLi will have kept
in its buffers the candidate base intervals of Ni , since this
depends on its memory and storage capabilities and the time
that has elapsed between these two events. Of course, if the
node Ni (group leader GLi) have enough memory to main-
tain the base intervals transmitted to GLi (received from Ni),
then Ni may use these base intervals for the approxima-
tion of its measurements. Finally, we need to emphasize that
transferring the base signal and the individual base signals
of all the nodes in the group from the previous group leader
to the new group leader is not often a good decision, even if
the nodes in the group have not changed, as this procedure
may consume a significant fraction of the available band-
width. Thus, it may be preferable from a node to voluntarily
surrender being a group leader only when its energy drops
significantly, compared to the energy of the other nodes in
its group. In this case, this group leader transmits a message
and initiates the process described above for selecting a new
group leader only among the nodes in its group (and not in
a global fashion at each data transmission).

5.4 Alternative group operation

The execution of the SBR algorithm may be infeasible for
sensor nodes with very limited capabilities. For such sen-
sors, or generally in the case of hybrid sensor networks with
nodes that possess widely different capabilities, the opera-
tion of the localized group may be slightly altered in order
to help the low-end sensors to compress their data using the
base signal of the group leader. The alternative group op-
eration that we explore is one where the group leader ini-
tially constructs a base signal based solely on the data that
it has collected. The group leader then transmits this base
signal to the nodes in its group using a single broadcast
message. The other nodes in the group will then use this
base signal and compress their data by simply calling the
GetIntervals() algorithm. Note that the handshaking
process described above, where the bandwidth allocated to
each node is determined after several steps, will still be fol-
lowed. The group leader simply has to take into account
the size of its transmitted base signal when deciding on
the amount of bandwidth that the sensor nodes in its group
will use to transmit their measurements to the group leader.
Also, notice that in this case the group leader has already
performed an approximation of its own data, and has com-
puted the error of this approximation. Therefore, we can

also perform the following two modifications to the local-
ized group operation algorithm:

1. At each step of the handshaking process, the group
leader may decide to allocate additional bandwidth to it-
self, instead of strictly allocating bandwidth to the other
nodes within its group. Similarly, if a 2-step approach is
followed for the bandwidth dissemination (see Sect. 5.2),
then the node will also allocate part of the bandwidth to
the size of its own compressed data representation.

2. Since the group leader has allocated bandwidth to each
node within its group based on the approximation error
of each node, and due to the common base signal being
used by all nodes, there is no need for the group leader
to re-compress the data that it receives from the nodes
within its group.

If BBaseSignal = I ns × (W + 1) denotes the bandwidth
needed to transmit the updates to the base signal (determined
by the group leader) and k1 denotes the average compression
ratio used by the nodes in the group (including the group
leader), then the overall bandwidth consumption will be:

BBaseSignal × (H + 1) + k1 × N × M × (S × H + S − 1)

Thus, since we would like the localized organization not to
exceed the bandwidth consumption B specified by the query,
the value of k1 must be set to:

k1 ≤ B − BBaseSignal

N × M × (S × H + S − 1)

This alternative localized processing algorithm results
in significant energy savings compared to the organization
model proposed in Sect. 5.2, both for the group leader, since
it compresses only its own data, but also for the remaining
nodes within the group, since they only need to execute the
GetIntervals() algorithm. Moreover, no changes are
needed if the group leader changes (if the nodes compris-
ing the group remain the same), since all the nodes within
the group are aware of the used base signal. On the other
hand, the accuracy of the compressed data will depend on
the quality of the base signal constructed by the group leader
and whether this base signal contains patterns observed fre-
quently by the other nodes within the group.

6 Experiments

In this section, we provide an experimental evaluation of
our techniques. In Sect. 6.1 we compare the SBR algorithm
against standard approximation techniques (DCT, Wavelets,
Histograms). In Sect. 6.2 we compare the GetBase() al-
gorithm against alternative base signal constructions, while
in Sect. 6.3 we present an analysis of the SBR algorithm. In
Sect. 6.4 we evaluate the localized mode of operation and
draw direct comparisons against the non-localized setting.
For these experiments we used the following real data sets:

453 453

A. Deligiannakis et al.

Table 2 Properties of used data sets

Data set Min Max Avg Min(Var(Yi)) Max(Var(Yi)) Avg(Var(Yi))

Phone Call Data 3 38,472.0 4,173.9 986,510.9 119,272,823.3 21,313,902.7

Weather Data 0 514.0 35.1 14.1 5,179.1 895.9

Stock Data 16 213.9 93.2 1.3 75.4 17.8

1. Phone Call Data: Includes the number of long
distance calls originating from 15 states (AZ, CA, CO,
CT, FL, GA, IL, IN, MD, MN, MO, NJ, NY, TX, WA).
For each state we provide the number of calls per minute
for a period of 19 days (data provided by AT&T Labs).

2. Weather Data: Includes the air temperature, dew-
point temperature, wind speed, wind peak, solar irradi-
ance and relative humidity weather measurements for
the station in the university of Washington, and for year
2002.9

3. Stock Data: Includes information on all trades per-
formed in a minute basis over April 3 and April 4 of year
2000. The approximated measure in our experiments is
the trade value of the stock.

Table 2 compiles a few simple statistics about these data
sets.

6.1 Comparison to alternative techniques

For this experiment we used all three data sets described
above. From the Stock data, we extracted the trade values of
the following ten (N = 10) stocks: Microsoft, Oracle, Intel,
Dell, Yahoo, Nokia, Cisco, WorldCom, Ariba and Legato
Systems. For each stock we created a random sample of
20,480 of its trade values, and then split each sample in ten
files of 2,048 values each. The first of these ten files of each
stock was used for the initial creation of our base signal,
while the remaining files were used to simulate nine update
operations. For the Weather data set, we selected the first
40,960 records and then split the data measurements of each
signal into ten files of 4,096 values each. For the Phone Call
data set, the aggregates for each state (N = 15) were broken
into ten files of 2,560 values each.

In our experiments we compared the accuracy of SBR
against the approximations obtained by using the Wave-
let decomposition [7], equi-depth Histograms [45] and the
DCT. The Fourier transform was also considered, but pro-
duced consistently larger errors than DCT and is thus omit-
ted. For a fair comparison we set the space used by all meth-
ods to the exact same amount.

For all methods we considered both treating each bunch
of updates as a group of N series �Yi each of length M and,
alternatively, concatenating the signals into a single series Y
of length N × M . For Wavelets, we found out that this pro-
duced in most cases significantly more accurate results than

9 http://www-k12.atmos.washington.edu/k12/grayskies

by dividing the space equally among the N signals (by a fac-
tor of 5 in many cases) because some signals needed more
wavelet coefficients than others to be approximated well. For
Wavelets, we also considered a 2-dimensional decomposi-
tion of the N × M values, which produced worse results
than the 1-dimensional decomposition. We here present the
best results achieved by each method.

6.1.1 Varying the compression ratio

We varied the compression ratio (size of the transmitted data
TotalBand over the data size n) from 5% to 50%. In this ex-
periment we set Mbase to 2,048 values for the Phone Call
and the Stocks data sets and to 3,456 values for the Weather
data set. In Tables 3 and 4 we present the results. In all data
sets SBR produces significantly more accurate results than
the other approximations. The difference is larger for the
Phone Call data set which contained the largest values. As
the size of transmitted data increases, the error in our method
decreases more sharply, and is up to 8.5 times smaller than
the error of Wavelets. The DCT and the Histogram approxi-
mations produced much larger errors is most cases.

We repeated the experiment for the Phone Call data set,
computing this time the sum-squared relative error. The re-
sults are also shown in Table 4. For this error metric, our
method often provided errors that were more than an order
of magnitude smaller than the errors achieved by Wavelets
and DCT, while the improvements were even larger when
compared to histograms. We note here that for this compar-
ison we used Haar Wavelets that are optimal only under the
sum-squared-error. The work of [21] describes algorithms
for minimizing, among other metrics, the relative error of
a Wavelet-based approximation. Except for cases of very
skewed data sets, these algorithms reduce the mean relative
error up to 3 times over regular Wavelets. These improve-
ments were seen for very coarse approximations (i.e., for a
compression ratio of 5% or less) where our method already
has an advantage of 42-1 over regular Wavelets. For more
space, these techniques are a lot closer to regular Wavelets.

The increased accuracy of SBR over techniques like
Wavelets and DCT is not surprising. Similarly to SBR,
both the Wavelets and DCT utilize a basis in order to com-
press the data. However, while this basis is data-independent
in the cases of Wavelets and DCT, SBR extracts the values
contained in the base signal from the actual data. Finally, in
order to explain the increased accuracy achieved by SBR,
one has to consider what happens when a data set contains
multiple correlated data intervals that are hard to approxi-
mate. In this case, the studied competitive techniques will

454

Dissemination of compressed historical information in sensor networks

Table 3 Total SSE varying the compression ratio for weather and stock data sets

Weather data Stock data
(245,760 total values) (204,800 total values)

Compression
ratio % SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5 317,238 519,303 8,703,192 7,661,293 18,376 25,856 47,722 58,531
10 103,633 200,501 4,923,294 3,375,518 6,800 11,993 42,927 49,849
15 54,219 125,449 3,515,698 2,219,533 3,423 7,179 39,725 46,305
20 30,946 87,118 2,643,229 1,471,421 1,913 4,769 37,075 44,266
25 18,600 63,105 2,198,455 946,735 1,126 3,345 34,464 42,470
30 11,558 46,833 1,598,451 594,644 700 2,410 31,882 40,290
35 7,161 35,275 1,366,211 410,208 442 1,769 29,506 38,982
40 4,603 26,824 1,112,117 288,127 291 1,316 27,035 37,454
45 2,964 20,502 905,422 236,947 190 991 24,608 36,351
50 1,861 15,762 768,568 160,079 125 748 22,428 34,997

Table 4 Errors Varying the Compression Ratio for Phone Call Data Set

Average Sum Squared Error Total Sum Squared Relative Error
Compression

Ratio % SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5 9,631 29,938 15,714 172,964 922 38,477 9,019 126,346
10 5,071 12,349 10,173 55,126 503 19,186 3,002 56,749
15 3,192 7,998 6,767 29,703 325 12,885 1,400 58,636
20 2,170 5,821 5,661 20,494 222 10,954 1,192 38,123
25 1,527 4,468 4,791 16,103 158 6,915 823 37,846
30 1,091 3,537 4,157 12,898 116 3,865 721 34,654
35 786 2,853 3,692 10,898 85 2,404 665 31,497
40 568 2,331 3,324 9,459 62 2,092 583 27,220
45 398 1,918 2,939 8,228 45 1,826 445 26,031
50 281 1,587 2,622 7,055 32 1,674 410 24,285

spend the same amount of effort (space) approximating each
of these data intervals. On the other hand, SBR has the op-
tion of including just one of these intervals in the base signal
to help accurately compress the other intervals, while devot-
ing very small space for them.

6.1.2 Modifying the data correlations

The SBR algorithms exploits intrinsic correlations between
the signals. We now explore its behavior when these
correlations are reduced. At first, we tried mixing data from
our three data sets. We created a data set that contains phone
call data from three states (AZ, CA and FL), three types
of meteorological measurements (air temperature, pressure
and solar irradiance), and data from three stocks (Microsoft,
Intel and Oracle). For each of these data series we created
ten files of 2,048 values each. We then varied the compres-
sion ratio of all algorithms from 5% to 30% and set Mbase to
2,048 values. In Table 5 we present the average sum squared
and total sum squared relative errors for all methods. The rel-
ative performance of the SBR algorithm is even better com-
pared to the other methods: the SBR algorithm produced up
to 27 times smaller average sum squared errors than the clos-
est competitor, while the improvement reached up to 1,034
times for the total sum squared relative error.

While the results may seem surprising because the cor-
relation between the data sets was decreased, they are not

counter-intuitive. All the approximation methods exploit
some form of correlation or redundancy to reduce the foot-
print of the data. Table 5 simply shows that SBR is more
robust, than Wavelets and Histograms for example, when
such correlations are reduced. The design of the algorithm
allows it to find correlations even in such cases, between in-
tervals from different signals and different time periods. The
algorithm also has a fall-back plan of using plain regression
when such correlations are not strong. In such cases, fewer
space is allocated for the base signal and most of the trans-
mitted values are used for approximating more, shorter in-
tervals.

We now also explore the sensitivity of all methods to the
correlation of the time series by generating synthetic sensor
streams, where the correlation amongst their values is var-
ied. We started with a set of four streams of 20,480 values
that we broke into 10 pieces for simulating updates (N = 4,
M = 2,048). The first stream was produced using the iden-
tity function, the second using the step (Haar) function. The
third stream was from a cosine function while the fourth one
was depicting normally distributed data (bell-shaped curve).
All streams where normalized within range [-20..20]. We
then started perturbing the values by adding white Gaus-
sian noise at random places. During this process we exe-
cuted each data reduction algorithm for a compression ratio
of 10% and computed the average sum squared error and
the total sum squarred relative error of the approximation.

455 455

A. Deligiannakis et al.

Table 5 Errors varying the compression ratio for the mixed data set

Average sum squared error Total sum squared relative error
Compression
ratio % SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5 2,900 8,094 12,677 199,150 113 20,974 29,625 182,027
10 918 3,020 7,146 46,805 37 11,054 8,653 43,701
15 364 1,582 4,757 23,711 17 5,481 4,825 26,068
20 139 894 3,814 14,157 9 5,310 3,339 14,780
25 46 516 3,120 10,486 5 5,172 6,115 11,118
30 11 297 2,680 6,894 3 5,109 1,579 9,591

In Figs. 7 and 8 we plot the results (for SBR, we set Mbase
to 256 values and W = 64). The x-axis in both Figures
is the fractal dimension of the data set, as defined in [5].
As explained in [5] the fractal dimension is a single posi-
tive number that describes the degree of freedom amongst
the four data-streams. A larger number denotes more ran-
dom/uncorrelated values amongst the data streams due to
the addition of white noise. As expected, all methods sub-
stantially degrade their quality of approximation when the
fractal dimension increases. Moreover, we can see that the
improvements of SBR over the competitive techniques are
very large when strong correlations occur (fractal dimension
close to 1), while when the correlation becomes very small
due to the added white noise, Wavelets and DCT produce
competitive errors to SBR.

6.2 Alternative base signal constructions

We present two alternative algorithms to GetBase(). The
first, denoted as GetBaseSVD(), is based on the Singu-
lar Value Decomposition. The second algorithm, denoted
as GetBaseDCT(), uses the basis of the Discrete Cosine
Transform (DCT), which is a collection of cosine functions.
Finally, a third alternative for SBR is to do standard linear
regression without using a specially constructed base signal.
For the later case, no bandwidth is consumed for sending

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Fractal Dimension

100

1000

10000

100000

1000000

T
ot

al
 S

um
 S

qu
ar

ed
 E

rr
or

Histograms
DCT
Wavelets
SBR

Fig. 7 Total SSE error vs Fractal Dimension

base signal values and we do not need the I.shift pointer.
Thus, we can send exactly TotalBand/3 intervals for a band-
width limit TotalBand. Similarly, the DCT base consists of
cosine functions and its values are constructed on the fly and
are thus neither stored in memory, nor are they transmitted
to the base station.

Construction using SVD

SVD involves computing the eigenvectors and eigenvalues
of a given N × n matrix R. It can be proven (see [46]) that
any real N × n matrix can be written as:

R = U × � × V t

where U is a column-orthonormal N × r matrix, r is the
rank of matrix R, � is a diagonal r × r matrix of the eigen-
values λi of R and V is a column-orthonormal n × r matrix.
By definition U t × U = V t × V = I , where I is the iden-
tity matrix. The columns of V are the eigenvectors of matrix
Rt × R. Similarly, the eigenvalues of Rt × R are the squares
of λi s:

Rt × R = V × �2 × V t

For R = A (our collected measurements), Rt × R cap-
tures the similarities among the columns of A (each col-
lected sample). SVD can be used for approximating Rt × R

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Fractal Dimension

10

100

1000

10000

100000

T
ot

al
 S

um
 S

qu
ar

ed
 R

el
at

iv
e

E
rr

or

Histograms
DCT
Wavelets
SBR

Fig. 8 Total SSRE error vs Fractal Dimension

456

Dissemination of compressed historical information in sensor networks

Table 6 Comparison to alternative base signals

Error over GetBase()
Linear

Data Set GetBaseSVD Regression GetBaseDCT

Weather 10.55 4.47 6.44
Phone 1.13 1.32 1.19
Stock 2.08 2.77 2.99

by keeping the first few eigenvectors (columns of matrix V).
Informally, each eigenvector captures linear trends among
the rows of A (the �Yi s).10 We here propose the use of SVD
as a competitor to the GetBase() algorithm for generat-
ing a base signal from the data. We sketch the new algorithm
(GetBaseSVD()) below.

1. For each row of A, list all non-overlapping intervals of
length W . This gives us M

W intervals per row and K =
N×M

W intervals overall.
2. Build a K × W matrix R whose rows are the intervals of

the previous step.
3. Compute the SVD of R = U × � × V t . Return the first

Store columns of V .

By definition, V is an r × W matrix (r = rank(R)) of
the eigenvectors of Rt × R. The eigenvectors are ordered
from left to right in V . The first column of V contains the
eigenvector (of length W) that corresponds to the largest
eigenvalue of Rt ×R. The algorithm returns the top-max I ns
eigenvectors of total size max I ns × W . These constitute the
base signal from GetBaseSVD().

Construction using DCT

The base signal can be constructed from the basis-vectors
of standard mathematical transforms. We here present a
base signal construction motivated by the Discrete Cosine
Transform (DCT). Assuming that we are to use base inter-
vals of length W , we enumerate all frequencies f such that
0 ≤ f ≤ W . For each frequency f , we define a base interval
with values cos((2i+1)π

2W f), where 0 ≤ i < W . We call this
algorithm GetBaseDCT(). We notice that we do not need
to store these intervals implicitly, as they can be computed
on the fly.

In Table 6 we compare the approximations obtained by
using the base signals computed by our GetBase() al-
gorithm with the base signal from the alternative construc-
tions. We need to emphasize here that for this experiment we
modified the BestMap() function not to use linear regres-
sion as an alternative to using the base signal (so that the
differences among GetBase(), GetBaseSVD(), Get-
BaseDCT() and linear regression are not diffused). Using
the BestMap() function as presented in Section 4.2 would
further improve the results of our method. The compression

10 [33] presents an application of this observation in a different con-
text.

5 10 15 20 25 30

Transmitted Data (% of data size)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

R
un

ni
ng

 T
im

e
(s

ec
)

n = 20480
n = 17920
n = 15360
n = 12800
n = 10240
n = 7680
n = 5120

Fig. 9 Average Running Time vs TotalBand

ratio was set to 10%. We notice that our GetBase() per-
forms a lot better in the Weather data set, up to 10 times bet-
ter than the alternative algorithms. For the Phone Call and
the Stock data the differences are smaller but still significant.

6.3 Analysis of SBR

We now analyze several characteristics of the SBR algo-
rithm, including its running time, the number of base inter-
vals it selects for inclusion in the base signal and the quality
of its decisions.

In Fig. 9 we plot the average time of each transmission
operation for the Stock data set, when the size of the trans-
mitted data is varied from 5% to 30% of the data size, the
size of n varies from 5,120 to 20,480,11 and the size of the
base signal is 1,024. Since we have not yet ported our code
to the StrongARM platform, we executed this experiment on
a Irix machine using a 300 MHz processor. As expected (see
Sect. 4.3) the running time scales linearly with the size of
the transmitted data. Notice that SBR is significantly faster
when greater reduction is obtained. For many practical ap-
plications, we expect to use a compression ratio of 10% (or
even less), where running time varies from 5.6 to 30 seconds
depending on the value of n.

The SBR algorithm dynamically decides the number of
base signal values to use for an upper bound Mbase. We
now compare SBR against a straight-forward implementa-
tion that populates all the available space for the base signal.
In Fig. 10 we plot the error of only the initial transmission
as the size of the base signal is varied, manually, from 1
to 30 intervals for the Phone, Stock and Weather data sets.
For this initial transmission we populated the entire space of
the base signal using the GetBase() algorithm. For each
data set we also show the selection that the SBR algorithm
made, when deciding how many base intervals to populate.
For presentation purposes the errors for each data set have

11 By varying the value of M. We always used data from 10 stocks.

457 457

A. Deligiannakis et al.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Base Intervals

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E
rr

or
 C

om
pa

re
d

to
 U

si
ng

 1
 B

as
e

In
te

rv
al

Stock Data
Phone Data
Weather Data

SBR Selection

Fig. 10 SSE error vs base signal size

been divided by the error of the approximation when using
just one interval. We set the size of each stock, phone and
weather data file to 3072, 2048 and 5120 values respectively,
in order for all data sets to have exactly the same size, and
the TotalBand value to 5012, which results to a compression
ratio (TotalBand/n) of about 16%.

The fixed value of the compression ratio implies that an
increase in the size of the base signal results in a decrease in
the number of intervals used to approximate the data val-
ues in order to keep the total space constant. After some
point, the benefit of storing more intervals for the base sig-
nal is outweighted by the increase in the error that we get
due to the reduced number of intervals used for the approx-
imation. It is interesting to see that the optimal case occurs
for a base size of between 7 (for the Weather data set) and
9 base intervals (for the Stock data set), which correspond
to just 2.9% to 3.75% of the data size at the first transmis-
sion. The SBR algorithm made the optimal choice for the
Phone and Weather data sets and produced a near-optimal
solution for the Stock data set (it selected to insert 6 base
intervals, instead of 9). We remind that the Mbase base sig-
nal values need to be kept in the memory of the sensor in
order to perform the approximation. Our results suggest that
a very small fraction of memory needs to be sacrificed for
these values.

For the same data setup, we report in Table 7 the number
of inserted base intervals during the 10 transmissions. As we
can see, most base intervals are inserted during the first two
transmissions. We notice that there are many transmissions
during which no new base intervals are inserted, and that the

Table 7 Number of inserted base intervals per transmission

Transmission

Data Set 1 2 3 4 5 6 7 8 9 10

Weather 6 6 1 0 3 0 2 3 0 1
Phone 3 6 0 1 0 0 2 0 0 1
Stock 3 0 0 2 1 0 0 0 2 0

2 3 4 5 6 7 8 9 10
Factor

0

100000

200000

300000

T
ot

al
 S

S
E

 E
rr

or

H = 5
H = 10
H = 20
H = 50
Non-Localized

Fig. 11 Selecting the ratio k1
kgl

vs H

different data sets seem to contain a widely different number
of features, with the Weather data set containing the most
features, and the Stock data set containing the fewest.

The small number of intervals inserted in the base signal
after the initial transmissions allows us to consider executing
the SBR algorithm only periodically, or when the quality of
the approximation degrades, in the case of constrained en-
vironments. For the other transmissions, the approximation
may be performed by simply using the significantly faster
GetIntervals() algorithm.

6.4 Localized groups

We now seek to evaluate the benefits of localized group pro-
cessing described in Sect. 5. We first investigate which are
the best values of the compression ratios k1 and kgl , as a
function of the target compression ratio k.12 We used a group
of six sensors, each collecting 4096 values from a differ-
ent type of weather measurements (i.e., one sensor monitor-
ing air temperature, one sensor monitoring pressure etc). We
set the compression ratio k of the non-localized approach to
10% and adjusted the ratio k1

kgl
so that the localized approach

consumes the same amount of bandwidth. For a given value
of k and for a fixed ratio of k1

kgl
, the values of k1 and kgl

follow easily from Eq. (1).
In all cases the number of transmissions (update oper-

ations) was set to 6, while λ = 0.6, and Mbase = 2048.
Figure 11 presents the total sum squared error for all six
transmissions for the localized and the non-localized ap-
proach and for different values of H . We also conducted a
similar experiment, where the value of H was set to 10 and
we varied the ratio k1

kgl
for different values of k and present

the total SSE error in Figure 12. Table 8 also presents the

12 k1 is the initial value for the compression ratios ki of the sensor
nodes in the group. While our algorithm dynamically adjusts the values
of ki to reduce the error of the approximation, the ratio avg(ki)

kgl
remains

constant.

458

Dissemination of compressed historical information in sensor networks

2 3 4 5 6 7 8 9 10
Factor

0

100000

200000

300000

400000

T
ot

al
 S

S
E

 E
rr

or

k = 5%
k = 7.5%
k = 10%
k = 15%
k = 20%
k = 25%
k = 30%

Fig. 12 Selecting the ratio k1
kgl

vs k

errors for the non-localized approach for the second experi-
ment and compares them to the errors of the localized algo-
rithm, when the ratio k1

kgl
is set to 3. Two major observations

can be drawn from Figs. 11 and 12 and Table 8:

1. The localized approach can result in a significant reduc-
tion in the approximation’s error when compared to the
non-localized approach. This error reduction is often by
a factor more than 5 (and up to 15 in Table 8), and in-
creases with the distance H of the base station from the
group leader or with smaller values of k.

2. There is a large range, whose width increases with the
value of H and k, of values (i.e., between 2 and 4) for the
ratio k1

kgl
for which near optimal results are obtained for

the localized algorithm. For very small or large values
of this ratio the quality of the approximation degrades,
but is often still significantly better than the localized
case. We thus suggest always setting the ratio k1

kgl
to the

value 3.

To understand why the range of values of the ratio k1
kgl

where near-optimal results are obtained, is increased with
H , we need to consider the relative change

δkgl
kgl

when we

increase the ratio k1
kgl

from r to r + δr (i.e., δr = 1) for the
same value of k. We can then show that:

δkgl

kgl
= δr(S − 1)

(r + δr)(S − 1) + SH

Table 8 Error comparison of localized vs non-localized algorithm

k % Localized Non-localized

5 203,213 2,923,141
7.5 99,342 812,026
10 64,507 303,460
15 35,784 84,907
20 22,278 38,954
25 14,876 23,706
30 10,169 16,901

Table 9 Compression ratios for sensors (k = 10%, H = 10)

Sensor

Update 1 2 3 4 5

1 14.3 24.0 33.7 33.7 14.3
2 8.5 33.6 29.9 29.9 18.1
3 5.1 39.4 46.8 17.9 10.8
4 3.0 42.9 47.3 20.3 6.4
5 11.4 35.4 38.0 21.8 13.5
6 6.8 40.5 42.0 22.6 8.0

Thus, the relative reduction in the value of kgl decreases with
the value of H . This justifies the reduced effect that the k1

kgl

ratio has on the approximation accuracy as H increases.
In Table 9 we present the compression ratios ki that were

assigned to each of the 5 sensor nodes in the group (besides
the group leader) for each update operation in the second
experiment (where H = 10 and we varied k) for a value
of k = 10%. This table clearly demonstrates the need for
dynamically adjusting the bandwidth for each node. Nodes
1 and 5 seem to always collect measurements that are easy
to approximate, while the measurements of node 3 are con-
sistently hard to approximate and, thus, its compression ra-
tio value is higher. On the other hand, notice that initially
more bandwidth was assigned to node 4 than in node 2, a
trend that was reversed in later invocations of the algorithm.
Any algorithm that statically allocates the bandwidth to each
sensor would not be able to exploit such changes in the char-
acteristics of the collected data and would result in reduced
accuracy in the obtained approximation.

7 Conclusions

We presented a new data compression technique, designed
for historical data collected in sensor networks, which how-
ever can also be applied in compressing multiple time se-
ries in general. Our method splits the recorded series into
intervals of variable length and encodes each of them us-
ing an artificially constructed base signal. The values of the
base signal are extracted from the real measurements and
maintained dynamically as data changes. Our method eas-
ily adapts to different error metrics by simply changing the
Regression subroutine used. It can also be modified to pro-
vide strict error bounds or a combination of error and space
bounds.

In our experiments we used real data sets from a va-
riety of fields (weather, stock and phone call data). Using
the sum-squared error and the sum-squared relative error of
the approximation, our method significantly outperformed in
accuracy approximations obtained by using Wavelets, DCT
and Histograms. We also explored the benefits of organizing
the nodes in localized groups and found the reduction in the
obtained approximation error to often be significant.

A key to our method is the use of the base signal for en-
coding piece-wise linear correlations among the data values.

459 459

A. Deligiannakis et al.

We emphasize here that our method does not only apply to
linear data sets; in fact none of the data we used are linear in
nature. Linearity is exploited when encoding the correlations
of the data values and the base signal. An interesting ques-
tion is to what extent non-linear encodings over the base sig-
nal values would benefit the approximations obtained with-
out sacrificing complexity. We plan to investigate this path
in the future.

References

1. Ahmed, N., Natarakan, T., Rao, K.R.: Discrete cosine transform.
IEEE Transactions on Computers, C-23 (1974)

2. Ailamaki, A., Faloutsos, C., Fischbeck, P.S., Small, M.J.,
VanBriesen, J.: An environmental sensor network to determine
drinking water quality and security. SIGMOD Record 32(4), 47–
52 (2003)

3. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Sur-
vey on Sensor Networks. IEEE Communications Magazine, 40(8),
102–114 (2002)

4. Bawa, M., Garcia,-Molina, H., Gionis, A., Motwani, R.: Esti-
mating Aggregates on a Peer-to-Peer Network. Technical report,
Stanford, 2003.

5. Belussi, A., Faloutsos, C.: Estimating the selectivity of spatial
queries using the ‘correlation’ fractal dimension. In: Proceedings
of the VLDB Conference (1995)

6. Cerpa, A., Estrin, D.: ASCENT: Adaptive self-configuring sensor
network topologies. In: Proceedings of INFOCOM(2002)

7. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approx-
imate query processing using wavelets. In: Proceedings of the
VLDB Conference (2000)

8. Chang, J.H., Tassiulas, L.: Energy conserving routing in wireless
ad-hoc networks. In: Proceedings of INFOCOM (2000)

9. Chen, J., Dewitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable
continuous query system for internet databases. In: Proceedings of
the ACM SIGMOD Conference (2000)

10. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-
dimensional regression analysis of time-series data streams. In:
Proceedings of the VLDB Conference (2002)

11. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Proba-
bilistic Queries over Imprecise Data. In: Proceedings of the ACM
SIGMOD Conference (2003)

12. Cherniack, M., Franklin, M.J., Zdonik, S.B.: Data management for
pervasive computing. In: Proceedings of the VLDB Conference
(2001)

13. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggrega-
tion techniques for sensor databases. In: Proceedings of the ICDE
Conference (2004)

14. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Compressing
historical information in sensor networks. In: Proceedings of the
ACM SIGMOD Conference (2004)

15. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical in-
network data aggregation with quality guarantees. In: Proceedings
of the EDBT Conference (2004)

16. Deligiannakis, A., Roussopoulos, N.: Extended wavelets for mul-
tiple measures. In: Proceedings of the ACM SIGMOD Conference
(2003)

17. Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., Yao, Y.: The
cougar project: A Work In Progress Report. SIGMOD Record
32(4), 53–59 (2003)

18. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M.,
Hong, W.: Model-Driven Data Acquisition in Sensor Networks.
In: Proceedings of the VLDB Conference (2004)

19. Estrin, D., Govindan, R., Heidermann, J., Kumar, S.: Next century
challenges: scalable coordination in sensor networks. In: Proceed-
ings of MobiCOM (1999)

20. Ganesan, D., Estrin, D., Heidermann, J.: DIMENSIONS: Why do
we need a new Data Handling architecture for Sensor Networks?
In: Proceedings of HotNets-I (2002)

21. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guar-
antees. In: Proceedings of the ACM SIGMOD Conference (2002)

22. Garofalakis, M., Gibbons, P.B.: Probabilistic Wavelet Synopses.
ACM Transactions on Database Systems 29(1), 43–90 (2004)

23. Gibbons, P.B.: Distinct Sampling for Highly-Accurate Answers to
Distinct Values Queries and Event Reports. In: Proceedings of the
VLDB Conference (2001)

24. Gibbons, P.B., Matias, Y.: New sampling-based summary statistics
for improving Approximate Query Answers. In: Proceedings of
the ACM SIGMOD Conference (1998)

25. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: One-
Pass Wavelet Decompositions of Data Streams. IEEE Transac-
tions on Knowledge and Data Engineering 15(3), 541–554 (2003)

26. Heidermann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Es-
trin, D., Ganesan, D.: Building efficient wireless sensor networks
with low-level naming. In: Proceedings of SOSP (2001)

27. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-
efficient communication protocol for wireless microsensor net-
works. In: Proceedings of the Hawaii Conference on System Sci-
ences (2000)

28. Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande,
A., Hildrum, K., Madden, S., Raman, V., Shah, M.A.: Adaptive
Query Processing: Technology in Evolution. IEEE Data Engineer-
ing Bulletin 23(2) (2000)

29. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidermann, J.: Im-
pact of network density on data aggregation in wireless sensor net-
works. In: Proceedings of ICDCS (2002)

30. Ioannidis, Y.E., Poosala, V.: Histogram-based approximation of
set-valued query answers. In: Proceedings of the VLDB Confer-
ence (2000)

31. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of
aggregate information. In: Proceedings of FOCS (2003)

32. Khanna, S., Tan, W.C.: On Computing functions with uncertainty.
In: Proceedings of ACM PODS Conference (2001)

33. Korn, F., Labrinidis, A., Kotidis, Y., Faloutsos, C.: Quantifiable
Data Mining Using Ratio Rules. VLDB Journal 8(3–4), 254–266
(2000)

34. Kotidis, Y.: Snapshot Queries: Towards data-centric sensor net-
works. In: Proceedings of the ICDE Conference (2005)

35. Lee, J., Kim, D., Chung, C.: Multi-dimensional selectivity estima-
tion using compressed histogram information. In: Proceedings of
the ACM SIGMOD Conference (1999)

36. Lindsey, S., Raghavendra, C.S.: Pegasis: Power-Efficient Gather-
ing in Sensor Information Systems. In: Proceedings of the IEEE
Aerospace Conference (2002)

37. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A
tiny aggregation service for ad hoc sensor networks. In: Proceed-
ings of the OSDI Conference (2002)

38. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The de-
sign of an acquisitional query processor for sensor networks. In:
Proceedings of the ACM SIGMOD Conference (2003)

39. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D.,
Anderson, J.: Wireless Sensor Networks for Habitat Monitoring.
ACM WSNA Workshop (2002)

40. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for
selectivity estimation. In: Proceedings of the ACM SIGMOD
Conference (1998)

41. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S.,
Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query
processing, resource management, and approximation in a data
stream management system. In: Proceedings of CIDR (2003)

42. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous
queries over distributed data streams. In: Proceedings of the ACM
SIGMOD Conference (2003)

43. Olston, C., Widom, J.: Offering a precision-performance tradeoff
for aggregation queries over replicated data. In: Proceedings of the
VLDB Conference (2000)

460

Dissemination of compressed historical information in sensor networks

44. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the
attribute value independence assumption. In: Proceedings of the
VLDB Conference (1997)

45. Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved
Histograms for Selectivity Estimation of Range Predicates. In:
Proceedings of the ACM SIGMOD Conference (1996)

46. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Nu-
merical Recipes in C. Cambridge University Press, 2nd edition
edition (1992)

47. Qiao, L., Agrawal, D., Abbadi, A.E.: RHist: Adaptive Summa-
rization over Continuous Data Streams. In: Proceedings of CIKM
(2002)

48. Sharaf, A., Beaver, J., Labrinidis, A., Chrysanthis, P.: Balancing
Energy Efficiency and Quality of Aggregate Data in Sensor Net-
works. VLDB Journal 13(4), 384–403 (2004)

49. Shih, E., Cho, S.-H., Ickes, N.: Physical layer driven protocol and
algorithm design for energy-efficient wireless sensor networks. In:
Proceedings of MOBICOM (2001)

50. Singh, S., Woo, M., Raghavendra, C.S.: Power-Aware Routing in
Mobile Ad Hoc Networks. In: ACM/IEEE International Confer-
ence on Mobile Computing and Networking (1998)

51. Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Com-
puter Graphics–Theory and Applications. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, CA (1996)

52. Tan, H.O., Korpeoglu, I.: Power Efficient Data Gathering and Ag-
gregation in Wireless Sensor Networks. SIGMOD Record 32(4),
(2003)

53. Thaper, N., Guha, S., Indyk, P., Koudas, N.: Dynamic Multidimen-
sional Histograms. In: Proceedings of the ACM SIGMOD Confer-
ence (2002)

54. Viglas, S.D., Naughton, J.F.: Rate-based query optimization for
streaming information sources. In: Proceedings of the ACM SIG-
MOD Conference (2002)

55. Vitter, J.S., Wang, M.: Approximate computation of multidimen-
sional aggregates of sparse data using wavelets. In: Proceedings
of the ACM SIGMOD Conference (1999)

56. Warneke, B., Last, M., Liebowitz, B., Pister, K.S.J.: Smart Dust:
Communicating with a Cubic-Millimeter Computer. IEEE Com-
puter 34(1), 44–51 (2001)

57. Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query
Processing in Sensor Networks. SIGMOD Record 31(3), 9–18
(2002)

58. Younis, O., Fahmy, S.: HEED: A hybrid, energy-efficient, dis-
tributed clustering approach for Ad Hoc sensor networks. IEEE
Transactions on Mobile Computing 3(4) (2004)

59. Zdonik, S.B., Stonebraker, M., Cherniack, M., Cetintemel, U.,
Balazinska, M., Balakrishnan, H.: The Aurora and Medusa
Projects. IEEE Data Engineering Bulletin (2003)

60. Zeinalipour-Yazti, D., Neema, S., Gunopulos, D., Kalogeraki, V.,
Najjar, W.: Data acquision in sensor networks with large memo-
ries. In: Proceedings of the IEEE International Workshop on Net-
working Meets Databases (2005)

461 461

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

