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reducing large amounts of data down to compact wavelet synopses that can be used to obtain fast,
accurate approximate answers to user queries. Although originally designed for minimizing the
overall mean-squared (i.e., L2-norm) error in the data approximation, recently proposed methods
also enable the use of Haar wavelets in minimizing other error metrics, such as the relative error in
data value reconstruction, which is arguably the most important for approximate query answers.
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as a flexible, efficient storage method for wavelet coefficients over multimeasure data. We also
propose novel algorithms for constructing effective (optimal or near-optimal) extended wavelet-
coefficient synopses under a given storage constraint, for both sum-squared error and relative-
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compared to existing solutions.
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1. INTRODUCTION

Approximate query processing over compact, precomputed data synopses has
attracted a lot of interest recently as a viable solution for dealing with complex
queries over massive amounts of data in interactive decision-support and data
exploration environments. For several of these application scenarios, exact an-
swers are not required and users may in fact prefer fast, approximate answers
to their queries. Examples include the initial, exploratory drill-down queries in
ad hoc data mining systems, where the goal is to quickly identify “interesting”
regions of the underlying database; or aggregation queries in decision-support
systems, where the full precision of the exact answer is not needed and the first
few digits of precision suffice (e.g., the leading digits of a total in the millions
or the nearest percentile of a percentage) [Acharya et al. 1999; Chakrabarti
et al. 2001; Garofalakis and Gibbons 2001; Hellerstein et al. 1997]. In recent
years, several different methods have been explored for reducing massive data
collections into the compact data synopses employed in the approximate-query
processing engine; these include random sampling, histograms, and, more re-
cently, wavelets.

Haar wavelets are a mathematical tool for the hierarchical decomposition
of functions, with several successful applications in signal and image process-
ing [Jawerth and Sweldens 1994; Stollnitz et al. 1996]. A number of recent
studies have also demonstrated the effectiveness of the Haar wavelet decom-
position as a data reduction tool for database problems, including selectivity
estimation [Matias et al. 1998] and approximate query processing over mas-
sive relational tables [Chakrabarti et al. 2001; Garofalakis and Gibbons 2004;
Vitter and Wang 1999] and data streams [Gilbert et al. 2001; Matias et al.
2000]. Briefly, the key idea is to apply the decomposition process over an in-
put dataset, along with a thresholding procedure, in order to obtain a compact
data synopsis comprised of a selected small set of Haar wavelet coefficients.
The results of several research studies [Chakrabarti et al. 2001; Garofalakis
and Gibbons 2004; Matias et al. 1998; Schmidt and Shahabi 2002; Vitter and
Wang 1999] have demonstrated that fast and accurate approximate query pro-
cessing engines can be designed to operate solely over such compact wavelet
synopses. Furthermore, even though Haar wavelet decomposition was origi-
nally designed with the objective of minimizing the overall mean-squared error
(i.e., the L2-norm error) in the data approximation, recent work [Garofalakis
and Gibbons 2004; Garofalakis and Kumar 2005] has also demonstrated their
use in optimizing relative-error metrics. Relative errors are arguably the most
important metrics for approximate-query answers and can also enable mean-
ingful, nontrivial error guarantees for reconstructed values (by bounding the
maximum relative-error in the approximate reconstruction of individual data
values [Garofalakis and Gibbons 2004; Garofalakis and Kumar 2005]).
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Despite the surge of interest in wavelet-based data reduction and approx-
imation in database systems, relatively little attention has been paid to the
application of wavelet techniques to complex tabular datasets with multiple
measures (multiple numeric entries for each table cell). Such massive, multi-
measure tables arise naturally in several application domains, including OLAP
environments and time-series analysis/correlation systems. As an example, a
corporate sales database may tabulate for each available product: (1) the num-
ber of items sold, (2) revenue and profit numbers for the product, and (3) costs
associated with the product, such as shipping and storage costs. Similarly, real-
life applications that monitor continuous time-series typically have to deal with
several readings (measures) that evolve over time; for example, a network-
traffic monitoring system takes readings on each time-tick from a number of
distinct elements (i.e., routers and switches) in the underlying network and
typically, several measures of interest need to be monitored (e.g., input/output
traffic numbers for each router or switch interface) even for a fixed network
element [Cisco 1999].

Traditionally, two obvious strategies, termed Individual and Combined, have
been employed when adapting wavelet-based methods over such multimeasure
datasets. The Individual algorithm performs wavelet decomposition on each of
the individual measures, and stores the important coefficients for each mea-
sure separately. On the other hand, the Combined algorithm performs a joint
wavelet decomposition on the multimeasure dataset by treating all the mea-
sures as a vector of values and, at the end, determines a subset of vectors of
coefficient values to retain in the synopsis. As we demonstrate, such obvious
individual or combined approaches can lead to poor synopsis-storage utiliza-
tion and suboptimal solutions, even in very simple cases. Due to the nature of
wavelet decomposition and the possible correlations across different measures,
there are many scenarios in which multiple—but not necessarily all—wavelet
coefficients at the same coordinates have large values, and are thus beneficial
to retain, for instance, in an L2-optimized synopsis. In such cases, the Indi-
vidual algorithm essentially replicates the storage of the shared coordinates
multiple times, wasting valuable synopsis storage. The Combined algorithm,
on the other hand, stores all coefficient values sharing the same coordinates,
thus wasting space by storing small, unimportant values for certain measures.

Our Contributions. In this work, we propose a novel approach for effectively
adapting wavelet-based data reduction methods to multimeasure datasets
through the use of extended wavelet coefficients. Briefly, an extended wavelet
coefficient can store multiple coefficient values for different—but not necessar-
ily all—measures. The end result is a flexible, space-efficient storage scheme
that can eliminate the disadvantages of both the Individual and Combined algo-
rithms discussed earlier. We then consider the problem of constructing effective
extended wavelet-coefficient synopses (under a given storage constraint) opti-
mized for the: (1) weighted sum-squared error, and (2) relative error in the ap-
proximate data reconstruction. Our synopsis construction problems are natural
generalizations of the corresponding problems for conventional (i.e., L2-error)
wavelet synopses [Vitter and Wang 1999; Chakrabarti et al. 2001] and prob-
abilistic (i.e., relative-error) wavelet synopses [Garofalakis and Gibbons 2004]
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for the single-measure case. We demonstrate that in the presence of multiple
measures, choosing an effective subset of extended wavelet coefficients gives
rise to difficult optimization problems which are significantly more complex
than their single-measure counterparts. This is primarily due to our more in-
volved extended-coefficient storage format that forces nontrivial dependencies
between thresholding decisions made across different measures. We propose op-
timal solutions based on novel algorithmic formulations that employ dynamic
programming (DP) ideas. Given the high time and space complexities of our
exact DP schemes, we also introduce fast, greedy approximation algorithms
(based on the idea of marginal error-gains) that produce near-optimal solu-
tions. To the best of our knowledge, our work represents the first principled,
methodical study of effective wavelet-based data reduction techniques for mul-
timeasure datasets. More concretely, our key contributions can be summarized
as follows:

—Extended wavelet-coefficients for multimeasure data. We provide a qualitative
and quantitative demonstration of the suboptimal choices made by existing
(Individual and Combined) strategies for the wavelet-based summarization
of multimeasure datasets. Based on our observations, we formally define the
notion of an extended wavelet coefficient, the first adaptive, efficient storage
scheme for multimeasure wavelet-coefficients. Given a dataset comprised of
M measures, an extended wavelet coefficient can be used to efficiently store
any subset of up to M coefficient values for each combination of coefficient
coordinates. Briefly, this is achieved through the use of a bitmap of size M ,
which helps determine exactly the subset of coefficient values that has been
stored.

—Extended wavelet-coefficient synopses for weighted sum-squared error. We
present a novel DP algorithm, termed DynProgL2, that selects the optimal
subset of extended wavelet coefficients to retain in order to minimize the
weighted sum of the squared L2-error norms of all data measures, under a
given storage constraint. The novelty of our DP formulation comes from the
fact that the dependencies across measures due to our extended-coefficient
storage format cause the key principle of optimality based on a total ordering
of partial solutions [Cormen et al. 1990] to be violated, rendering straightfor-
ward (e.g., “knapsack-like”) DP schemes inapplicable in our setting. Instead,
our DynProgL2 algorithm relies on two mutually recursive DP recurrences that
are tabulated in parallel to compute an optimal solution. We then introduce
an alternative, greedy synopsis-construction algorithm for weighted L2-error
(termed GreedyL2) with significantly reduced memory and running-time re-
quirements compared to the optimal DynProgL2 scheme. We also demonstrate
that our GreedyL2 heuristic is provably near optimal, always guaranteeing a
solution which is within a factor of, at most, min{2, 1+ 1

B
H+M −1

} of the optimal

weighted L2-error, for the given amount of space B and the maximum space
H + M that an extended wavelet coefficient may occupy.

—Extended wavelet-coefficient synopses for relative error. We address the prob-
lem of building probabilistic wavelet synopses (optimized for relative-error
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metrics) [Garofalakis and Gibbons 2004] over multimeasure data. Once
again, the cross-measure dependencies introduced by our space-efficient
extended-coefficient storage format cause the principle of optimality to be
violated, making the earlier single-measure DP solutions of Garofalakis and
Gibbons [2004] inapplicable in the multimeasure context. Thus, we propose
a novel probabilistic thresholding scheme for multimeasure datasets based
on the idea of an exact partial-order DP (PODP) formulation. In a nutshell,
our PODP solution (termed PODPRel) generalizes earlier single-measure DP
schemes [Garofalakis and Gibbons 2004] to datasets with M measures by
using an M-component vector objective and an M-component less-than par-
tial order to prune subproblem solutions that cannot possibly be part of an
optimal solution. Due to its more strict pruning criteria, PODPRel typically
needs to tabulate and examine many more subproblem solutions, which can
easily raise its time and space complexities to levels that are prohibitive in
practice (e.g., time and space at least exponential in the number of measures
involved).1 Thus, we once again introduce a more efficient, greedy approxi-
mation algorithm (termed GreedyRel) for probabilistic coefficient threshold-
ing over multimeasure data, which greedily allocates the available synopsis
space based on marginal relative-error gains.

—Extensive experimental results validating our approach. We present results
from an extensive experimental study of our proposed techniques with both
synthetic and real-life datasets. Our results study the performance of our
algorithms under a variety of different settings and parameters, and clearly
verify the effectiveness of our approach. More specifically, our numbers
demonstrate that our algorithms easily outperform existing approaches in
terms of accuracy, often by an order of magnitude or more. Furthermore, our
greedy approximation schemes always perform very close to optimal, thus
providing effective and, at the same time, fast and scalable solutions to our
multimeasure synopsis construction problems.

Due to space constraints, detailed proof arguments and several details of our
technical development can be found in the Electronic Appendix that is accessible
in the ACM Digital Library.

2. PRELIMINARIES

In this section, we provide a quick introduction to conventional Haar wavelet
decomposition and wavelet-coefficient synopses in both one and multiple dimen-
sions. We also discuss existing Individual and Combined strategies for handling
multiple measures and demonstrate some of their important shortcomings. Fi-
nally, we introduce the notion of an extended wavelet coefficient which forms
the basis for our proposed approach and data reduction algorithms.

1We also demonstrate that our PODP formulation can be appropriately extended (using ideas from
the more recent work of Garofalakis and Kumar [2005]) to give optimal deterministic threshold-
ing schemes for relative-error metrics. Unfortunately, in addition to the more strict, partial-order
pruning, this extension also introduces an O(N M ) factor in space/time complexity, rendering the
approach unusable for any realistic problem sizes (Section 4.5).

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



6 • A. Deligiannakis et al.

2.1 One-Dimensional Haar Wavelets

Wavelets are a useful mathematical tool for hierarchically decomposing func-
tions in ways that are both efficient and theoretically sound. Broadly speaking,
the wavelet decomposition of a function consists of a coarse overall approx-
imation, along with detail coefficients that influence the function at various
scales [Stollnitz et al. 1996]. The wavelet decomposition has excellent energy
compaction and decorrelation properties which can be used to effectively gen-
erate compact representations that exploit the structure of data. Suppose we
are given one-dimensional data vector A containing the N = 8 data values
A = [2, 2, 0, 2, 3, 5, 4, 4]. The Haar wavelet transform of A can be computed
as follows. We first average the values together pairwise to get a new “lower-
resolution” representation of the data with the average values [2, 1, 4, 4]. In
other words, the average of the first two values (i.e., 2 and 2) is 2, that of the
next two values (i.e., 0 and 2) is 1, and so on. Obviously, some information has
been lost in this averaging process. To be able to restore the original values of
the data array, we store some detail coefficients that capture the missing infor-
mation. In Haar wavelets, these detail coefficients are simply the differences
of the (second of the) averaged values from the computed pairwise average.
Thus, in our simple example, for the first pair of averaged values, the detail
coefficient is 0, since 2 − 2 = 0, and for the second we again need to store
−1, since 1 − 2 = −1. Note that no information has been lost in this process;
it is fairly simple to reconstruct the values of the original data array from the
lower-resolution array containing the four averages and four detail coefficients.
Recursively applying the aforementioned pairwise averaging and differencing
process on the lower-resolution array containing the averages, we get the fol-
lowing full decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, −1, −1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

The wavelet transform (also known as wavelet decomposition) of A is that
single coefficient representing the overall average of the data values, followed
by the detail coefficients in order of increasing resolution. Thus, the one-
dimensional Haar wavelet transform of A is given by WA = [11/4, −5/4, 1/2,
0, 0, −1, −1, 0]. Each entry in WA is called a wavelet coefficient. The main ad-
vantage of using WA instead of the original data vector A is that for vectors
containing similar values, most detail coefficients tend to have very small val-
ues. Thus, eliminating such small coefficients from the wavelet transform (i.e.,
treating them as zeros) introduces only small errors when reconstructing the
original data, resulting in a very effective form of lossy data compression [Stoll-
nitz et al. 1996].

Note that intuitively, wavelet coefficients carry different weights with respect
to their importance in rebuilding the original data values. For example, the
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Fig. 1. (a) Error-tree structure for our example data vector A (N = 8); (b) support regions and
signs for the 16 nonstandard two-dimensional Haar basis functions. The coefficient magnitudes
are multiplied by +1 (−1) where a sign of + (respectively, −) appears, and 0 in blank areas.

overall average is obviously more important than any detail coefficient, since
it affects the reconstruction of all entries in the data array. In order to equalize
the importance of all wavelet coefficients, we need to normalize the final entries
of WA appropriately. A common normalization scheme [Stollnitz et al. 1996] is
to divide each wavelet coefficient by

√
2l , where l denotes the level of resolution

at which the coefficient appears (with l = 0 corresponding to the “coarsest”
resolution level).

The Haar coefficient error tree. A helpful tool for exploring and understand-
ing the key properties of Haar wavelet decomposition is the error-tree struc-
ture [Matias et al. 1998]. The error tree is a hierarchical structure built on the
basis of the wavelet transform process (even though it is primarily used as a
conceptual tool, an error tree can be easily constructed in linear O(N ) time).
Figure 1(a) depicts the error tree for our example data vector A. Each internal
node ci (i = 0, . . . , 7) is associated with a wavelet-coefficient value, and each leaf
di (i = 0, . . . , 7) is associated with a value in the original data array; in both
cases, the index/coordinate i denotes positions in the data array or error tree.
For example, c0 corresponds to the overall average of A. The resolution levels l
for coefficients (corresponding to levels in the tree) are also depicted (we use the
terms “node” and “coefficient” interchangeably in the following). The normal-
ized ci coefficient is denoted by c∗

i (= ci/
√

2level(ci )). Table I summarizes some
of the key notational conventions used in this article (with obvious extensions
to the multimeasure case); additional notation is introduced when necessary.
Detailed symbol definitions are provided at appropriate locations in the text.
For simplicity, the notation assumes one-dimensional wavelets; extensions to
multidimensional wavelets (Section 2.2) are straightforward.

Given a node u in an error tree T , let path(u) denote the set of all proper
ancestors of u in T (i.e., the nodes on the path from u to the root of T , in-
cluding the root, but not u) with nonzero coefficients. A key property of Haar
wavelet decomposition is that the reconstruction of any data value di depends
only on those values of coefficients on path(di); more specifically, we have di =∑

c j ∈path(di ) δi j · c j , where δi j = +1 if di is in the left child subtree of c j or j = 0,
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Table I. Notation

Symbol Description (i ∈ {0, . . . , N − 1}, j ∈ {1, . . . , M },
j index/subscript is dropped for M = 1)

N Number of data-array cells
D Data array dimensionality
M Number of dataset measures
B Space budget for synopsis
A, WA Input data and wavelet transform arrays
dij Data value for ith cell and j th measure of data array
d̂i j Reconstructed data value for ith cell and j th measure
ci j , c∗

i j Unnormalized/normalized Haar coefficient at coordinate i for the j th measure
path(u) All nonzero proper ancestors of u in the error tree
ECi Extended wavelet coefficient at coordinate i
H Storage space for the extended coefficient header (coordinates and bitmap)

and δi j = −1 otherwise. Thus, reconstructing any data value involves summing,
at most, log N + 1 coefficients. For example, in Figure 1, d4 = c0 − c1 + c6 = 11

4 −
(− 5

4 )+ (−1) = 3. The support region for a coefficient ci is defined as the set of
(contiguous) data values for which ci is used to reconstruct; the support region
for a coefficient ci is uniquely identified by its coordinate i.

2.2 Multidimensional Haar Wavelets

The Haar wavelet decomposition can be extended to multidimensional data
arrays using two distinct methods, namely standard and nonstandard Haar
decomposition [Stollnitz et al. 1996]. Each of these transforms results from a
natural generalization of the one-dimensional decomposition process, and both
have been used in a wide variety of applications, including approximate query
answering over high-dimensional datasets [Chakrabarti et al. 2001; Vitter and
Wang 1999].

The Haar decomposition of a D-dimensional data array A results in a D-
dimensional wavelet-coefficient array WA with the same dimension ranges
and number of entries (the full details as well as efficient decomposition al-
gorithms can be found in Chakrabarti et al. [2001], Vitter and Wang [1999]).
Consider a D-dimensional wavelet coefficient W in the (standard or nonstan-
dard) wavelet-coefficient array WA. Here, W contributes to the reconstruction
of a D-dimensional rectangular region of cells in the data array A (i.e., W ’s
support region). Further, the sign of W ’s contribution (+W or −W ) can vary
along the quadrants of its support region. As an example, Figure 1(b) depicts
the support regions and signs of the 16 nonstandard, two-dimensional Haar
coefficients in the corresponding locations of a 4 × 4 wavelet-coefficient array
WA. The blank areas for each coefficient correspond to those regions of A whose
reconstruction is independent of the coefficient, that is, the coefficient’s con-
tribution is 0. Thus, WA[0, 0] is the overall average that contributes positively
(i.e.,“+WA[0, 0]”) to the reconstruction of all values in A, whereas WA[3, 3] is a
detail coefficient that contributes (with the signs shown in Figure 1(b)) only to
values in A’s upper-right quadrant. Each data cell in A can be accurately recon-
structed by adding up the contributions (with the appropriate signs) of those
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Fig. 2. Error-tree structure for the 16 nonstandard two-dimensional Haar coefficients for a 4 × 4
data array (data values omitted for clarity).

coefficients whose support regions include the cell. Figure 1(b) also depicts the
two levels of resolution (l = 0, 1) for our example two-dimensional Haar co-
efficients; as in the one-dimensional case, these levels define the appropriate
constants for normalizing coefficient values [Chakrabarti et al. 2001; Stollnitz
et al. 1996].

Error-tree structures for multidimensional Haar wavelets can be constructed
(once again, in linear O(N ) time) in a manner similar to those for the one-
dimensional case, but their semantics and structure are somewhat more com-
plex. A major difference is that in a D-dimensional error tree, each node (except
for the root, i.e., the overall average) actually corresponds to a set of 2D − 1
wavelet coefficients that have the same support region, but different quadrant
signs and magnitudes for their contribution. Furthermore, each (nonroot) node
t in a D-dimensional error tree has 2D children corresponding to quadrants of
the (common) support region of all coefficients in t (note that the sign of each
coefficient’s contribution to the leaf (data) values residing at each of its children
in the tree is determined by the coefficient’s quadrant sign information).2 As an
example, Figure 2 depicts the error-tree structure for the two-dimensional 4×4
Haar coefficient array in Figure 1(b). Thus, the (single) child t of the root node
contains the coefficients WA[0, 1], WA[1, 0] and WA[1, 1] and has four children
corresponding to the four 2 × 2 quadrants of the array; the child correspond-
ing to the lower-left quadrant contains the coefficients WA[0, 2], WA[2, 0] and
WA[2, 2], and all coefficients in t contribute with a “+” sign to all values in this
quadrant.

Based on the preceding generalization of the error-tree structure to multiple
dimensions, we can naturally extend the process for data value reconstruction to
multidimensional Haar wavelets. Once again, the reconstruction of di depends
only on the coefficient sets for all error-tree nodes in path(di), where the sign of
the contribution for each coefficient W in node t ∈ path(di) is determined by the
quadrant sign information for W .

2The number of children (coefficients) for an internal error-tree node can actually be less than 2D

(respectively, 2D −1) when the sizes of data dimensions are not all equal. In these situations, the ex-
ponent for 2 is determined by the number of dimensions that are active at the current level of the de-
composition (i.e., those dimensions that are still being recursively split by averaging/differencing).
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2.3 Wavelet-Based Data Reduction: Coefficient Thresholding

Given a limited amount of storage for building a wavelet synopsis of the input
data array A, a thresholding procedure retains a certain number B � N of
the coefficients in WA as a highly compressed approximate representation of
the original data (the remaining coefficients are implicitly set to 0). The goal
of coefficient thresholding is to determine the “best” subset of B coefficients to
retain so that some overall error measure in the approximation is minimized.
The method of choice for the vast majority of earlier studies on wavelet-based
data reduction and approximation [Chakrabarti et al. 2001; Matias et al. 1998;
Matias et al. 2000; Vitter and Wang 1999] is conventional coefficient thresh-
olding that greedily retains the B largest Haar wavelet coefficients in absolute
normalized value. This thresholding method is in fact provably optimal with
respect to minimizing the overall sum-squared error (i.e., L2-norm error) in the
data compression [Stollnitz et al. 1996].

More formally, letting d̂i denote the (approximate) reconstructed data value
for cell i, retaining the B largest normalized coefficients implies that the re-
sulting synopsis minimizes the quantity

∑
i(d̂i − di)2 (for the given amount

of space B). This fact follows from the orthonormality of the normalized Haar
wavelet basis which, by Parseval’s theorem, implies that the energy of the sig-
nal is the same in both the data and the (normalized) wavelet domain; that
is,

∑
i d2

i = ∑
i(c

∗
i )2 (thus, the “energy” loss is minimized when dropping the

smallest normalized coefficients from the synopsis).
Each Haar coefficient is stored in the wavelet synopsis as a pair < i, c∗

i >,
where i denotes the index/coordinate of the coefficient and c∗

i denotes its (nor-
malized) value. In the case of D-dimensional data, each (nonzero) synopsis co-
efficient is stored as a (D + 1)-tuple < i1, i2, . . . , iD, c∗

i1,i2,...,iD
>, where i1, . . . , iD

denote the coefficient’s coordinates in the (D-dimensional) wavelet-coefficient
array WA.

2.4 Existing Approaches for Multiple Measures

Two existing approaches [Stollnitz et al. 1996] (termed Individual and Com-
bined) have been proposed for adapting wavelet-based data reduction to
datasets with multiple measures—both are straightforward generalizations
of the single-measure case. The Individual strategy performs an independent
wavelet decomposition for each individual measure, and the decisions on which
coefficients to retain are made independently for each measure. In the Com-
bined approach, both the original data values and the produced wavelet coef-
ficients are treated as M -component vectors (where M denotes the number of
data measures). The pairwise averaging and differencing procedure described
before is then performed between corresponding vector components (i.e., values
for the same measure). The Combined thresholding procedure is very similar to
that for the single-measure case: The coefficient vectors retained in the synopsis
are those with the largest values for the L2-vector norm.

We also use the terms individual and combined coefficient to refer to the co-
efficient values that result from the corresponding decomposition algorithms.
Thus, a combined coefficient is an M -component vector that stores individual
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Table II. Example Combined Wavelet Decomposition

Resolution Averages Detail Coefficients

3
[[

2
4

] [
2
6

] [
0
3

] [
2
5

] [
3
2

] [
5
8

] [
4
3

] [
4
3

]]
—

2
[[

2
5

] [
1
4

] [
4
5

] [
4
3

]] [[
0

−1

] [ −1
−1

] [ −1
−3

] [
0
0

]]

1
[[

3/2
9/2

] [
4
4

]] [[
1/2
1/2

] [
0
1

]]

0
[[

11/4
17/4

]] [[ −5/4
1/4

]]

coefficient values for each of the M measures in the dataset (at given coor-
dinates). An example of the Combined decomposition algorithm is shown in
Table II. Our example dataset here is comprised two measures: The values for
the first measure are identical to those in our first example array in Section 2.1,
while the values for the second are [4, 6, 3, 5, 2, 8, 3, 3]. Thus, in Table II, the
first (second) row of each vector corresponds either to data or coefficient values
for the first (respectively, second) measure. The final set of combined coefficients
is WA =

[ [
11/4
17/4

]
,
[

−5/4
1/4

]
,
[

1/2
1/2

]
,
[

0
1

]
,
[

0
−1

]
,
[

−1
−1

]
,
[

−1
−3

]
,
[

0
0

] ]
.

The Combined data reduction strategy is expected to achieve better storage
utilization than the Individual algorithm for the L2-error metric in datasets
where multiple component values for the same combined coefficient are simul-
taneously “large” (in terms of their absolute normalized value). In such cases,
the coordinates of such large combined coefficients are stored only once, thus
allowing for a more compact representation. More compact representations im-
ply the ability to store larger numbers of coefficient values and, thus, improved
result accuracy (for a given space budget). On the other hand, in many sce-
narios, a combined coefficient might help to reduce the error significantly in
only one or few measures. In such cases, some of the space occupied by the
combined-coefficient components is essentially wasted, without improving the
overall quality of the approximate results.

Table III depicts only two combined coefficients for a one-dimensional dataset
with three measures. Neither the actual data that helped construct these two
coefficients nor the remaining set of coefficients are important, since the sole
purpose of this example is to show that both Individual and Combined strategies
can result in poor choices, even when choosing between just two coefficients.
We assume that each dimension coordinate and each coefficient value require
one unit of space. In this scenario, each combined-coefficient tuple occupies
four space units (one coordinate + three measure values), while each individual
coefficient occupies only two space units. For a storage constraint of four units of
space, the Combined algorithm can thus select only one tuple to store, while the
Individual algorithm can store up to two individual coefficients. By Parseval’s
theorem (Section 2.3), the benefit of retaining any single coefficient value is
equal to its squared normalized value. As Table III shows, in Case A, for the
given storage constraint, the Combined algorithm chooses a solution with only
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Table III. Shortcomings of the Combined and Individual Strategies

Case A Case B
Coordinate Values

Available 0 100 0 0
Coefficients 1 0 100 0

Coordinate Values
Available 0 100 100 100

Coefficients 1 0 100 0
Coordinate Values

Combined
Retains

0 100 0 0

Coordinate Values
Combined
Retains

0 100 100 100

Coordinate Value Measure
Individual 0 100 1

Retains 1 100 2

Coordinate Value Measure
Individual 0 100 3

Retains 0 100 2

Combined Benefit = 1002 = 10000

Individual Benefit = 1002 + 1002 = 20000

Combined Benefit
Individual Benefit = 10000

20000 = 50%

Combined Benefit = 1002 + 1002 + 1002 = 30000

Individual Benefit = 1002 + 1002 = 20000

Individual Benefit
Combined Benefit = 20000

30000 ≈ 66.7%

half the benefit of the solution picked by the Individual algorithm. The roles
are reversed in Case B, where the Individual algorithm selects a solution with
only two-thirds of the benefit achieved by the Combined algorithm. Note that in
Case B, the ties on retained coefficients for the Individual algorithm are broken
arbitrarily, as four individual coefficients have the same benefit. By increasing
the number of measures in the dataset for Case A and the number of dimensions
for Case B, we can easily create examples where the quality of the suboptimal
solutions returned by the Combined and Individual strategies (respectively) is
significantly worse than the optimal choice. For instance, by expanding our one-
dimensional dataset of Table III to a dataset with M measures, and considering
which M+1

2 candidate individual coefficients to retain under a storage constraint
of M +1 space units, it can be shown that in Case A: Combined Benefit

Individual Benefit = 2
M+1 , while

in Case B: Individual Benefit
Combined Benefit = M+1

2M .
An additional disadvantage of the Combined data reduction strategy is that

it cannot be easily adapted for cases where we would like to assign different
weights on the quality of answers for different measures. For example, in colored
image databases, datasets form two-dimensional arrays with three measures,
namely, the pixel values for each of the three basic colors (red, green and blue).
It has been shown [Foley et al. 1990] that better image compression is possible
by first converting the image values from the RGB to the YIQ color space, thus
separating the luminance (Y) from the chromatic information (I and Q). Since
human perception is more sensitive to variations in Y and less to those in Q, we
may want to specify a larger weight for errors in Y and a smaller one for errors in
Q. In such scenarios, use of the Combined algorithm becomes problematic, since
it cannot devote different fractions of the available space to different measures,
even though the coefficient values within each vector are weighted differently.
Moreover, for datasets with several measures, it seems quite unlikely that the
coefficient values across all measures would be simultaneously large or small
(i.e., all measure values in the data are positively correlated). For such datasets,
the Combined algorithm would clearly waste synopsis storage space, without
significantly improving the overall accuracy of the approximation.
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On the other hand, there are cases when we can expect multiple coeffi-
cient values of a combined coefficient to have large values. As discussed in
Sections 2.1–2.2, Haar coefficient values are normalized based on their respec-
tive resolution levels. Due to this normalization, coefficient values at lower
(i.e., “coarser”) resolution levels typically tend to have larger values, and this
occurs for all measures. Another scenario where multiple large coefficient val-
ues might occur at the same coordinate(s) arises for sparse datasets (typical in
real-life high-dimensional data analysis applications). In such datasets, there
often are sparse regions of the data space with only one or very few data tu-
ples present. Depending on the sizes of such regions and the tuple data values,
such “spikes” in the input data signal can potentially create large Haar coeffi-
cient values across many measures. Clearly, in such scenarios, the Combined
algorithm can provide significant advantages over an Individual strategy by
avoiding the replication of coordinates for multiple measures in the synopsis.

2.5 Our Approach: Extended Wavelet Coefficients

The aforementioned Individual and Combined schemes essentially represent
the two extremes of the design spectrum by assuming that either one or all
values of a Haar coefficient are important for the synopsis (and can share their
coordinates). Given the important shortcomings of both techniques when deal-
ing with multimeasure datasets, we now introduce the notion of an extended
wavelet coefficient that tries to bridge the gap between these two extremes by
providing an efficient, flexible storage format for retaining any subset of coeffi-
cient values.

Definition 1. An extended wavelet coefficient EC for a D-dimensional
dataset with M measures is defined as a triple EC = 〈C, β, V 〉 consisting of:
(1) the coordinates C of the coefficient; (2) a bitmap β of size M , where the ith

bit denotes the existence or absence of a coefficient value for the ith measure;
and (3) the set of stored coefficient values V .

The bitmap of an extended wavelet coefficient determines exactly which of
the (at most M ) per-measure values of the combined coefficient at the given
coordinates C have actually been stored. Thus, an extended wavelet coefficient
combines the positive aspects of both the Individual and Combined algorithms
as a flexible storage method that can store anywhere from one to M values for
any combination of coefficient coordinates (we refer to the (coordinates, bitmap)
pair for an extended wavelet coefficient as the coefficient’s header).

In the remainder of the article, we address the problem of building effective
extended wavelet-coefficient synopses (under a given storage constraint) for
different classes of target error metrics in the approximate data reconstruction.
We use |EC| to denote the space requirement of an extended coefficient EC.
Of course, this space requirement varies, depending on the actual contents
(i.e., number of stored coefficient values) of EC. Since our focus is on selecting
the specific coefficient values to store, our algorithms address only the final
thresholding step of the wavelet-based data reduction process. The input to all
of our thresholding schemes is the complete set of combined wavelet coefficients,

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



14 • A. Deligiannakis et al.

which can be trivially created using the same decomposition process as in either
the Individual or Combined algorithm (Section 2.4).

3. EXTENDED WAVELET SYNOPSES FOR WEIGHTED
SUM-SQUARED ERROR

As discussed earlier, the most common optimization objective for conventional
wavelet synopses in the single-measure case is the sum-squared (i.e., L2) error
in the data approximation. Thus, a natural extension for datasets with multi-
ple measures is to optimize for a weighted sum-squared error across all data
measures. More formally, our optimization problem can be stated as follows.

Weighted Sum-Squared Error Minimization for Extended Coefficients. Given
a collection WA of candidate combined wavelet coefficients of a D-dimensional
dataset with M measures, a storage constraint B, and an M -vector of measure
weights w̄, select a synopsis S of extended wavelet coefficients that minimizes
the weighted sum of the L2-error norms across all measures; that is, minimize∑M

j=1

(
wj × ∑

i(dij − d̂i j )2
)

subject to the constraint
∑

EC∈S |EC| ≤ B.
Based on Parseval’s theorem and the discussion in Section 2.3, and using c∗

i j

to denote the normalized value for the j th measure of the ith input combined
wavelet coefficient, we can restate the previous optimization problem in the
following equivalent (and easier to process) form.

Weighted Sum-Squared Benefit Maximization for Extended Coefficients.
Given a collection WA of candidate combined wavelet coefficients of a
D-dimensional dataset with M measures, a storage constraint B, and an
M -vector of measure weights w̄, select a synopsis S of extended wavelet
coefficients that maximizes the weighted sum of the retained normal-
ized squared coefficient values across all measures; that is, maximize∑

EC=〈C,β,V 〉∈S
∑

j ,β( j )=1 wj × (c∗
i j )

2 subject to the constraint
∑

EC∈S |EC| ≤ B.

3.1 DynProgL2: An Optimal Dynamic Programming Algorithm

We now propose a thresholding algorithm (termed DynProgL2), based on dy-
namic programming (DP) ideas, that optimally solves the optimization problem
described previously. Our DynProgL2 algorithm takes as input a set of combined
coefficients WA, a space constraint B, and an M -vector of weights w̄ (used to
weight the benefit of the coefficient values for each measure). DynProgL2 treats
the individual coefficient values for each input combined coefficient as subitems
in our problem, utilizing an implicit mapping that maps the j th coefficient value
of the ith combined coefficient to the subitem index k = (i −1)∗ M + j (thus, the
M per-measure values for each combined coefficient correspond to consecutive
subitems). Our discussion in this section makes use of this mapping so as to
simplify the development of our algorithms. Finally, we should emphasize here
that our DynProgL2 thresholding algorithm is applicable (without any modifica-
tions) independent of data dimensionality, since increasing the dimensionality
only affects the header size H for the retained extended wavelet coefficients.

Let k = (i − 1) ∗ M + j denote the subitem index corresponding to the j th

coefficient value of the ith combined coefficient. Retaining the kth subitem in our
synopsis gives us a weighted benefit equal to wj × (c∗

i j )
2. However, the space
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overhead for storing this subitem obviously depends on whether this is the
first coefficient value being stored from the ith combined coefficient. If this is
indeed the first value retained from the ith combined coefficient, then its space
requirements are equal to the space needed to store the extended coefficient
header (coordinates and bitmap) plus the space for storing the coefficient value.
On the other hand, if other subitems for the coefficient have already been stored,
then we have already paid the space penalty for the coefficient header, and the
subitem’s space requirements are simply the space for storing the coefficient
value. These dependencies on the storage-space requirements across coefficient
values (due to the shared space for extended coefficient headers) render the
design of an optimal solution to our problem significantly more complex than
that of known (pseudopolynomial) DP algorithms to traditional Knapsack-style
problems [Vazirani 2001] (note, of course, that in our problem scenario, the
space bound B is always upper bounded by |WA| and, thus, is polynomial (linear)
in the input size).

We now try to formulate a DP recurrence for our optimization problem. Note
that in order to be able to tabulate partial solutions in our DP table, our de-
velopment here requires that all subitems occupy an integer number of space
units—this can be done, for instance, by assuming a basic space unit of one bit.3

We use sizeof(float) to denote the number of space units needed to store a
single (floating-point) coefficient value. For the optimal solution using a synop-
sis space of (at most) S, and considering the first k subitems, three cases may
arise:

(1) The optimal solution is the same as that using the first k − 1 subitems and
the same space S;

(2) the optimal solution is achieved by including subitem k, and k is the first
subitem of its combined coefficient included in the optimal solution; or,

(3) the optimal solution is achieved by including subitem k, and k is not
the first subitem of its combined coefficient included in the optimal
solution.

It is important to note that in the third case, the kth subitem needs to be com-
bined with the optimal partial solution P that: (a) uses (at most) the first k − 1
subitems and space of at most S − sizeof(float); and (b) includes at least one
more subitem (i.e., other than k) from the corresponding ith combined coeffi-
cient. This second requirement results in what may be surprising observation:
The partial solution P is not necessarily optimal for our optimization problem
when using only the first k − 1 subitems and up to S − sizeof(float) units
of space. An example is shown in Table IV, which depicts just two coefficients
corresponding to a three-dimensional dataset with three measures. To keep
things simple, assume that the storage bound B is equal to the size of one tu-
ple augmented by a bitmap of three bits, and that each measure has a weight

3Some techniques, like encoding the bitmap within some coefficient coordinate(s) for small numbers
of measures, can help to increase the size of the space unit, thus decreasing the memory require-
ments of our DP tables. Still, such optimizations do not improve the asymptotic space complexity
of our problem.
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Table IV. Unexpected Optimal Solution Arises for Space Bound S1 + sizeof(float)

Candidate Coefficients
Coordinates Values
0 0 1 100 1 2
1 2 0 99 98 97

SubItems in Optimal Solution
Considered For Space Bound
Subitems S1 S1 + sizeof(float) S1 + 2sizeof(float)

First 1 1 1 1
First 2 1 1,2 1,2
First 3 1 1,3 1,2,3
First 4 1 1,3 1,2,3
First 5 1 4,5 4,5
First 6 1 4,5 4,5,6

of 1. Note that under this storage bound, it is obviously impossible to store two
coefficient values from different coefficients. Let S1 denote the space needed to
store a single coefficient value, along with the pertinent header information;
that is, S1 = H + sizeof(float). Now, consider the optimal solution for space
bound S1 + sizeof(float), when considering up to the first five subitems. It is
easy to see that at this point, the optimal solution is to store subitems 4 and 5
(both corresponding to the second combined coefficient); however, it is also easy
to see that subitem 4 is not part of any optimal solution involving only the first
four subitems (for any storage bound ≤ B), since subitem 1 can always be used
in its place to give a solution with larger benefit.

The preceding discussion basically shows that our optimization problem for
extended wavelet synopses basically violates the key principle of optimality for
conventional dynamic programming [Cormen et al. 1990], and requires us to
come up with a novel algorithmic solution. An important observation here is
that we need only store, for each possible subitem×space (k, S) combination,
a single suboptimal solution, namely, the best solution (for at most S units of
space and considering up to the kth subitem) which forces at least one subitem
of the combined coefficient corresponding to k to be included in the synopsis.
Our dynamic program employs an array FORCE[k, S] to tabulate such subopti-
mal solutions (for each subitem×space combination), in addition to the more
conventional OPT[k, S] DP array which tabulates the (partial) optimal solutions
to our problem (when using space ≤ S and considering the first k subitems).

Our DynProgL2 algorithm (depicted in Figure 3) computes entries for the
OPT[k, S] and FORCE[k, S] arrays (both of size (N · M ) × B) in a mutually recur-
sive manner. Each cell of these two arrays is comprised of two numeric fields:
(1) a “benefit” field recording the total benefit for the corresponding partial so-
lution, and (2) a “choice” field used to code the choice made by our dynamic
program when deciding the benefit of a cell, to be explained shortly (both fields
are necessary in order to retrace the actions of our algorithm when building
the optimal solution). DynProgL2 begins by initializing some entries for both
the OPT and FORCE arrays: Lines 1–3 are based on the fact that no coefficient
value can be stored in space less than H + sizeof(float). Similarly, the opti-
mal solution for space of at least H + sizeof(float) and considering only the
first subitem obviously only includes this subitem (Lines 4–6). DynProgL2 then
iteratively fills in the values for the remaining cells (Lines 7–17). For the OPT

array, the benefit for the optimal solution, using space ≤ S and considering up
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Fig. 3. The optimal DynProgL2 algorithm.

to the first k subitems, is computed as the best (i.e., maximum-benefit) choice
from the three cases described before (Lines 12–13). A similar choice is made
for the corresponding best solution for the FORCE array entries (Lines 14–15).
Note that some of the three cases are valid only if the current subitem satis-
fies some conditions, namely, that it corresponds to a coefficient value with a
measure index of at least two (i.e., j > 1). The “choice” field of our DP array
entries, which codes the choice made when determining the benefit of an entry,
is assigned a value of 2, 3, or 4 (respectively), depending on which of the three
aforementioned cases produced the optimal solution. Entries corresponding to
cases where no subitem can be stored in the specified space have a “choice” field
value of 1 (Line 3).

At the end, the total benefit for the optimal extended wavelet synopsis is that
achieved when considering all N ·M subitems and using (at most) B space units,
namely, OPT[N · M , B] benefit. We can build the optimal solution by retracing

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



18 • A. Deligiannakis et al.

the actions of DynProgL2, starting from cell [N · M , B] and moving on the basis
of the “choice” field of the current cell. More formally, our optimal synopsis
construction process starts by initializing the synopsis S to φ and, assuming
that (at some point) we are at cell [k, S], the action performed is determined
based on the value of this cell’s “choice” field, as follows: (1) choice = 1: end of
traversal; (2) choice = 2: move to cell [k−1, S] of the same array; (3) choice = 3:
add an extended wavelet coefficient containing the kth subitem to S, and move
to cell [k − 1, S − H − sizeof(float)] of the OPT array; and (4) choice = 4: add
the kth subitem to S (creating a new extended wavelet coefficient, if necessary),
and move to cell [k − 1, S − sizeof(float)] of the FORCE array.

Time and space complexity. The space requirements of our DynProgL2 algo-
rithm are essentially determined by the size of the OPT and FORCE arrays, which
is O(N M B). Given that the value of each cell is computed in constant O(1)
time for both of our DP arrays, the overall time complexity of DynProgL2 is also
O(N M B). Our reverse-traversal procedure for constructing the optimal ex-
tended wavelet synopsis takes O(N M ) time, since each step essentially checks
(in constant time) whether a subitem k belongs in the synopsis, and then pro-
ceeds to subitem k − 1.

3.2 GreedyL2: An Efficient, Provably Near-Optimal Approximation Algorithm

We now present a greedy solution to the optimization problem of Section 3.
Our algorithm, termed GreedyL2, is based on transforming our optimization
problem to a variant of the 0-1 Knapsack problem, and then selecting which
coefficient values to store based on a per-space benefit metric. To simplify the ex-
position, our development here assumes that the unit of storage space is equal
to the space needed to store a single coefficient value (i.e., sizeof(float)).
Once again, note that our GreedyL2 algorithm can be applied without any
modifications, independent of data dimensionality, since the increased dimen-
sionality simply affects the size of the header of any stored extended wavelet
coefficients.

Similar to the dynamic programming algorithm presented in the previous
section, GreedyL2 receives as input a set of candidate combined wavelet coeffi-
cients WA, a set of weights w, and a storage constraint B. Instead of considering
the benefit of each coefficient value individually, GreedyL2 considers at each step
the optimal benefit achieved by selecting a subset of k (1 ≤ k ≤ M ) coefficient
values (of the same combined coefficient) that have not already been stored.
It easy to see that the optimal selection includes nonstored coefficient values
corresponding to the k largest benefits: wj × (c∗

i j )
2, where wj is the measure

weight corresponding to the coefficient, and c∗
i j is the normalized coefficient

value. The storage space for these k values will be equal to H + k if no value
of this combined coefficient has been stored before, and k otherwise. GreedyL2

maintains a structure with all optimal sets of size k (1 ≤ k ≤ M ) of all com-
bined coefficients, and selects that set with the largest per-space benefit. The
coefficient values belonging to the selected set are stored, and the benefits of
optimal sets for the chosen combined coefficient have to be recalculated to only
consider values that have not already been stored.
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Fig. 4. The GreedyL2 algorithm.

More formally, for each input combined coefficient, our GreedyL2 algorithm
(depicted in Figure 4) first decides the sort order of its coefficient values based
on their weighted benefit (Lines 5–6). For each combined coefficient, we also
maintain the number of its coefficient values that have been selected for storage
in a Stored array, whose entries are initialized to zero at the beginning of the
algorithm (Line 7). Due to the way our algorithm is formulated, we do not need
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to remember which of the coefficient i’s values have been selected for storage,
since these will always be the ones with the Stored [i] maximum weighted
benefits. We then calculate the optimal benefits of sets containing k coefficient
values, 1 ≤ k ≤ M (Line 8). The maximum number of such sets is, at most
M , but not always equal to M , since we do not need to create any sets that
include any coefficient values with zero benefit. The space needed to store each
of these k sets is H +k. The per-space benefit of each set, along with its occupied
space, the number of coefficient values within this set, and the identifier of the
coefficient that it belongs to, are then inserted in a max-heap structure,4 where
its elements are ordered based on their per-space benefit. We chose to use such
a structure since each of the insert, delete, and finding-the-maximum-value
operations has logarithmic cost. However, any other data structure with similar
characteristics can be used in its place.

The algorithm then repeatedly (Lines 11–18) picks that set with the
maximum per-space benefit which can fit in the remaining space. The values
corresponding to this set are uniquely identified by the identifier field of the
corresponding combined coefficient (stored in the index field of each set), its
Stored variable, and the size of the chosen set. For the corresponding combined
coefficient of the selected set, the optimal benefits of its sets have to be recal-
culated to include only nonstored coefficient values. This coefficient’s previous
sets are then removed from the tree and the newly calculated ones inserted.
Note that the space required for newly inserted sets does not include the size
of the header, since this has already been taken into account. The entire pro-
cedure terminates when no set can be stored without violating the storage
constraint (SpaceLeft < 1). In order to create the output extended coefficients,
we simply have to parse the list of combined coefficients, and for any coefficient
that has a Stored[] value greater than 0, create an extended wavelet coeffi-
cient and store in this its Stored[] coefficient values with the largest weighted
benefits. The following theorem bounds the worst-case performance of our
algorithm.

THEOREM 1. The GreedyL2 algorithm has a guaranteed approximation ratio
bound of min{2, 1 + 1

B
H+M −1

}.

Time and space complexity. Each of the N input combined coefficients creates
at most M candidate sets. Therefore, the space for the max-heap is O(N M ).
For each combined coefficient, maintaining the sort order requires O(M ) space.
The size of the input combined coefficients is O(N (D + M )), making the overall
space complexity of the algorithm O(N (D + M )).

Determining the sort order for the values of each combined coefficient re-
quires time O(M log M ). Calculating the benefits of the sets produced by each
coefficient then takes only O(M ) time. The original construction of a max-heap
with O(N M ) elements can be done in O(N M ) time. Thus, the overall running

4The use of a max-heap structure, in contrast to the proposed AVL-tree used in the Deligiannakis
and Roussopoulos [2003a] paper, helps to trim a logarithmic factor from the initial construction
time of the algorithm. A min-heap structure was used by the authors of Guha et al. [2004] in an
improved version of this algorithm for streaming environments.
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time for the max-heap construction is O(N M log M ). Each time a set is cho-
sen for inclusion in the result, the search requires O(log(N M )) time. Thus, we
need to make O(M ) deletions from the max-heap, corresponding to all sets of
the chosen combined coefficient. Finding all such nodes on the tree requires
O(M ) time if they are connected by a cyclic list. Note that all the sets of the
same combined coefficient are created at the same time, thus making it easy
to create such a list. Each of the O(M ) insertion and deletion operations then
requires O(log(N M )) time. Since, at most, O( M×B

H+M ) sets can be selected (for
each extended wavelet coefficient, the smallest average space per stored co-
efficient value occurs when all the M coefficient values are stored), the total
time complexity should be O(N M log M + BM

H+M × M log(N M )). However, a
small complication arises because the algorithm may at some point repeatedly
select candidate sets that do not fit within the remaining space. Since at most
O(N M ) such sets may be selected and removed, the running time cost of this
step might dominate the algorithm’s running time. So, in this case, we allow the
algorithm to deviate from its behavior of removing that candidate set with the
maximum per-space benefit and instead scan the entire heap for that set with
the maximum per-space benefit that fits within the remaining space SpaceLeft.
Since the maximum value of the remaining space when this occurs must be
less than H + M , and the minimum size of each candidate set is 1, at most,
O(H + M ) steps with linear search cost may be incurred. This results in a total
running time complexity of O(N M (H + M ) + BM

H+M × M log(N M )).
Since the selection order of candidate sets is based on their per-space ben-

efit, for each combined coefficient, only that candidate set with the maximum
per-space benefit can be selected at each step. The only exception may occur
at the finalization phase of the algorithm, namely, if this candidate set does
not fit within the remaining synopsis space. By our analysis (Appendix A and
Deligiannakis and Roussopoulos [2003b]), the solution tracked by GreedyL2 is, in
fact, optimal when this first occurs for any selected candidate set. To further im-
prove the running time of the algorithm, we may ignore the small unused space
and thus, always only insert (at most) one candidate set for each combined co-
efficient, namely, that set with the maximum per-space benefit, since this is the
only one that may be selected for inclusion in the final solution. This reduces the
space of the max-heap to O(N ) and requires O(1) deletion and insertion opera-
tions for each chosen set, while maintaining the same tight approximation ratio
bound. Thus, we get an improved running time of O(N M log M + BM

H+M log N ).
In subsequent work, Guha et al. [2004] give an improved version of this algo-
rithm which: (1) further reduces the space requirements to O(B), and (2) can
work on streaming data (a more detailed discussion of Guha et al. [2004] can
be found in Section 6).

4. EXTENDED PROBABILISTIC WAVELET SYNOPSES
FOR RELATIVE ERROR

Unfortunately, conventional and extended wavelet synopses optimized for over-
all L2-error metrics (as described in Sections 2–3), may not always be the best
choices for approximate-query processing systems. As observed in the recent
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work of Garofalakis and Gibbons [2004], conventional L2-optimized wavelet
synopses suffer from several important problems, including the introduction
of severe bias in the data reconstruction and wide variance in the quality
of the data approximation, as well as the lack of nontrivial guarantees for
individual approximate answers. To address these shortcomings, their work
introduces probabilistic wavelet synopses, a novel approach for constructing
(single-measure) wavelet data summaries optimized for maximum relative-
error metrics in the approximate data reconstruction. Given the pitfalls and
shortcomings of synopses optimized for overall L2-errors, it is obviously im-
portant to extend the ideas of (relative-error optimized) probabilistic wavelet
synopses to the setting of multimeasure data and extended wavelet coefficients.
This turns out to be a challenging problem, mandating novel algorithmic solu-
tions (we also discuss the application of our ideas to deterministic relative-error
thresholding in Section 4.5). Before delving into the details of our approach, we
provide some necessary background material on (single-measure) probabilistic
wavelets [Garofalakis and Gibbons 2004] (due to space constraints, our de-
velopment here focuses primarily on the one-dimensional case; extensions to
multidimensional wavelets are described in the Electronic Appendix).

4.1 Probabilistic Wavelet Synopses for Single-Measure Data

Consider the wavelet-transform array WA containing wavelet coefficients for
an input data vector. Rather than deterministically retaining the largest co-
efficients (in absolute normalized value) in a data summary, a probabilistic
wavelet synopsis is constructed using a probabilistic thresholding process. In a
nutshell, the key idea is to assign each nonzero coefficient ci a fractional amount
of storage yi ∈ (0, 1], essentially representing the probability of retaining the
coefficient in the synopsis. A probabilistic wavelet synopsis is then built by
flipping independent, appropriately biased coins for each nonzero ci to decide
whether the coefficient will be represented in the synopsis (or assumed to be
zero). Given a set of fractional storage assignments { yi}, it is easy to see that
the expected size of the synopsis (over all possible coin-flip sequences) is simply
E[| synopsis |] = ∑

i|ci �=0 yi = ∑
i|ci �=0

ci
λi

.
Garofalakis and Gibbons [2004] propose several different algorithms for

building probabilistic wavelet synopses. The key, of course, is to select the co-
efficient fractional-storage assignment { yi} and the values to be retained in
the synopsis such that some desired error metric for the data approximation
is minimized, while not exceeding a prescribed space limit B for the synopsis
(i.e., E[|synopsis|] ≤ B). They propose two winning strategies based on dy-
namic programming (DP) recurrences over the Haar error-tree structure for
minimizing appropriate probabilistic error metrics. The rationale is that these
metrics are directly related to the maximum relative-error (with an appropri-
ate sanity bound S)5 in the approximation of individual data values based on
the synopsis. In other words, their schemes try to (probabilistically) control

5The role of the sanity bound is to ensure that relative-error numbers are not unduly dominated
by small data values [Garofalakis and Gibbons 2004; Vitter and Wang 1999].
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the quantity maxi{ |d̂i−di |
max{di ,S} }, where d̂i denotes the data value reconstructed

based on the wavelet synopsis. Note, of course, that d̂i is a random variable,
defined as the ±1 summation of all (independent) random coefficient selections
on path(di). Bounding the maximum relative-error in the approximation also al-
lows meaningful error guarantees to be provided on reconstructed data values
[Garofalakis and Gibbons 2004].

The first algorithm of Garofalakis and Gibbons [2004], termed MinRelVar, in-
sists on unbiased reconstruction for individual data values (i.e., E[d̂i] = di)
by requiring an unbiased approximation for each coefficient (again, in our dis-
cussion here, expectation is always defined over the space of possible coin-flip
sequences). This is achieved by independently rounding each nonzero coefficient
ci either up to ci

yi
(with probability yi) or down to zero. This implies that the

variance for each coefficient ci �= 0 in the probabilistic synopsis is Var(i, yi) =
1− yi

yi
c2

i . The MinRelVar dynamic program then tries to minimize the maximum
normalized standard error (NSE) across all reconstructed values in the data
domain. Their second algorithm, termed MinRelBias, relaxes the unbiasedness
requirement, thus allowing the actual coefficient values ci to be retained in
the synopsis (with probability yi). The expectation for each coefficient ci in the
synopsis hence becomes ci · yi, which implies a bias of ci(1 − yi) contributed
to all data values under ci ’s subtree. The MinRelBias DP algorithm attempts to
minimize the maximum normalized bias in the data reconstruction.6

As an example, Eq. (1) depicts the key MinRelVar DP recurrence for minimizing
the maximum NSE, defined as

max
i

NSE(d̂i) = max
i

√
Var(d̂i)

max{|di|, S} ,

where Var(d̂i) = ∑
c j ∈path(di ) Var( j , y j ). Here, R[i, B] denotes the minimum

value of the squared NSE (i.e., NSE2) among all data values in the subtree of
the error tree rooted at coefficient ci, assuming that a space budget of B and
Norm(i) = max{d2

mini
, S2} (where dmini is the minimum data value under ci ’s

subtree) is a normalization term for this subtree (indices 2i and 2i + 1 in the
recurrence correspond to the left and right child (respectively) of ci in the error-
tree structure (Figure 1)). Intuitively, the DP recurrence in Eq. (1) states that for
a given space budget B at ci, the optimal fractional-storage allotments { yk} and
corresponding maximum NSE2 are fixed by minimizing the larger of the costs for
paths via ci ’s two child subtrees (including the root in all paths), where the cost
for a path via a subtree is the sum of: (1) the variance penalty incurred at ci it-
self, assuming a setting of yi divided by the normalization term for this subtree,
and (2) the optimal cost for the subtree, assuming the given space budget. This
minimization, of course, is over all possible values of yi and (given a setting of
yi) over all possible allotments of the remaining B − yi space “units” amongst
the two child subtrees of ci. Of course, if ci = 0, then no space budget needs

6As with all randomized estimators, error is due to two key factors, namely, bias and variance. While
unbiasedness is typically a desirable estimator feature, slightly biased estimators with smaller
variance may actually perform better in practice [Cochran 1977].
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to be allocated to node i, which results in the simpler recurrence in the second
clause of Eq. (1). Finally, data-value nodes (characterized by indices i ≥ N , see
Figure 1) cost no space and incur no cost, and the “otherwise” clause handles the
case where we have a nonzero coefficient, but zero budget (ci �= 0 and B = 0).

R[i, B] =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
yi∈(0,min{1,B}];
bL∈[0,B− yi ]

⎧⎨
⎩max

⎧⎨
⎩

Var(i, yi )
Norm(2i)

+ R[2i, bL],

Var(i, yi )
Norm(2i+1)

+ R[2i + 1, B − yi − bL]

⎫⎬
⎭

⎫⎬
⎭

if i < N ,
ci �= 0,

and B > 0

minbL∈[0,B]
{
max{R[2i, bL], R[2i + 1, B − bL]}} if i < N

and ci = 0
0 if i ≥ N
∞ otherwise

(1)

The DP recurrence in Eq. (1) characterizes the optimal solution to the max-
imum NSE minimization problem for the case of continuous fractional-storage
allotments yi ∈ (0, 1] (modulo certain technical conditions that may require
small “perturbations” of zero coefficients) [Garofalakis and Gibbons 2004]. A
similar DP recurrence can also be given for the maximum normalized bias met-
ric. The authors’ MinRelVar and MinRelBias algorithms then proceed by quantizing
the solution space; that is, they assume that the storage allotment variables yi

and bL in Eq. (1) take values from a discrete set of choices corresponding to
integer multiples of 1/q, where q > 1 is an input integer parameter to the
algorithms (larger values of q imply results closer to the optimal, continuous
solution). The running time of their (quantized) MinRelVar and MinRelBias algo-
rithms is O(Nq2 B log(qB)) with an overall space requirement of O(NqB) (and
an in-memory working-set size of O(qB log N )); furthermore, their techniques
also naturally extend to multidimensional data and wavelets, with a reason-
able increase in time and space complexity [Garofalakis and Gibbons 2004].
Experimental results in Garofalakis and Gibbons [2004] have demonstrated
the superiority of MinRelVar and MinRelBias probabilistic synopses as an approx-
imate query answering tool over conventional wavelet synopses.

4.2 Extended Probabilistic Wavelets for Multiple Measures: Problem Formulation

In what follows, we introduce algorithms for building effective probabilistic syn-
opses comprising extended wavelet coefficients for multimeasure datasets. As
in Garofalakis and Gibbons [2004], our primary focus is on synopses that mini-
mize the maximum relative-error (with appropriate sanity bounds) in the data
reconstruction.7 Employing the more complex extended-coefficient format en-
ables effective space utilization, but at the same time, significantly increases the
complexity of the probabilistic thresholding process, rendering the DP schemes
of Garofalakis and Gibbons [2004] inapplicable in our problem setting.

The problem with extended coefficients. In a nutshell, the key difficulty in
probabilistic thresholding for extended wavelet coefficients stems from the com-
mon header space (i.e., coordinates + bitmap) for all stored coefficient values.

7Our techniques also naturally extend to other approximation-error metrics, including maximum
weighted relative error and maximum absolute error.
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The ability to share this header is the main benefit of the extended-coefficient
storage format, but at the same time, this sharing of storage introduces non-
trivial dependencies in the thresholding process across coefficients for different
measures, and implies that the selection probabilities for such coefficients are
no longer independent. More formally, consider a dataset with M measures,
and let ci j denote the Haar coefficient value corresponding to the j th measure
at coordinate i, and let yi j denote the retention probability (i.e., fractional stor-
age) for ci j in the synopsis. Also, let ECi be the extended wavelet coefficient
at coordinate i, and let H denote the space required by an extended-coefficient
header (in our discussion, the unit of space is set as equal to the space required
to store a single coefficient value (e.g., sizeof(float)), and all space require-
ments are expressed in terms of this unit). The expected space requirement of
extended coefficient ECi can be computed as

E[|ECi|] = sp( yi1, . . . , yiM ) =
∑

j |ci j �=0

yi j + H ×
(

1 −
M∏

j=1

(1 − yi j )

)
. (2)

The first summand in the previous formula captures the expected space for all
(nonzero) individual coefficient values at coordinate i. The second summand
captures the expected header overhead. To see this, note that if at least one
coefficient value is stored, then a header space of H must also be allotted. And,
of course, the probability of storing ≥ 1 coefficient values is just one minus the
probability that none of the coefficients are stored.

Eq. (2) clearly demonstrates that the sharing of header space amongst the
individual coefficient values ci j for different measures creates a fairly complex
dependency of the overall extended-coefficient space requirement on the indi-
vidual retention probabilities yi j . Given a space budget B for the wavelet syn-
opsis, exploiting header-space sharing and this storage dependency across dif-
ferent measures is crucial for achieving effective storage utilization in the final
synopsis. Essentially, this implies that our probabilistic thresholding strategies
for allocating synopsis space cannot operate on each measure individually; in-
stead, space allocation must explicitly account for storage dependencies across
groups of coefficient values (corresponding to different measures). This require-
ment significantly complicates the design of probabilistic thresholding schemes
for extended wavelet coefficients.

Problem statement and approach. Our goal is to minimize the maximum rela-
tive reconstruction error for each individual data value; this would also allow us
to provide meaningful guarantees on the accuracy of each reconstructed value.
More formally, we aim to produce estimates d̂i j of the data values dij for each co-
ordinate i, and measure index j such that |d̂i j −dij | ≤ ε ·max{|dij |, S j } for given
per-measure sanity bounds S j > 0, where the error bound ε > 0 is minimized
subject to the given space budget for the synopsis. Since probabilistic threshold-
ing implies that d̂i j is again a random variable, and using an argument based
on the Chebyshev bound [Garofalakis and Gibbons 2004], it is easy to see that
minimizing the overall NSE across all measures guarantees a maximum relative-
error bound which is satisfied with high probability. Thus, we can define our
probabilistic thresholding problem for extended wavelet coefficients as follows.
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Maximum NSE Minimization for Extended Coefficients. Find the fractional-
storage assignments yi j for coefficients ci j that minimize the maximum NSE for
each reconstructed data value across all measures; that is,

Minimize max
i∈{0,...,N−1}

j∈{1,...,M }

√
Var(d̂i j )

max{|dij |, S j } (3)

subject to the constraints 0 < yi j ≤ 1 for all nonzero ci j and E[|synopsis|] =∑
i E[|ECi|] ≤ B, where the expected size E[|ECi|] of each extended coefficient

is given by Eq. (2).
We focus on the preceding maximum NSE minimization problem for mul-

timeasure data in the remainder of this section; we do note, however,
that our techniques and algorithms also naturally extend to multimea-
sure variants of the maximum normalized-bias minimization problems of
Garofalakis and Gibbons [2004]. Instead of calculating in all the presented for-
mulas/recurrences the variance of a coefficient ci based on its retention proba-
bility yi (as in the maximum NSE minimization problem), this extension requires
computing the corresponding maximum normalized bias introduced by coeffi-
cient ci, which is estimated as |ci |×(1− yi )

max{|di |,S} . This is the only required modification,
along with retaining the actual value of a coefficient ci in the synopsis (instead
of the “rounded-up” ci

yi
) [Garofalakis and Gibbons 2004].

Our algorithms exploit both the error-tree structure of the Haar decompo-
sition and the aforementioned storage dependencies (Eq. (2)) for extended co-
efficients in order to intelligently assign fractional storage { yi j } to nonzero co-
efficients within the overall space-budget constraint B. As in Garofalakis and
Gibbons [2004], our schemes also rely on quantizing the space allotments to
integer multiples of 1/q, where q > 1 is an integer input parameter; that is,
we modify the constraint 0 < yi j ≤ 1 to yi j ∈ { 1

q
, 2

q
, . . . , 1} in the earlier prob-

lem formulation (remember that our space unit corresponds to the size of a
coefficient value). Our first algorithm is based on an exact, generalized DP for-
mulation that extends earlier schemes for the single-measure case [Garofalakis
and Gibbons 2004] to the multimeasure setting; unfortunately, this generaliza-
tion comes at the cost of a significant increase in computational complexity
(as our empirical study also clearly shows). Our second algorithm is a very
fast, greedy approximation heuristic (termed GreedyRel) for probabilistic multi-
measure thresholding; our results show that GreedyRel consistently provides
near-optimal performance and can easily scale to problem sizes that are sim-
ply unattainable for DP-based solutions (even for the simpler single-measure
case!).

4.3 PODPRel: An Optimal Partial-Order Dynamic Programming Solution

Consider an input dataset with M measures. At a high level, our maximum
NSE minimization problem for extended wavelet coefficients (Section 4.2) can be
seen as a generalization of the single-measure NSE minimization setting of Garo-
falakis and Gibbons [2004], where our final goal is to minimize the maximum
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component of an M-component vector of NSEs (i.e., those NSE values for the ap-
proximation of each individual measure). Of course, the key complication here is
that for a given synopsis space-budget, these M per-measure NSE values are not
independent and cannot optimized individually; this is, again, due to intricate
storage dependencies arising between the approximation at different measures
because of shared header space (Eq. (2)). As already discussed in Section 4.2,
it is crucial that our thresholding algorithms are able to exploit these depen-
dencies to ensure effective synopsis-space utilization. This essentially implies
that our thresholding schemes have to treat these M -component NSE vectors as
a unit during the optimization process.

Consider once again the DP recurrence in Eq. (1) for the single-measure
case. Remember that the recurrence computes in R[i, B] the minimum value
of the NSE2 among all data values under coefficient i in the error tree, assuming
a space budget of B. Based on our previous discussion, extending the formu-
lation to the case of multiple measures requires that we generalize R[i, B] to
denote an M -component vector of NSE2 values corresponding to all M measures
for data values in the subtree rooted at the coefficient with coordinate i, and
assuming a total space of B allotted to extended coefficients in this subtree. We
similarly generalize Var and Norm in Eq. (1) to the M -component vectors of per-
measure variances Var(i, yi j ) and normalization values Norm(i, j ) at extended
coefficient i (for a total allotment of yi); also, addition and division operators
denote corresponding component-wise operations on the operand vectors. As in
the single-measure case, we can simplify the minimization problem of Eq. (3)
by normalizing the variance value at each node with the normalization terms
Norm(i, j ) = max{d2

mini j
, S2

j } of its subtrees. Thus, we compute the j th compo-
nent of the R[i, B] vector at node i for a given retention probability yi j of the
ci j coefficient value, and solutions R[2i, b2i] and R[2i +1, b2i+1] from the node’s
left and right subtrees as

R[i, B] j = max

⎧⎨
⎩

Var(i, yi j )
Norm(2i, j )

+ R[2i, b2i] j

Var(i, yi j )
Norm(2i+1, j )

+ R[2i + 1, b2i+1] j

.

The computation of R[i, B] at node i iterates over all fractional storage M -tuples
( yi1, . . . , yiM ) ∈ {0, 1

q
, 2

q
, . . . , 1}M and subtree space allotments such that

b2i + b2i+1+ sp( yi1, . . . , yiM ) = B, where sp( yi1, . . . , yiM ) denotes the expected
space requirements of the extended coefficient at node i for the given fractional
storage M -tuple (Eq. (2)). Our goal, of course, is to minimize the maximum
component of the vector R[root, B]; that is, minimize maxk=1,...,M {R[root, B]k}.

Unfortunately, this generalization of R[i, B] to an M -component vector also
implies that (so as to ensure optimality) the bottom-up computation of the DP
recurrence can no longer afford to maintain just the locally-optimal partial so-
lution for each subtree (as in the single-measure case). In other words, merely
tabulating the R[i, B] vector with the minimum max-component for each in-
ternal tree node and each possible space allotment is no longer sufficient; more
information needs to be maintained and explored during the bottom-up com-
putation.
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Consider a simple scenario with M = 2, and (slightly abusing notation) let
R[2i, B− y] = [2.5, 2] and R ′[2i, B− y] = [1, 3] denote two possible NSE2 vectors
for space B − y at node 2i (to simplify the example, assume that the right child
of node i also gives rise to the exact same solution vectors R[] and R ′[]). Finally,
let the normalized variance vector for the coefficient values at node i, assuming
a total space of y , be Var(i, y)

Norm(2i)
= Var(i, y)

Norm(2i+1)
= [2, 0.5]. It is easy to see that

in this case, even though R ′[2i, B − y] is locally suboptimal at node 2i (since
its maximum component is larger than that of R[]), it gives a superior overall
solution of [1 + 2, 3 + 0.5] = [3, 3.5] at node i when combined with i’s local
variance vector.

The key here is that unlike conventional dynamic programming, using an
M -component vector R[i, B] to capture the per-measure squared NSEs corre-
sponding to different partial solutions in the DP computation also means that
the conventional principle of optimality based on a total ordering of partial so-
lutions [Cormen et al. 1990] is no longer applicable. Thus, locally suboptimal
R[i, B]’s (i.e., with large maximum component NSE2s) cannot be safely pruned,
since they may in fact be part of an optimal solution higher up in the tree.
However, there does exist a safe pruning criterion based on a partial ordering
of the R[i, B] vectors defined through the M -component less-than operator �M ,
which is defined over M -component vectors u, v as follows:

u �M v if and only if ui ≤ vi, ∀i ∈ {1, . . . , M }.
For a given coordinate i and space allotment B, we say that a partial solution
R ′[i, B] is covered by another partial solution R[i, B] if and only if R[i, B] �M

R ′[i, B]: It is easy to see that in this case, R ′[i, B] can be safely pruned from the
set of partial solutions for the (i, B) combination, since intuitively, R[i, B] can
always be used in its place to give an overall solution of at least as good quality.

Our proposed partial-order dynamic programming (PODP) solution to the
maximum NSE minimization problem for extended coefficients (termed POD-

PRel) generalizes the corresponding DP formulation in Garofalakis and Gibbons
[2004] based on the preceding observations.8 In other words, our partial,
bottom-up computed solutions R[i, B] are M -component vectors of per-measure
NSE2 values for coefficient subtrees, and such partial solutions are only pruned
based on the �M partial order. Thus, for each coordinate-space combination
(i, B), our PODPRel algorithm essentially tabulates a collection R[i, B] of in-
comparable solutions that represent the “boundary points” of �M ,

R[i, B] = {R[i, B] : for any other R ′[i, B] ∈ R[i, B],
R[i, b] ��M R ′[i, B] and R ′[i, b] ��M R[i, B]}.

Of course, for each allotment of space B to the coefficient subtree rooted at
node i, PODPRel needs to iterate over all partial solutions computed in R[i, B]
so as to compute the full set of (incomparable) partial solutions for node i’s
parent in the tree. Similarly, at leaves or intermediate root nodes, we consider

8Ganguly et al. [1992] also discuss PODP in a completely different context, namely, designing a
System-R-style algorithm for optimizing join orders in parallel database systems.
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all possible space allotments { yi j } to each individual measure and estimate the
overall space requirements of the extended coefficient using Eq. (2).

The main drawback of our PODP-based solution is a dramatic increase in
time and space complexity compared to the single-measure case. PODPRel relies
on a much more strict, partial-order criterion for pruning suboptimal solutions,
which implies that the sets of incomparable partial solutionsR[i, B] which need
to be stored and explored during the bottom-up computation can become very
large. For instance, in the simple case of a leaf coefficient, it is easy to see that
the number of options to consider can be as high as O(qM ), compared to only
O(q) in the single-measure case; furthermore, this number of possibilities can
grow extremely fast (in the worst case, exponentially) as partial solutions are
combined up the error tree.

4.4 GreedyRel: An Efficient, Greedy Approximation Heuristic

Given the very high running-time and space complexities of our PODP-based
solution, we seek to devise an effective approximation algorithm to our max-
imum NSE minimization problem for extended coefficients. In this section, we
propose a very efficient, greedy heuristic algorithm (termed GreedyRel) for this
optimization problem. Briefly, GreedyRel tries to exploit some of the properties of
dynamic programming solutions, but allocates the synopsis space to extended
coefficients greedily based on the idea of marginal error-gains. The key idea
here is to try, at each step, to allocate additional space to that subset of extended
wavelet coefficients in the error tree which results in the largest reduction in
the target error metric (i.e., maximum NSE2) per unit of space used.

Our GreedyRel algorithm relies on three basic operations: (1) estimating the
maximum per-measure NSE2 values at any node of the error tree; (2) estimating
the best marginal error-gain for any subtree by identifying that subset of coeffi-
cients in the subtree which are expected to give the largest per-space reduction
in the maximum NSE2; and (3) allocating additional synopsis space to the best
overall subset of extended coefficients (in the entire error tree). We describe
these three operations in detail in the remainder of this section. Consider a
step of our GreedyRel algorithm, and let yi j denote the currently assigned re-
tention probability (i.e., fractional storage) for each individual coefficient ci j

(i.e., at coordinate i for the j th measure); also, let Tij denote the error subtree
(for the j th measure) rooted at ci j .

Estimating maximum NSE2 at error-tree nodes. In order to determine the
potential reduction in the maximum squared NSE due to extra space, GreedyRel

first needs to obtain an estimate for the current maximum NSE2 at any error-
tree node. GreedyRel computes an estimated maximum NSE2 G[i, j ] over any data
value for the j th measure in the Tij subtree, using the recurrence

G[i, j ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎨
⎪⎪⎩

Var(ci j , yi j )

Norm(2i, j )
+ G[2i, j ]

Var(ci j , yi j )

Norm(2i+1, j )
+ G[2i + 1, j ]

if i < N

0 if i ≥ N .
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The preceding formula is similar to the DP recurrence for computing R[i, B] in
Eq. (1): The estimated maximum NSE2 value is the maximum of two costs cal-
culated for the node’s two child subtrees, where each cost sums the estimated
maximum NSE2 of the subtree and the node’s variance divided by the subtree
normalization term. Note, however, that while Eq. (1) is exact for the maximum
squared NSE in the optimal, continuous solution for single-measure data [Garo-
falakis and Gibbons 2004], the aforementioned recurrence is only meant to
provide an easy-to-compute estimate for a node’s maximum NSE2 (under a given
space allotment) that GreedyRel can use in its computation.

Estimating the best marginal error-gain for subtrees. Given an error sub-
tree Tij (for the j th measure), our GreedyRel algorithm computes a subset
potSet[i, j ] of those coefficient values in Tij which, when allotted additional
space quanta, are estimated to provide the largest per-space reduction of the
maximum squared NSE over all data values in the Tij subtree (remember that
our algorithms allocate the synopsis space-budget in space quanta of 1/q, where
q > 1). Let G[i, j ] be the current estimated maximum NSE2 for Tij (as described
before), and let Gpot[i, j ] denote the potential estimated maximum NSE2 for
Tij , assuming that a (minimal) additional space of 1/q is allotted to all coef-
ficient values in potSet[i, j ]. Also, let potSpace[i, j ] denote the increase in the
overall synopsis size, that is, the cumulative increase in the space for the corre-
sponding extended coefficients when allocating the extra space to the coefficient
values in potSet[i, j ]. We now describe how our GreedyRel algorithm computes
potSpace[i, j ], and how the best error-gain subsets potSet[i, j ] are estimated
through the underlying error-tree structure.

Consider a coefficient value ckj ∈ potSet[i, j ]. Based on Eq. (2), it is easy
to see that an increase of δ ykj in the retention probability of ckj results in
an increase in the expected space requirement E[|ECk|] of the corresponding
extended coefficient ECk (and thus, the overall expected synopsis size) of

δ j (E[|ECk|], δ ykj ) = δ ykj · (1 + H ×
∏
p�= j

(1 − ykp)). (4)

The total extra space potSpace[i, j ] for all coefficient values in potSet[i, j ] can be
obtained by adding the results of Eq. (4) for each of these values (with δ ykj =
1
q
); that is,

potSpace[i, j ] =
∑

ckj ∈potSet[i, j ]

δ j (E[|ECk|], 1
q

).

The marginal error-gain for potSet[i, j ] is then simply estimated as
gain(potSet[i, j ]) = (G[i, j ] − Gpot[i, j ])/ potSpace[i, j ].

To estimate the potSet[i, j ] sets and the corresponding Gpot[i, j ]) (and gain())
values at each node, GreedyRel performs a bottom-up computation over the error-
tree structure. For a leaf coefficient ci j , the only possible choice is potSet[i, j ] =
{ci j }, which can result in a reduction in the maximum NSE2 if ci j �= 0 and yi j < 1
(otherwise, the variance of the coefficient is already 0 and can be safely ignored);
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in this case, the new maximum NSE2 at ci j is simply Gpot[i, j ] = Var(ci j , yi j + 1
q )

Norm(i, j )
.9

For a nonleaf coefficient ci j , GreedyRel considers three distinct cases of form-
ing potSet[i, j ] and selects the one resulting in the largest marginal error-gain
estimate: (1) potSet[i, j ] = {ci j } (i.e., select only ci j for additional storage); (2)
potSet[i, j ] = potSet[k, j ], where k ∈ {2i, 2i + 1} is such that G[i, j ] = G[k, j ]+
Var(ci j , yi j )/Norm(k, j ) (i.e., select that potSet from the child subtree whose
estimated maximum NSE2 determines the current maximum NSE2 estimate at
ci j ); and (3) potSet[i, j ] = potSet[2i, j ]∪ potSet[2i + 1, j ] (i.e., select the union of
the potSets from both child subtrees). Among the aforementioned three choices,
GreedyRel selects the one resulting in the largest value for gain(potSet[i, j ]), and
records the choice made for coefficient ci j (1, 2, or 3) in a variable choicei j .10 In
order to estimate gain(potSet[i, j ]) for each choice, GreedyRel uses the following
estimates for the new maximum NSE2 Gpot[i, j ] at ci j (index k is defined as in
case (2), described earlier, and l = {2i, 2i + 1}− {k}):

Gpot[i, j ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎨
⎪⎩

Var(ci j , yi j + 1
q )

Norm(2i, j )
+ G[2i, j ]

Var(ci j , yi j + 1
q )

Norm(2i+1, j )
+ G[2i + 1, j ]

choicei j = 1

max

⎧⎨
⎩

Var(ci j , yi j )
Norm(k, j )

+ Gpot[k, j ]

Var(ci j , yi j )
Norm(l , j )

+ G[l , j ]
choicei j = 2

max

⎧⎨
⎩

Var(ci j , yi j )
Norm(2i, j )

+ Gpot[2i, j ]

Var(ci j , yi j )
Norm(2i+1, j )

+ Gpot[2i + 1, j ]
choicei j = 3

As an example, consider the scenario depicted in Figure 5 for M = 2. The figure
shows, for each of the children of node i, the computed G, Gpot, and potSpace

values, along with the value of G and the current normalized variance for node i.
The three cases of forming potSet for each measure at node i are enumerated, the
corresponding potential reductions (Diff) in the estimated maximum NSE2 value
for each measure are calculated, and that choice which results in the largest
per-space reduction is selected for each measure. This figure also depicts why it
is important to simultaneously increase the retention probabilities of more than
one coefficient value. At any node i where the calculated G values through its
children are the same or differ only slightly, for some measure j (as is the case
with measure 2 in our example), then any individual assignment of additional
space to a coefficient value of that measure below node i would only result in
either zero or very small marginal gains, and would therefore not be selected,
regardless of how much it would reduce the maximum NSE2 value through its

9As in Garofalakis and Gibbons [2004], in our implementation, we actually cap the contribution
of coefficient ci j to the overall variance at c2

i j . This essentially implies (see Section 2) that we only
need to consider nonzero allotments yi j > 1/2 to coefficient ci j .
10It is easy to see that combining the root node ci j with one or both of its child potSets cannot have
better marginal error-gain than the best of the three options we consider.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



32 • A. Deligiannakis et al.

Fig. 5. Example scenario for the GreedyRel algorithm.

subtree. This happens because the estimated value of G[i, j ] through the other
subtree would remain the same. Note that in single-measure datasets, the value
of G through both subtrees is the same in the optimal solution [Garofalakis and
Gibbons 2004], implying that the preceding situation is expected to occur very
frequently.

An important point to note is that GreedyRel does not need to store the coef-
ficient sets potSet[i, j ] at each error-tree node. These sets can be reconstructed
on-the-fly by traversing the error-tree structure, examining the value of the
choicei j variable at each node ci j , and continuing along the appropriate sub-
trees of the node until we reach nodes with choicei j = 1.

Distributing the available synopsis space. After completing the aforemen-
tioned steps, our GreedyRel algorithm has computed the estimated current and
potential maximum NSE2 values G[0, j ] and Gpot[0, j ] (along with the corre-
sponding potSet and potSpace) at the root coefficient (node 0) of the error tree,
for each data measure j . Since our overall objective is to minimize the maxi-
mum squared NSE among all measures over the entire domain, GreedyRel selects,
at each step, the measure jmax with the maximum estimated NSE2 value at the
root node (i.e., jmax = arg max j {G[0, j ]}), and proceeds to allocate additional
space of potSpace[0, jmax] to the coefficients in potSet[0, jmax]. This is done in
a recursive, top-down traversal of the error tree, starting from the root node
and proceeding as follows (i denotes the current node index): (1) If choicei jmax =
1, set yi jmax := yi jmax+ 1

q
; (2) if choicei jmax = 2, then recurse to the child sub-

tree Tk , k ∈ {2i, 2i + 1} through which the maximum NSE2 estimate G[i, jmax]
is computed at node i; and (3) if choicei jmax = 3, then recurse to both child
subtrees T2i and T2i+1; furthermore, after each of the previous steps, compute
the new values for G[i, jmax], Gpot[i, jmax], potSpace[i, jmax], and choicei jmax at
node i.

A pseudocode description of our GreedyRel algorithm is depicted in Figure 6.
Note that in later steps of the algorithm, the available synopsis space may
become smaller than potSpace[i, jmax]; in this case, rather than recursing on
both child subtrees of a node (when choicei jmax = 2), GreedyRel first recurses
on that child causing the maximum estimated squared NSE, and then recurses
on the other child with any remaining space (Lines 12–16 of traverse).
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Fig. 6. The GreedyRel algorithm.

Time and space complexity. For each of the N error-tree nodes, GreedyRel

maintains the variables G[i, j ], Gpot[i, j ], potSpace[i, j ], and choicei j . Thus, the
space requirements per node are O(M ), resulting in a total space complexity of
O(N M ).

In the bottom-up initialization phase (Lines 1–4), GreedyRel computes, for
each error-tree node, the values of the G[i, j ], Gpot[i, j ], potSpace[i, j ], and
choicei j variables (for each measure j ). Each of these O(M ) calculations can
be done in O(1) time, making the total cost of the initialization phase O(N M ).
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Then, note that each time GreedyRel allocates space to a set of K coefficients,
the allocated space is ≥ K × 1/q (see Eq. (4)). To reach these K coefficients,
GreedyRel traverses exactly K paths of maximum length O(log N ). For each
visited node and just for the selected measure jmax (chosen at the root), we need
to compute the new values of G, Gpot, potSpace, and choice, which requires O(1)
time. Finding the measure jmax with the maximum estimated NSE2 value at the
root requires time O(log M ).11 Thus, overall, GreedyRel distributes space ≥ K ×
1/q in time O(K log N+ log M ), making the amortized time per-space quantum
1/q equal to O(log N+ log M/K ) = O(log(N M )). Since the total number of such
quanta that we need to distribute is Bq, the overall running time complexity
of GreedyRel is O(N M+ Bq log(N M )).

4.5 Discussion: Deterministic Relative-Error Thresholding

In order to avoid the potential pitfalls of probabilistic thresholding schemes
(e.g., “bad” coin-flip sequences), recently, Garofalakis and Kumar [2005] have
proposed optimal deterministic thresholding algorithms for relative-error met-
rics. Their key observation is that while such error measures do not have the
simple monotonic/additive structure of probabilistic NSE2 over the coefficient
error-tree, an optimal deterministic synopsis can be constructed using a novel
DP formulation which also considers choices made at ancestors of the current
node. More specifically, the basic idea is to condition the optimal error value
for a subtree not only on the root node of the subtree ci and the amount B
of synopsis storage allotted (Eq. (1)), but also on the subset of coefficients S
selected on the path from the error-tree root to node ci (i.e., considering all pos-
sible S ⊆ path(ci)). Since the depth of the error tree is O(log N ), it is possible to
tabulate all such possible selections while retaining an O(N 2) running time for
the DP algorithm (for one-dimensional data) [Garofalakis and Kumar 2005].

It is not difficult to see that similar ideas can also be applied to our PODP
formulation (Section 4.3) to give a deterministic maximum relative-error min-
imization scheme for M -measure data. Since our objective is still the maxi-
mum over an M -component vector of per-measure maximum relative errors,
as in Section 4.3, our deterministic algorithm cannot prune locally-suboptimal
partial solutions and needs to tabulate a (potentially large) collection of in-
comparable solutions based on the M -component less-than partial order �M at
each node. Thus, the fundamental complexity issues of the PODP formulation
remain in the deterministic scheme. In addition, conditioning on the coeffi-
cient selections on the path to the current error-tree node in order to produce
a deterministic PODP recurrence only exacerbates the problem: Node i now
must tabulate a collection of incomparable solutions R[i, B, S] for each possi-
ble selection S of extended coefficients on path(ci). Since there are a total of 2M

possible choices at each ancestor node (any subset of up to M nonzero coeffi-
cients), this implies that the space/time complexities of the deterministic PODP
formulation increase by a multiplicative factor of 2M ·O(log N ) = O(N M ), essen-
tially rendering such a deterministic solution unusable for any realistic problem
sizes.

11Just for the root node, we may store the G[0, j ] values in a heap.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



Extended Wavelets for Multiple Measures • 35

The complexity of conditioning on ancestor-coefficient choices also explodes
when extending the optimal DP formulation to multidimensional data (even
for the single-measure case [Garofalakis and Kumar 2005]). Ideas from the ap-
proximate “sparse” DP schemes proposed in Garofalakis and Kumar [2005] can
potentially be employed to limit the search space of our multimeasure deter-
ministic PODP scheme at the cost of an approximation-error bound; still, the
issue of maintaining and exploring multiple incomparable solutions at each
node remains. Designing fast, heuristic algorithms, for instance, by extending
the recently proposed greedy heuristics of Karras and Mamoulis [2005] to the
multimeasure case is another possibility. In general, the problem of designing
practical, multimeasure deterministic thresholding schemes for relative-error
metrics is complex and left open as an interesting area for future work.

5. EXPERIMENTAL STUDY

In this section, we present an extensive experimental study of our proposed
algorithms for constructing wavelet synopses over datasets with multiple mea-
sures. Besides validating the effectiveness of our extended wavelet coefficient
approach against the existing Individual and Combined schemes, one of the
main objectives of our study was to evaluate the accuracy and scalability of our
proposed GreedyL2 and GreedyRel algorithms over several real-life and synthetic
multimeasure datasets. The main findings of our study can be summarized as
follows.

—Highly scalable solutions: Our GreedyL2 and GreedyRel algorithms provide fast
and highly scalable solutions for constructing conventional and probabilistic
wavelet synopses over large multimeasure datasets. Unlike earlier schemes
(and the DynProgL2 and PODPRel algorithms), the GreedyRel and GreedyL2 algo-
rithms exhibit a linear dependency on the domain size. Moreover, for proba-
bilistic wavelet synopses, the running time and space requirements of earlier
techniques yield our GreedyRel algorithm as the only viable solution, even for
the single-measure case, for large real-life datasets.

—Near-optimal results: The GreedyL2 and GreedyRel algorithms consistently
provide near-optimal solutions when compared to DynProgL2 and PODPRel (re-
spectively), demonstrating that they constitute efficient techniques for con-
structing accurate conventional and probabilistic synopses over large multi-
measure datasets.

—Improved accuracy for individual reconstructed answers through the use of
extended wavelet coefficients: Compared to earlier approaches that operate
on each measure individually, our GreedyL2 and GreedyRel algorithms signifi-
cantly reduce the weighted sum-squared and maximum relative-error of the
approximation. These improvements are often by a factor of two–three, but
in many cases, we also observe up to seven times smaller errors than the clos-
est competitive technique. The improvements in the obtained accuracy are, of
course, due to the flexible storage format of the extended wavelet coefficients
and the improved storage utilization that they achieve.

All experiments reported in this section were performed on a personal com-
puter using an Athlon XP 1800+ processor with 512MB of RAM memory.
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5.1 Techniques and Parameter Settings

Our experimental study is split into two parts, based on the error metric that
our algorithms try to minimize. We here need to emphasize that besides the
presented techniques, we also performed a comparative analysis of the GreedyL2

and GreedyRel algorithms in multimeasure datasets. However, the results were,
as expected, qualitatively similar to those presented in Garofalakis and Gibbons
[2004], with the GreedyL2 algorithm producing wavelet synopses with smaller
weighted sum-squared errors, while the GreedyRel algorithm consistently pro-
duced significantly smaller maximum relative-errors. This is not surprising, as
the two algorithms are designed to minimize different error metrics, and the
existence of multiple measures in datasets cannot result in a qualitatively dif-
ferent behavior than in single-measure datasets. We thus omit this comparison
from our discussion.

—Weighted sum-squared error. We initially compared the performance of the
GreedyL2 and DynProgL2 algorithms for constructing conventional wavelet
synopses over multimeasure datasets to the following four algorithms:
(1) random sampling (RS) using the Reservoir algorithm described in Vitter
[1985], since the datasets that we used did not contain duplicate tuples;
(2) Ind, where the individual space allocated to each measure is proportional
to its weight, and the Individual algorithm is then run for each measure;
(3) IndSorted, where the individual coefficients from all measures are sorted
according to their weighted benefit, and those with the highest benefits are
retained, without imposing any limit on the size allocated to each measure;
and (4) Combined, where the combined coefficients are sorted according to
their overall weighted benefit, and those with the highest benefits retained.
As input to our algorithms, we used the output of the decomposition step of
the Combined algorithm, which we found to produce better results than the
corresponding output of the Individual algorithm.

—Maximum relative-error. In the second part of our experimental study, we
compare our GreedyRel and PODPRel algorithms for constructing probabilis-
tic data synopses over multimeasure datasets, along with a technique, which
we will term IndDP, that partitions the available space equally over the mea-
sures and then operates on each measure individually by utilizing the dy-
namic programming MinRelVar algorithm [Garofalakis and Gibbons 2004]. To
provide a more fair comparison to the IndDP algorithm, the majority of our
experiments include datasets where all the measured quantities exhibit sim-
ilar characteristics, thus yielding uniform partitioning of the synopsis space
over all measures as the appropriate space allocation technique. The only pa-
rameter in our algorithms is the quantization parameter q, which is assigned
a value of ten for the GreedyRel and IndDP algorithms, and a smaller value
of four for the PODPRel algorithm to reduce its running time (the accuracy
of the produced synopses was similar in PODPRel with larger values of q).
Moreover, the sanity bound of each measure is set to the 10%-quantile value
of the measure’s data values.
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Table V. Data Generator Input Parameters and Default Values

Parameter Description Default Value
D Number of dimensions 2
M Number of measures 6
Cardi Cardinality of dimension i 1,024
nregions Number of dense regions 10
Vmin, Vmax Minimum and maximum volume of regions 4,900,4,900
Z Skew across regions 0.5
zmini , zmaxi Minimum and maximum skew within region i 1, 1
Sumi Sum of values for measure i 1,000,000
spCount Fraction of populated cells in sparse areas 0.05
spSumi Sum of values of populated cells in sparse area i 0.05

Table VI. Data Generator Value Distributions

Distribution Description
NoPerm Cells with smaller L1-distance from lower-left corner have larger values
Normal Cells with smaller L1-distance from center have larger values
PipeOrgan Cells with smaller L1-distance from center have smaller values
Middle Consider a hyper-rectangle centered at the region’s center, and having, for

each dimension, half the length of the corresponding region length. Cells
with smaller L1-distance from this hyper-rectangle have larger values

Altered-X This measure follows the same distribution as X distribution, but its values
are randomly altered by up to 50%

5.2 Datasets

We experiment with several one-dimensional and multidimensional synthetic
multimeasure datasets and present in this section a representative set of re-
sults. The input parameters of our Zipfian data generator, along with their
default values, are described in Table V. The generator begins by populating
nregions rectangular regions of a D-dimensional array whose size is determined
by the number of the dataset’s dimensions and the cardinalities Cardi of each
dimension. The number of cells within each region is bound by the values Vmin

and Vmax . The total sum Sumi of values for each measure is partitioned across
the nregions rectangular regions through the use of a Zipf function with parame-
ter Z . Then, within each region, each measure’s values are distributed by using
one of the five distributions described in Table VI, with the parameter’s values
ranging from zmini to zmaxi . Notice the use of the Altered-X distribution (X ∈
{NoPerm, Normal, Middle, PipeOrgan}), which helps create pairs of measures
with similar, but not identical, data distributions. The data generator then also
populates a number of cells in the remaining D-dimensional space, outside the
dense regions. The fraction of such cells over the total number of populated cells
is defined by the spCount parameter, and the total sum of values of these cells
by the spSumi parameter. Especially for the case of one-dimensional datasets,
the produced Zipfian distributions span the entire domain (i.e., nregions = 1,
Vmin = Vmax = Card1 and spCount = spSumi = 0).

In our experimental study, we also use a real-life dataset. Our Weather
dataset contains meteorological measurements obtained by a station at the
University of Washington (data at http://www-k12.atmos.washington.edu/
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Table VII. Deviation Factor of GreedyL2 Benefit when Compared to
the DynProgL2 Benefit

Storage Constraint (Bytes)
1,200 2,400 3,600 4,800 6,000

Deviation Factor 3 × 10−5 5 × 10−4 10−6 10−4 10−6

k12/grayskies). For this dataset, we extract the following six measured quan-
tities: wind speed, wind peak, solar irradiance, relative humidity, air tempera-
ture, and dewpoint temperature.

Approximation-error metrics. The reported approximation-error metric in
each case depends on our optimization problem. For conventional wavelet syn-
opses, we mainly report the weighted absolute error for all queries of our work-
load, calculated as(

M∑
j=1

W j

)−1

×
M∑

i=1

(Wi × |actualResulti − estimatedResulti|),

where the variables actual Resulti and estimated Resulti denote the exact
and estimated values of the query result for measure i, correspondingly. The
weighted sum-squared and relative errors are defined similarly, with the
weighted sum-squared error also being reported in most cases. In the case of
probabilistic wavelet synopses, we focus on the maximum relative-error of the
approximation, which can provide guaranteed error-bounds for the reconstruc-
tion of any individual data value, and is the error metric that our probabilistic
wavelet synopses algorithms try to minimize.

5.3 Weighted Sum-Squared Error Algorithms

5.3.1 Synthetic Datasets. We first investigate how close the weighted bene-
fit achieved by the GreedyL2 algorithm is to that achieved by the DynProgL2 al-
gorithm. We created a synthetic two-dimensional dataset with four measures,
following Normal, Altered-Normal, Middle, and PipeOrgan distributions, and
set the remaining parameters to the default values of Table V. We modified the
storage constraint from 1,200 to 6,000 bytes and present the results in Table VII.
The deviation factor presented in this table is defined as: 1 − Benef it(GreedyL2)

Benef it(DynProgL2) .
The GreedyL2 algorithm produced solutions with benefits very close to the opti-
mal, as expected by its tight approximation bound. Due to the large amount of
memory required by the DynProgL2 algorithm, we were unable to execute it for
the remaining experiments and thus omitted this from the presented results.

We now evaluate the impact of several parameters on the performance of
our GreedyL2 algorithm. In each experiment, unless specified otherwise, the
data generator parameters were set to their default values. For the default
number of measures (6), the data distributions were: Normal, Altered-Normal,
PipeOrgan, Altered-PipeOrgan, Middle, and Altered-Middle. The query work-
load always consisted of 100 range queries, with the width of the range on each
dimension being equal to ten. The queries targeted the dense areas with greater
probability, since most of the data is stored there. The default storage bound
was set to 5% of the dataset’s size. Additional experiments can be found in the
Electronic Appendix.
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Fig. 7. Average weighted sum-squared error.

Fig. 8. Average weighted absolute error.

Storage space. In Figures 7 and 8, we present the average weighted sum-
squared and absolute errors, respectively, for all algorithms as the storage space
is varied from 2 to 10% of the dataset’s size. The skew of the data distributions
within each region was set to 1.5. Note that the y-axis of Figure 7 is logarithmic
due to the large errors exhibited by random sampling. The GreedyL2 algorithm
produced considerably smaller errors than the others. In particular, the aver-
age weighted sum-squared error of GreedyL2 was, in most cases, about 3 times
smaller than the error of the closest competitor, and as low as 3.5 times smaller
(6,105.25 versus 21,399.2 for 8% space). For the average weighted absolute
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Fig. 9. Sensitivity to skew: sum-squared error.

Fig. 10. Sensitivity to skew: absolute error.

error case, the error of GreedyL2 was typically about 1.5 times smaller than that
produced by the closest competitor (51.85 versus 91.19 for 9% space, a ratio of
1.76). From the remaining methods, the Combined algorithm produced the best
results. For the remaining experiments, we omit from the graphs the results for
the random sampling algorithm, since its errors were consistently much larger
than those of the other algorithms.

Skew within regions. We modified the Zipfian parameter controlling the skew
of the measure’s data distributions within each region from 0.5 to 4. Figures 9
and 10 present the obtained results for the weighted average sum-squared and
absolute errors. As the skew increases, for each distribution, the coefficients
with large values are limited to an increasingly smaller area. This results on
one hand in the reduction of the sum-squared error of the results as the num-
ber of coefficient values that greatly influence it becomes smaller. On the other
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Fig. 11. Sum-squared errors for the weather dataset.

hand, the probability that coefficient values from multiple measures are si-
multaneously important is decreased. These two factors justify the relative
improvement of the performance of IndSorted over the Combined algorithm
for larger skew values. While the Combined algorithm performs closely to the
GreedyL2 algorithm for small skews, the difference becomes very large as the
skew increases. For large skews, GreedyL2 exhibits about a three-fold improve-
ment over the closest competitive algorithm for the average weighted absolute
error (22.79 versus 62.21 for skew parameter = 4) and up to a seven-fold im-
provement for the average weighted sum-squared error, for the same skew
parameter.

5.3.2 Real Dataset. For our real dataset, we used the weather dataset con-
taining weather measurements from the state of Washington (see Section 5.2).
To simulate enhanced interest to specific measures, we assigned a weight value
of 3 to the first measure, 2 to the next two measures, and 1 to the remaining
measures. We constructed a two-dimensional dataset with the day and time of
each measurement as the two dimensions, with a total of 521,817 tuples. We
performed 1,000 range queries, where each range for the two dimensions was
a random number with maximum values of 30 and 180, respectively. Thus, the
maximum selectivity of a query was about 1%. From the results of each query,
we calculated average values for stored measures over the queried day and
time periods. The average values for each query were calculated by using the
number of cells that each query accessed. All measures were normalized with
the process described in the Electronic Appendix. Additional experiments in-
volving different query selectivities and nonnormalized measures can be found
in Deligiannakis and Roussopoulos [2003b]. In Figures 11 and 12, we present
the results for the average weighted sum-squared and absolute errors, as the
storage bound was varied from 1KB to 10KB. The errors for all wavelet meth-
ods decrease with the increase of the space bound. As can be seen from the two
figures, the GreedyL2 algorithm consistently produced the smallest errors for
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Fig. 12. Average weighted absolute errors for the weather dataset.

all error metrics. It is interesting to note that for the average weighted sum-
squared error metric, the competitive techniques require at least 50% more
space to achieve the same error as our GreedyL2 algorithm. However, the im-
provements of GreedyL2 in this case are smaller than in previous experiments
where a similar behavior was observed (i.e., Figure 7), since in this case, the
error decreases at a smaller rate. The average weighted sum-squared and ab-
solute errors of random sampling were two and one orders of magnitude larger,
respectively, than the corresponding errors of GreedyL2.

5.4 Maximum Relative-Error Algorithms

We now compare the performance and accuracy of our GreedyRel algorithm in
comparison to the PODPRel and IndDP algorithms described in Section 5.1. Our
study included several one-dimensional synthetic and real datasets. For the
synthetic datasets, our Zipfian data generator produced Zipfian distributions
of various skews (from a low skew of 0.5 to a high skew of 1.5), with the sum
of values for each measure set at 200,000. In all types of used Zipfian distribu-
tions, the centers of the M distributions are shifted and placed in random points
of the domain. We also consider several different combinations of used Zipfian
distributions. In the AllNoPerm combination, all M of the Zipfian distributions
have the NoPerm shape. Similarly, in the AllNormal combination, all M of the
Zipfian distributions have the Normal shape. Finally, in the Mixed combina-
tion, one-third of the M distributions have the NoPerm shape, one-third have
the Normal shape, and the remaining had the PipeOrgan shape. The results
presented in this section are indicative of the multiple possible combinations
of our parameters.

For the derivation of the wavelet synopsis after selection of coefficient re-
tention probabilities for either the GreedyRel or IndDP algorithm, we used the
following method. We first performed ten trials using random coin-flips in order
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Fig. 13. Running time vs. space.

Fig. 14. Maximum relative-error.

to select which coefficient values to retain. For each trial, if the resulting synop-
sis size was below (above) the desired size constraint, then the coefficient values
with the largest (smallest) retention probabilities which had not (respectively,
had) already been selected for storage are included in (respectively, discarded
from) the final synopsis. The selected synopsis is that which resulted in the
smallest maximum relative-error (out of the ten trials).

Comparing PODPRel and GreedyRel. We now evaluate the accuracy and
running time of the GreedyRel in comparison to the PODPRel algorithm. In
Figures 13, 14, and 15 we plot the running time and maximum and average
relative-errors, correspondingly, for the two algorithms and for the weather
dataset when we vary the synopsis space from 10 to 50 units of space (recall
that the unit of space is the size of each data value, i.e., sizeof(float)). In this
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Fig. 15. Average relative-error.

Fig. 16. Running time vs. domain.

experiment, we only use from the weather data the three measures most diffi-
cult to approximate. The domain size of the dataset is set to 128. Note that in
all our plots depicting the running time of algorithms, the y-axis is logarithmic.
Clearly, the running time of the PODPRel algorithm does not scale well with the
size of data synopsis, even for such a small dataset. For example, for a synopsis
size of 50 space units, the PODPRel algorithm requires more than two hours
to complete, while the GreedyRel algorithm required just a few milliseconds.
However, as Figures 15 and 16 demonstrate, the GreedyRel algorithm provides
near-optimal solutions in all cases.

In Figure 16 we present the corresponding running times for both algorithms
as the domain size is increased from 64 to 512. From the weather dataset, we
again extract just three measures, and set the synopsis space to always be 5%
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Fig. 17. Running time vs. measures.

Fig. 18. Running time vs. domain size.

of the size of the input. Again, the running time performance of PODPRel is
disappointing. For a domain size of 512, its running time exceeds 14 hours.
Finally, as Figure 17 demonstrates, the running time of PODPRel increases ex-
ponentially with the number of dataset measures. Note that for datasets with
four or more measures, PODPRel does not terminate within one day. It is easy
to see that the PODPRel algorithm cannot be used but for toy-like datasets. On
the other hand, the GreedyRel algorithm provides near-optimal solutions in all
tested cases, while exhibiting small running times.

Running time comparison of GreedyRel and IndDP. We now compare GreedyRel

and IndDP in terms of their running times. In Figure 18 we plot the running
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times of the IndDP and GreedyRel algorithms for the weather dataset (all six
measures were included) as the domain size is increased from 128 to 524,288.
The synopsis size is always set to 5% of the input data. The IndDP is considerably
slower than the GreedyRel algorithm (three orders of magnitude slower for a
domain size of 131,072), with the difference increasing rapidly with the increase
of domain size. Note that while the GreedyRel algorithm scales linearly with the
increase in domain size (doubling the domain size doubles the running time), the
IndDP algorithm grows much faster every time the domain size is doubled. This
is, of course, consistent with the running time complexity of the IndDP algorithm
(see Section 4.1), since when the domain size is doubled, the synopsis space
is, as well. Moreover, the large memory requirements (O(N Bq)) of the IndDP

algorithm prevented it from terminating for domain sizes larger than 131,072
(the main memory of our machine was 512MB). Thus, the linear scalability of
the GreedyRel algorithm to domain size, in terms of both its running time and
memory requirements, constitutes it as the only viable technique (except for
small datasets) for providing tight error guarantees, not only on multimeasure
datasets, but also on single-measure datasets, since both the GreedyRel and
IndDP algorithms scale in a similar way for such datasets. Moreover, as we will
demonstrate in this section, the GreedyRel algorithm, which utilizes extended
wavelet coefficients to store the selected coefficient values, also outperforms
the IndDP algorithm in terms of the obtained accuracy of the data synopsis. The
improved accuracy is attributed to the improved storage utilization achieved
by the use of extended wavelet coefficients, and the ability of our GreedyRel

algorithm to exploit the underlying storage dependencies.
Accuracy comparison of GreedyRel and IndDP in synthetic datasets. For our

synthetic datasets, we use a domain size of 16,384, and present the obtained
accuracy in terms of the maximum error of the approximation for the GreedyRel

and IndDP algorithms and six representative combinations of synthetic datasets.
These six combinations arise from considering Zipfian distributions with skew
0.2 and 0.8, along with all other possible combinations of the used Zipfian dis-
tributions (AllNoPerm, AllNormal and Mixed). The synthetic datasets in this
section contain six measures/distributions. The centers of these Zipfian dis-
tributions were randomly placed within an area of width equal to 128. The
smaller (larger) the distance amongst distribution centers, the larger (smaller)
the benefits that we expect from our techniques, since the possibility that mul-
tiple important coefficients will correspond to the same wavelet coordinates
increases (decreases). In our experiments we examined two variations of our
minimization algorithms. The unbiased version seeks to minimize the maxi-
mum normalized standard error for each reconstructed data value, while the
biased version seeks to minimize the corresponding maximum normalized bias
(see Section 4.1).

We first consider the possible combinations arising from distributions having
skew equal to 0.2. In Figures 19 and 20 we plot the maximum relative-errors for
both biased and unbiased versions of the GreedyRel and IndDP algorithms as the
average number of coefficient values that the IndDP algorithm uses per measure
is varied from 10 to 60, and for the Mixed and AllNoPerm (in the specific or-
der) selection of Zipfian distribution shapes (results for the AllNormal case are
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Fig. 19. Skew 0.2, Mixed.

Fig. 20. Skew 0.2, AllNoPerm.

presented in the Electronic Appendix). As we can see, the GreedyRel produces
more accurate results than the IndDP algorithm (direct comparisons should be
made only between pairs of algorithms that use the same minimization method)
for both biased and unbiased versions, with the differences being more signifi-
cant in the AllNoPerm case (i.e., 25% versus 96% maximum relative-errors for
the unbiased version and for a space constraint of ten coefficients per measure).

Similar results are also observed for the three combinations of synthetic
datasets arising from setting the skew of the distributions to 0.8. For example,
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Fig. 21. Skew 0.8, Mixed.

in Figure 21 (results for the AllNoPerm and AllNormal combinations can be
found in the Electronic Appendix), we show the corresponding results for the
Mixed combination of used data distributions. In the unbiased case, we ob-
serve that the GreedyRel algorithm results in significantly smaller maximum
relative-errors of the approximation than the IndDP algorithm in all cases. We
need to note that in this set of experiments, the maximum relative-error achie-
ved by all techniques for a space constraint equal to ten coefficient values per
measures is larger than one. While we may argue that in such cases, an obvi-
ous “StoreNothing” solution that avoids storing any coefficient values would be
preferable, since it would result in a maximum relative-error of one, this is not
always the case. For example, in Figure 22 we depict the average relative-error
achieved by our techniques as we vary the synopsis size for the Mixed dataset,
with the skew parameter set to 0.8 (the largest average relative-errors were ob-
served in this dataset). The benefits of the GreedyRel algorithm are significant,
even in this case. Moreover, even for very small synopsis sizes, the GreedyRel

algorithm achieves average relative-errors that are significantly lower than
those of the aforementioned “StoreNothing” technique (which always exhibits
a relative error of one for all nonzero values). This is more evident in other
datasets, where the obtained average relative-error is significantly lower (i.e.,
in the AllNormal dataset in Figure 23).

Accuracy comparison of GreedyRel and IndDP in real datasets. In Figure 24 we
plot the maximum relative-errors for a subset of the weather dataset, where the
relative humidity, solar irradiance, air temperature, and wind peak measures
have been extracted, as we vary the size of the synopsis, and for domain sizes
of 16,384. As we can see, the benefits of the GreedyRel algorithm continue to be
significant in all cases. While the IndDP algorithm fails to provide maximum
relative-errors lower than 80%, the GreedyRel algorithm significantly tightens
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Fig. 22. Skew 0.8, Mixed.

Fig. 23. Skew 0.8, AllNormal.

its error guarantees as the synopsis size increases. In the weather dataset, the
GreedyRel algorithm provided up to five times tighter error bounds than the
IndDP algorithm (and commonly, at least a two-fold improvement). However,
similarly to the synthetic datasets, the average relative-errors were signifi-
cantly smaller. For example, for the biased versions and for a synopsis space
of 60KB, the GreedyRel algorithm resulted in an average relative-error of 1.6%,
while the IndDP algorithm had a corresponding error of 3.6%.
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Fig. 24. Weather data.

6. RELATED WORK

Wavelet-based summarization techniques have been applied successfully in
selectivity estimation [Matias et al. 1998], and approximately answering
range-sum aggregates [Vitter and Wang 1999] as well as complex relational
queries [Chakrabarti et al. 2001] over data cubes. Matias et al. [2000] consider
the problem of online maintenance for large wavelet coefficients and propose
a probabilistic counting scheme. More recently, Matias and Urieli [2005] pro-
posed optimal algorithms for workload-based wavelet synopses that minimize
weighted sum-squared (absolute or relative) error.

Guha et al. [2004] improve on the running time complexity of our Dyn-

ProgL2 algorithm (originally in Deligiannakis and Roussopoulos [2003a]) to
O(N M (log M+ log B

S+ H
M

)+ M 2+B2

S+ H
M

), with a space complexity of O(B2+M B). One

of their key observations is that the optimal solution needs to consider only a
subset of candidate sets (i.e., ones that rank high in terms of benefit) amongst
all candidate sets with equal numbers of stored coefficient values from all coef-
ficients. Utilizing the same per-space benefit criterion for candidate sets, Guha
et al. [2004] show that only a small number of candidate sets per combined co-
efficient need be considered, and that each candidate set needs to be considered
for insertion in the final solution only once (instead of multiple times, as in our
GreedyL2 algorithm). This observation, along with relaxation of the storage con-
straint, helps bound the size of their min-heap structure to O(B) and improve
the running time of their algorithm to O(N M (log M + log B)). Furthermore,
these improvements also enable their algorithm to adapt to data streaming
environments.

All of the aforementioned papers rely on conventional, L2-error-based thresh-
olding schemes that typically decide the significance of a coefficient based on
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its absolute normalized value. Garofalakis and Gibbons [2004] were the first
to identify the potential problems of such synopses and propose probabilis-
tic thresholding algorithms specifically targeting the maximum relative-error.
Building on this work, Garofalakis and Kumar [2005] introduce efficient deter-
ministic thresholding schemes for general error metrics based on novel DP
formulations. Recently, Karras and Mamoulis [2005] have proposed greedy
deterministic thresholding heuristics for optimizing maximum-error metrics
in one-dimensional datasets. Extending this work to multidimensional and/or
multimeasure datasets is an open research problem, and could potentially pro-
vide effective deterministic solutions for the problems addressed in this article
(Section 4.5). Finally, Guha [2005] presents a general methodology for reducing
the space requirements of synopsis construction algorithms, essentially ensur-
ing that the memory needed by a dynamic program never exceeds the size of
its “working set;” of course, such techniques are generally applicable to the DP
schemes presented in this article.

7. CONCLUSIONS

In this article, we introduced the notion of an extended wavelet coefficient as
a flexible storage method for maintaining wavelet coefficients for datasets con-
taining multiple measures. This flexible storage method bridges the gap be-
tween the two extreme storage hypotheses that the existing Individual and
Combined algorithms represent, and achieves better storage utilization, which
results in improved accuracy to queries. We also proposed a novel algorithm for
constructing effective (optimal or near-optimal) extended wavelet-coefficient
synopses that seek to minimize, given a storage constraint, either the sum-
squared or maximum relative-error of the approximation. An extensive experi-
mental study with both synthetic and real-life datasets validated our approach,
demonstrating that extended wavelet synopses consistently outperformed ex-
isting techniques in the accuracy of the resulting approximation.
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