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a b s t r a c t 

Many Big Data technologies were built to enable the processing of human generated data, setting aside 

the enormous amount of data generated from Machine-to-Machine (M2M) interactions and Internet-of- 

Things (Io T) platforms. Such interactions create real-time data streams that are much more structured, 

often in the form of series of event occurrences. In this paper, we provide an overview on the main re- 

search issues confronted by existing C omplex E vent P rocessing (CEP) techniques, with an emphasis on 

query optimization aspects. Our study expands on both deterministic and probabilistic event models and 

spans from centralized to distributed network settings. In that, we cover a wide range of approaches 

in the CEP domain and review the current status of techniques that tackle efficient query processing. 

These techniques serve as a starting point for developing Big Data oriented CEP applications. Therefore, 

we further study the issues that arise upon trying to apply those techniques over Big Data enabling tech- 

nologies, as is the case with cloud platforms. Furthermore, we expand on the synergies among Predictive 

Analytics and CEP with an emphasis on scalability and elasticity considerations in cloud platforms with 

potentially dispersed resource pools. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Big Data is generally characterized by four main aspects: vol-

me, which is the enormous amount of data to be processed; ve-

ocity, which is the speed at which data must be processed; va-

iety, which represents the multiple representations in the data

odel; and veracity, which is the uncertainty in the data. Many

odern Big Data applications aim to enhance the processing of

uman generated data which are though surpassed in volume

y data produced during Machine-to-Machine (M2M) interactions.

2M data are generated in high frequency in every Big Data sys-

em and include useful information that can be utilized to iden-

ify the occurrence of interesting situations. Besides M2M interac-

ions, Internet-of-Things (IoT) platforms offer advanced connectiv-

ty of devices and services that covers a variety of domains and

pplications generating voluminous data streams and patterns of

nterest subjected to further study. 
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Complex E vent P rocessing (CEP) systems aim at processing such

ata efficiently and immediately recognize interesting situations

hen they occur. Generally, events can be thought of as single oc-

urrences of interest in time and complex events as situations or

atterns that comprise a particular composite meaning for the sys-

em. Each event is assigned an event type based on its semantics

nd content. Primitive events are atomic (i.e., non-decomposable)

ccurrences of interest that stream into a CEP system, while com-

osite (or complex) events are detected and extracted by the CEP

ystem based on defined patterns (rules) engaging other primitive

nd/or other complex event combinations. For instance, imagine a

umber of sensors measuring the conditions on a production ma-

hine. A sensor reporting abnormal vibrations produces a primitive

vent tuple v of type V . Similarly, a sensor measuring exception-

lly high levels of pressure on the same machine yields a primitive

vent tuple p of type P . Domain experts may have defined a rule

tating that “abnormal vibrations combined with high pressure signal

n imminent break down”. The latter is a complex event, derived by

 pattern of the form: AND(V,P). 

The previous conceptualization of events and patterns is inter-

isciplinary enough for modeling a wide range of systems that op-

rate under real-time constraints: 
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Fig. 1. Dimensions & depth of our analysis 

Table 1 

Frequently used abbreviations. 

Abbreviation Meaning 

AIG Active Instance Graph 

AIS Active Instance Stack 

BN Bayesian Network 

CEP Complex Event Processing 

DAG Directed Acyclic Graph 

EPN Event Processing Network 

FSM Finite State Machine 

NFA Non-deterministic Finite Automaton 

PA Predictive Analytics 

PAIS Partitioned ( Wu et al., 2006 )/Probabilistic ( Wang et al., 2013 ) 

Active Instance Stack 
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– Data Stream Management Systems (DSMSs) ( Ahmad et al.,

2005; Chandrasekaran et al., 2003 ) are devoted to process-

ing unbounded streams of data as they arrive and provide

real-time answers to continuous or ad-hoc user queries. A

DSMS can be transformed to a CEP system by appropriately

pipelining answers of continuous queries ( Chakravarthy and

Jiang, 2009 ). However, contrary to DSMSs that leave to their

clients the responsibility of attaching a particular meaning

to the data being processed, CEP systems encompass the

ability to query for complex patterns through predefined

rules that match incoming event notifications on the ba-

sis of their content and on some ordering relationships on

them ( Cugola and Margara, 2012b ). 

– Time-series data stemming from various information sources

can be abstracted as primitive events. For instance, CEP can

be used in credit card fraud detection by monitoring credit

card activity, i.e., primitive events correspond to transac-

tions, in real-time. It can then perform time-series analysis

over streams of events, and it can even correlate the incom-

ing tuples with historical event data like customer informa-

tion from a CRM system. 

– Event types group tuples of similar semantics and content.

Different event types can be produced at different sources

and thus each event type forms its own event stream. In-

dividual streams flow together in the CEP system synthe-

sizing a heterogeneous stream of tuples. The detection of

a pattern expressing a complex event combines information

about events of different types. Therefore, CEP is also closely

related to real-time knowledge extraction from voluminous

cross-stream data. 

Real world applications where streams of Big Event Data are of

the essence include, but are not limited to, network health mon-

itoring applications, mobile and sensor networks, computer clus-

ters, smart energy grids and security attack detection. In the busi-

ness sector, accounting, logistics, warehousing and stock trading

applications are included among others. Even beyond M2M syn-

ergies, human interactions in modern social media enable the po-

tential for event identification based on content of interest hidden,

for instance, in Twitter microblogs ( Doulamis et al., 2015 ). More re-

lated to human interactions with IoT platforms, the advertising in-

dustry can gain much from CEP by successfully implementing IoT-

centric solutions, such as modern Internet Advertising ( Zampoglou

et al., 2014 ) approaches, as part of event data-collecting initiatives.

In this paper, we aim to unravel the main research issues tack-

led in the literature of CEP systems and present the contribution

of developed techniques. Different from previous efforts ( Cugola

and Margara, 2012b; Artikis et al., 2012; Alevizos et al., 2015;

Flouris et al., 2015 ), our focal point, without neglecting other

query processing aspects, lies on query optimization issues. We

treat the deterministic as well as probabilistic event processing

model in a unified way and expand our study to different archi-

tectural settings, from centralized to distributed networks. In that,

we manage to cover a wide range of research effort s in the CEP

domain and review the current status of techniques that tackle

efficient query processing. Going one step further, we study the

issues that arise upon trying to extend those techniques to op-

erate over Big Data enabling technologies and in particular the

cloud computing paradigm where query optimization is coupled

with elastic resource allocation. Additionally, we examine the syn-

ergies among Predictive Analytics (PA) and CEP with an empha-

sis on scalability and elasticity in cloud platforms with potentially

dispersed resource pools. Overall, our work reviews the status of

CEP approaches for efficient query processing and points out the

prospects and open issues for CEP in the Big Data Era. 
Fig. 1 illustrates the main dimensions of our upcoming anal-

sis. The distance of the colored line from the center of the

raph is proportional to the depth of our discussion compared to

he abundance of related work for each dimension and our no-

ion of significance. Details on the content of each axis will be

iven in the sections to come in a clockwise order. In particu-

ar, in Section 2 we present fundamental concepts around CEP

pproaches. Section 3 reviews centralized CEP approaches in the

eterministic event context, while Section 4 studies probabilistic

pproaches in the centralized setting. Techniques focusing on com-

lex event processing and monitoring in distributed settings, com-

osed of geographically dispersed processing nodes, are reviewed

n Section 5 . Section 6 is devoted to issues arising upon operat-

ng on Big Data enabling technologies as is the case with the cloud

omputing paradigm. Eventually, Section 7 discusses the prospects

n coupling CEP with PA, before presenting our concluding remarks

nd outline open research issues in Section 8 . Table 1 summarizes

he most frequent abbreviations used throughout our study. 

. Fundamental concepts 

.1. Event data stream model 

.1.1. Deterministic event model 

A generic event definition would refer to an event as a tu-

le (occurrence) of interest composed of a number of content at-

ributes denoting an event’s meaning, along with one or more time

ttributes denoting the event’s time occurrence and/or its duration.

he conceptualization that is most closely related to this abstract
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vent definition is that of Schultz-Moller et al. (2009) which de-

nes events as tuples e = < s, t >, where e represents the event of

nterest, s refers to a list of content attributes and t is a list of

imestamps, the first being the start of the event and the last the

nd of it. 

Most research efforts ( Schultz-Moller et al., 2009; Wu et al.,

0 06; Akdere et al., 20 08; Mei and Madden, 20 09 ) categorize

vents as primitive and composite (or complex or deferred). Prim-

tive events constitute atomic (non-decomposable) occurrences of

nterest that stream into a CEP system from monitored data

ources. On the other hand, composite (or complex) events are

etected and extracted by the CEP system based on defined pat-

erns engaging other primitive and/or other complex event combi-

ations. These patterns correspond to rules, usually defined by do-

ain experts ( Wasserkrug et al., 2008 ), according to which a spec-

fied combination of primitive and/or composite event occurrences

atisfy the conditions for another composite event apparition. 

Both primitive and composite event tuples are grouped into

vent types (or classes) sharing common semantics or context in

heir attribute ( s ) and timestamp lists ( t ). Equivalently, an event

uple constitutes an instantiation of the event type it belongs to. 

.1.2. Probabilistic/uncertain event model 

Despite the fact that the e = < s, t > representation is generic

nough to fully describe a deterministic event, the sources that

roduce the event entities that stream into the CEP system may

ncorporate imprecisions ( Artikis et al., 2012; Alevizos et al., 2015 )

o either the event content (attributes) ( Ré et al., 2008; Cugola

t al., 2014; Wasserkrug et al., 2008; Shen et al., 2008; Zhang

t al., 2010 ) or even provide faulty judgment about an event oc-

urrence ( Chuanfei et al., 2010; Wang et al., 2013 ). Additionally,

he rules (patterns) defining composite events may be probabilistic

hen applications define that the same set of events participating

n a pattern can lead to different composite events with a certain

robability for each of the alternatives, i.e., uncertain rules ( Cugola

t al., 2014; Wasserkrug et al., 2012a; 2008; 2012b ) may be de-

ned. 

In our study we are going to use the terms probabilistic or

ncertain for events abiding by the model discussed in this sec-

ion, interchangeably. Previous works including Ré et al. (2008) ;

ugola et al. (2014) ; Wasserkrug et al. (2008) ; Shen et al. (2008) ;

hang et al. (2010) take into consideration event tuple repre-

entations admitting uncertainty on the event content . In this

ase, an attribute belonging to the s or t list is accompanied by

ts probability density function ( pdf ). Embodying attribute uncer-

ainty in e = < s, t > can be accomplished in two ways: (a) en-

apsulate the attribute’s pdf together with the attribute’s value

n the s list, i.e.: e = < s = [ { at t r 1 = v al 1 , pdf 1 (μ1 , σ1 ) } , . . . , { at t r d =
 al d , pdf d (μd , σd ) } ] , t >, (b) a much more popular, alternative is

o interpret the available information ( pdf ) about a continuous at-

ribute’s value to categorical attribute values, along with their re-

pective probabilities. 

In case of uncertain event occurrence, e is represented by a

uple < e, p e > where p e denotes its occurrence probability. The

reviously mentioned works, with the exception of Zhang et al.

2010) , assume or explicitly present (e.g. see Wasserkrug et al.,

008 ) ways so that the uncertainty present in the attribute val-

es of an event may be mapped to an uncertainty value for the

vent apparition. Hence, they are able to accommodate both types

f uncertainty in their frameworks. As regards uncertain rules, the

ncertainty value expresses the probability of a complex event oc-

urrence instead of some other alternative. Therefore, the < e, p e 
 representation is also capable of encompassing this type of un-

ertainty. 
.2. Event query elements 

Queries submitted to a CEP system aim at detecting complex

vents on the incoming stream of primitive events based on a

iven pattern. Although, different CEP approaches such as Etzion

nd Niblet (2011) ; Ré et al. (2008) ; Wasserkrug et al. (2012b ) often

tilize alternative query elements targeting on their specific event

odeling purposes, SASE’s ( Wu et al., 2006; Zhang et al., 2014;

grawal et al., 2008; Zhang et al., 2010 ) query language provides

 comprehensive extension of SQL tailored for expressing event

ueries. The compartments of the following SASE+ based query are

ndicative of the basic elements of any event detection query: 

PATTERN 
n 
�

i =1 
OPERATOR ı(list of EventTypes) 

WHERE (Qualifications) 
WITHIN (time) 
[HAVING (Confidence_Qualification)] 
RETURN (ComplexEvent or Events to return) 
The prominent operators in the PATTERN OPERATOR clause are

SEQ, AND, OR, NOT, Kleene Closure} each of them receiving spe-

ific event types as its input, while the � symbol expresses any

ossible combination or nesting of these operators. In particular,

he SEQ pattern requires that all events occur sequentially , the AND

perator declares conjunction of all events included in the pattern,

R corresponds to the occurrence of any event, while the Kleene

losure operator means zero or more individual occurrences for an

vent included in the pattern. Equivalent expressions of these op-

rators can also be found in the literature, where the SEQ operator

s expressed as sequence or next , the AND operator as conjunction

r all , the OR operator as disjunction or any and the NOT opera-

or as negation or absence . The WHERE clause is for one or more

in)equality constraints among event attributes connected by log-

cal operators. The WITHIN clause specifies the time frame (win-

ow) in which all events must occur for a full pattern match and

hus, a valid composite event detection. The HAVING clause refers

o the uncertain event model as described in Section 2.1.2 and

pecifies a confidence threshold below which primitive event tu-

les are filtered away or composite event tuples are pruned from

urther processing ( Zhang et al., 2010; Shen et al., 2008; Wang

t al., 2013 ). We are going to elaborate more on the utility of this

uery compartment in Section 4.1 . The RETURN clause outputs a

omplex event and/or its list of primitive events. 

.3. Event selection strategies 

An event selection strategy determines how the query opera-

ors will be applied on a stream of events. Such a strategy may,

or instance, dictate that a SEQ operator must select strictly con-

iguous events of the incoming stream or a less rigid strategy

ay allow the selection of contiguous “relevant” events, i.e., in-

ermediate events that are not input to the query operator are

ompletely overlooked. Event selection strategy is a feature not

idely adopted in the literature, but adds a certain functionality

n the detection of complex events. The approach in Barga et al.

2007) uses different operators that encapsulate that functionality. 

 more elaborate approach presented in Agrawal et al. (2008) and

n Zhang et al. (2014) identifies four distinct event selection strate-

ies. 

– Strict contiguity requires two selected events to be contigu-

ous in the input stream. This requirement is typical in regu-

lar expression matching against strings, DNA sequences etc. 

– Partition contiguity is a relaxation of the above strategy. Pro-

vided events are conceptually partitioned based on a con-

dition, partition contiguity requires the next relevant event

must be contiguous to the previous one in the same parti-

tion. 
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Table 2 

Event detection model representation per approach. 

Approach Event detection model 

NFA FSM EPN Graph Tree 

Schultz-Moller et al. 

(2009) 

� 

SASE ( Wu et al., 2006; 

Zhang et al., 2014; 

Agrawal et al., 2008; 

Zhang et al., 2010 ) 

� 

Akdere et al. (2008) � � 

ZStream ( Mei and 

Madden, 2009 ) 

� 

Kolchinsky et al. (2015) � � 

Wasserkrug et al. 

(2012b;2008;2012a) 

� 

Rabinovich et al. (2011) � 

Lahar ( Ré et al., 2008 ) � 

Chuanfei et al. (2010) � 

Shen et al. (2008) � 

Wang et al. (2013) � � 

CEP2U ( Cugola et al., 

2014; Cugola and 

Margara, 2012a ) 

� 
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Fig. 2. Finite State Machine example (figure from Akdere et al., 2008 ). 

Fig. 3. Non-deterministic Finite Automaton example (figure from Zhang et al., 

2014 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Skip till next match is a further relaxation to remove conti-

guity requirements. All irrelevant events will be skipped un-

til the next relevant event is read. This strategy is important

in many real-world scenarios where some events are “se-

mantic noise” to a particular pattern and should be ignored

to enable the pattern matching to proceed. 

– Skip till any match relaxes the latter strategy by further al-

lowing non-determinism on relevant events. This strategy

essentially computes transitive closure over relevant events

as they arrive in the system. 

In the literature, the default selection strategy is skip till next

match , while Zhang et al. (2010) shows that in setups with im-

precise/uncertain timestamps event processing must be configured

with skip till any match , irrespectively of the event selection strat-

egy that is actually dictated by the query. 

2.4. Event detection model representation 

As streaming events arrive to a CEP system, a query pattern is

progressively evaluated. This means that before composite event

detection via a full pattern match, partial matches of the query

pattern take place. These partial matches need to be monitored

as they express the potential for an imminent full match. To track

the state of a partial match and determine on a complex event

occurrence, multiple representations have been used in the liter-

ature, mainly depending on the performance metrics that each ap-

proach tries to enhance. Event detection models coupled with dif-

ferent data structures (such as PAIS Wu et al., 2006 in Fig. 6 that

will be presented in the sequel) offer different capabilities in

a CEP system. Nonetheless, all share the common goal to rep-

resent a logical or a physical plan for complex event detection

in a streaming environment. In this subsection, we will review

the main types of the proposed event detection models, while

Table 2 compactly presents their adoption in the corresponding

literature. 

– NFA. Non-deterministic Finite Automata is one of the most

used model representations in CEP approaches (see Table 2 ).

Each state is a partial or full detection (final state) of a com-

plex event. The transition from one state to another is trig-

gered when a related event, that upholds the predicates of

the query, is found in the stream. An NFA example is de-
picted in Figs. 3 and 6 where related events for state tran-

sitions are marked in the corresponding vertex ( Fig. 3 ) or

edge ( Fig. 6 ) of the automaton. In particular, Fig. 3 exhibits

an enhanced variant that uses a match buffer called NFA 

b 

which is used in Agrawal et al. (2008) and Zhang et al.

(2014) . The NFA model may exhibit non-determinism when

at some state the formulas of two edges are not mutually

exclusive, thus allowing the execution of the skip-till-any-

match selection strategy. A slightly modified NFA, that gen-

eralizes the traditional one, is called the Cayuga automaton

( Demeers et al., 2007 ). It allows the input of arbitrary rela-

tional streams with state transitions, controlled using predi-

cates. This automaton can store data from the input stream,

allowing selection predicates to compare incoming events to

previously encountered events. 

– FSM. FSMs ( Schultz-Moller et al., 2009; Akdere et al., 2008 )

are a simpler way to express the detection of complex

events. FSMs carry similar functionality with the NFAs, as

transitions are made when an event that satisfies the query’s

predicates is detected and its states signal the partial or full

detection of a complex event. In Akdere et al. (2008) , FSMs

are used to incorporate a plan in the detection sequence of

events that, based on gathered frequency statistics, can bal-

ance latency and communication cost. An FSM example is

illustrated in Fig. 2 where partial matches are attached on

the states of the FSM, whereas the input for each state is

marked on its incoming edges. 

– Trees. Various tree structures have been used in the litera-

ture to facilitate the detection of complex events. Left and

right deep trees are used in Mei and Madden (2009) . A tree

instance is depicted in Fig. 4 , where leaves are primitive

events and internal nodes are operators participating in the

pattern that is being examined. As we are going to discuss

in the sequel, the Tree structure provides the potential for

adaptivity in the query plan execution, as a transformation

from a left-deep to a right-deep tree can significantly alter a

query’s performance based on changed occurrence frequency

of primitive events. 

– Graphs. Event detection graphs are deployed in Akdere et al.

(2008) ; Wasserkrug et al. (2008;2012a;2012b) to merge all
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Fig. 4. Left Deep Tree example (figure from Mei and Madden, 2009 ). 

Fig. 5. Event Processing Network (figure from Etzion and Niblet, 2011 ). 

Fig. 6. PAIS example (figure from Wu et al., 2006 ). 
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rules for complex event detection in a single structure.

Events shared by multiple expressions have single appear-

ance in the graph. This structure offers a general overview of

all existing complex expressions but is not used as a query

plan for the event query execution. It rather serves as a com-

plementary data structure that aims to reveal event depen-

dencies. 

– Networks. Event Processing Network (EPN) is another way of

planning query processing for detecting complex events as

proposed in Wang et al. (2013) ; Etzion and Niblet (2011) . An

Event Processing Agent (EPA) is a processing element that

applies logic to incoming events and outputs derived (com-

plex) events. The EPN follows an event driven logic where

EPAs communicate asynchronously through Event Channels

(EC). ECs are also processing elements with the responsibil-

ity of making routing decisions since they may receive mul-

tiple event streams. An illustration is given in Fig. 5 . 

Eventually, the work in Kolchinsky et al. (2015) introduces two

ariants of NFA representation, namely Chain-NFA and Tree-NFA

odels. The latter combines NFAs with tree-like structures, but

oth variants are destined to enable the potential for lazy query

valuation as will be discussed in Section 3.2 . 
.5. Performance metrics 

Performance metrics in the context of complex event process-

ng aim at measuring the efficiency of the query plan execution.

EP approaches that assume all data is delivered in a single source

or processing, measure their performance based on how fast they

rocess incoming data. Hence, the main optimization metric is

hroughput i.e., how many event tuples per time unit are processed.

nother performance metric, highly correlated with throughput, is

he time (or CPU) cost which is interpreted in the amount of time

equired for operator execution. 

Techniques that assume a collection of streams arrive at dif-

erent computing sites having a central (coordinator site) which

ictates (based on a plan) which primitive event is monitored in

hich site, opt for the reduction of the communication cost un-

er the counterweight of detection latency ( Akdere et al., 2008 ).

n such cases, detection latency is the time between the occurrence

f a complex event and its detection from the coordinator. 

Another important issue upon handling large time windows is

hat of memory management (or buffer utilization ), since, if proper

are is not taken, intermediate results or partial matches stored in

ain memory may excessively grow. 

In the uncertain context, the Accuracy of the inference proce-

ure that will be made on the final outputs is an additional perfor-

ance objective. Restricting the evaluated tuples based on a con-

dence threshold, as described in Section 2.2 , results in approxi-

ate inference as the output of event queries is not complete. As a

onsequence, achieving appropriate balance between the conflict-

ng goals of reduced CPU cost or data transmissions (in distributed

ettings) versus accuracy requirements calls for proper optimiza-

ion functions to be taken into consideration. 

Table 3 outlines the optimization objectives considered in the

xperimental evaluation of each of the techniques we examine

hroughout our study. An important distinction among the latency

easured in Rabinovich et al. (2011) and the one in Akdere et al.

2008) is that, Rabinovich et al. (2011) measure the processing la-

ency, while Akdere et al. (2008) the lag spent for on demand

ransmission among geographically dispersed sites. We stress that

n any of the two cases, the CEP application may have posed re-

trictions on the event detection latency as a Quality-of-Service

QoS) requirement ( Doulamis et al., 2014; Akdere et al., 2008 ). 

. Deterministic model – centralized techniques 

The architectural scheme of the techniques presented in this

ection entails a sole stream received by a single processing site,

biding by the deterministic event model. Thus, the main perfor-

ance goals involve high throughput or low CPU cost and mem-

ry consumption. These techniques attempt to cope with the vol-

me and velocity aspects of the Big Data nature of event streams.

n the following subsections we will make an effort to group the

ain optimization trends, also outlined in Table 4 , that serve as

he means to achieve the aforementioned objectives. Table 5 pro-

ides a concise summary of the complexities of the respective ap-

roaches. 

.1. Predicate-related optimizations 

A simple, yet powerful, way to optimize performance is to eval-

ate predicates and time windows early in a query plan. This can

e achieved by partitioning the input stream and by employing

arly filtering in the selected events that will actually be part of

omplex event detection based on the query. Other relevant ap-

roaches include hash-based lookups and early filters deployment

n value predicates as events arrive on-the-fly. 
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Table 3 

Optimization objective per approach. 

Approach Optimized for 

Throughput CPU/time cost Comm. cost Latency Accuracy 

Schultz-Moller et al. (2009) � 

SASE ( Wu et al., 2006; Zhang et al., 2014; Agrawal et al., 2008; 

Zhang et al., 2010 ) 

� � 

Akdere et al. (2008) � � 

ZStream ( Mei and Madden, 2009 ) � 

Kolchinsky et al. (2015) � 

Wasserkrug et al. (2012b;2008;2012a) � � 

Rabinovich et al. (2011) � � 

Lahar ( Ré et al., 2008 ) � � 

Chuanfei et al. (2010) � � 

Shen et al. (2008) � 

Wang et al. (2013) � 

CEP2U ( Cugola et al., 2014; Cugola and Margara, 2012a ) � � 

Table 4 

Optimization strategies adopted by each approach. 

Approach Optimization strategy 

Query rewriting/ 

reordering 

Predicate related 

optimizations 

Memory 

mgmt 

Coordinated 

push/pull 

Parallelization Approximation Comments 

Schultz-Moller et al. (2009) � � Operator distribution 

SASE ( Wu et al., 2006; Zhang et al., 

2014; Agrawal et al., 2008; Zhang 

et al., 2010 ) 

� � Temporal uncertainty 

handling ( Zhang et al., 

2010 ) 

Akdere et al. (2008) � � � Distributed network 

setting 

ZStream ( Mei and Madden, 2009 ) � � Adaptive 

Kolchinsky et al. (2015) � Lazy evaluation, 

adaptive 

Wasserkrug et al. 

(2012b;2008;2012a) 

� Uncertainty handling, 

sampling BNs 

Rabinovich et al. (2011) � 

Lahar ( Ré et al., 2008 ) � Uncertainty handling 

Chuanfei et al. (2010) � � Filter with tolerance, 

uncertainty handling 

Shen et al. (2008) � Uncertainty handling 

Wang et al. (2013) � � Distributed network 

setting, uncertainty 

handling 

CEP2U ( Cugola et al., 2014; Cugola 

and Margara, 2012a ) 

� � Uncertainty handling 

Table 5 

Complexity per approach. n : number of event types, automaton states or query pattern operators, S : the input size, N : the number of processing nodes or sites. Underbars 

mark estimated complexities. 

Approach Time complexity Remarks 

Devoted to plan generation 

Schultz-Moller et al. (2009) O ( n � ogn ) Union operator – greedy algorithm 

�( n 3 ) Next operator–dynamic programming algorithm 

O ( nN ) Operator distribution – greedy algorithm 

Mei and Madden (2009) O ( n 3 ) For optimal operator ordering 

Kolchinsky et al. (2015) O (2 n ) For Tree-NFA – dynamic instantiation advised 

Rabinovich et al. (2011) O ( n 3 ) Offline reordering cost by enumerating the power set of operators ( Mei and Madden, 2009 ) , 

co NP-complete for all potential rewritings apart from reorderings ( Calvanese et al., 20 0 0 ) 

Akdere et al. (2008) O (2 2 n nk ) Dynamic programming algorithm – greedy advised 

k stands for the maximum number of optimal plans 

Devoted to query evaluation 

Wu et al. (2006) Shen et al. (2008) Cugola 

et al. (2014) ; Cugola and Margara (2012a ) 

O (2 nS ) Sequence construction algorithm 

Ré et al. (2008) O ( S ) Regular & extended regular queries 

Agrawal et al. (2008) O (2 S S n −k ) In the presence/absence of “skip till any match”

O (S k +1 ) k stands for the number of Kleene plus states 

Zhang et al. (2010) O ( S n ) Pattern agnostic – for skip till any/next match 

Chuanfei et al. (2010) O ( nS ) Filtering, IPF–DA algorithms 

Wang et al. (2013) O ( NnS ) Link creation algorithm 

Wasserkrug et al. (2008) O ( nm 

S ) Abstracted for BN construction – sampling advised (see Wasserkrug et al., 2008 ) 

m : size of the state space of each event 
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.1.1. Pushing predicates down 

One of the first complete complex event processing frameworks

as SASE ( Wu et al., 2006 ). SASE presented a novel event language

hat supported all the properties of a time-ordered stream of tu-

les (events) and the basic operators for query specification. SASE

ushes predicates down by partitioning an event stream to many

mall ones. Events in each partition have the same value for an at-

ribute used in a single equivalence test within the posed query.

efore we explain how it works, we should present the basics of

he proposed query plan. The basic component of their query plan

s sequence scan and a construction called SSC. SSC transforms a

tream of events into a stream of sequences, with each sequence

eing a partial match of the query. For sequence scan they use

on-deterministic Finite Automata to represent the structure of an

vent sequence. In sequence scan, for each partial match, an NFA

s created by mapping successive event types to successive NFA

tates. To keep track of all simultaneous states, a runtime stack

s instantiated to record the set of active states and how this set

eads to a new set of active states, as an event arrives, with the

se of pointers. Sequence construction is invoked when an accept-

ng state is reached during sequence scan. They propose that se-

uence construction is performed by extracting from the runtime

tack a single source Directed Acyclic Graph. The DAG starts at an

nstance of the accepting state in the rightmost cell of the stack

nd traverses back along the predecessor pointers, until reaching

nstances of the starting state. 

The authors propose using an auxiliary data structure, called

artitioned Active Instance Stack (PAIS). Thus, they simultaneously

reate the partitions and build a series of these stacks for each,

ithout incurring any overhead to the events that do not partic-

pate in the query. With PAIS sequence construction is only per-

ormed in stacks in the same partition, thus producing less inter-

ediate results as shown in Fig. 6 . 

When multiple equivalence tests are present in a query, the au-

hors propose two different filtering approaches. The first, called

ulti-PAIS , performs aggressive cross-attribute (NFA) state transi-

ion filtering in sequence scan. The second approach, called Dy-

amic Filtering , pushes the most selective equivalence test down

o sequence scan and then pushes all other tests to sequence

onstruction. This approach cannot filter as many events in se-

uence scan, thus having more instances in the stacks, but does

ot need to pay the overhead of cross-attribute transition filtering

nd multi-stack maintenance. 

The same principle can be applied to simple predicates and

ime windows. Again, there are two approaches for pushing time

indows down which are not mutually exclusive. The first is to ap-

ly windows in sequence scan and the second in sequence cre-

tion. The former filters some of the events, so that they are not

ncluded in the stacks, and the latter searches those stacks and

hecks the time window on-the-fly for each event sequence. 

.1.2. Postponing with early filters 

Zhang et al. (2014) use an optimization to prune inconsis-

ent events based on value predicates on the Kleene Closure op-

rator. Although predicate evaluation is basically performed (or

ostponed) during edge evaluation for state transition in the NFA

odel that they adopt, they propose an additional filtering tech-

ique to prune repeating events, based on an existing predicate

n them. They advocate that it is incorrect to evaluate all value

redicates on-the-fly as events arrive, since there is the case of

on-deterministic actions on the NFA model. The latter may re-

ult in multiple results when using the skip till any match selection

trategy. Hence, they categorize the value predicates based on their

onsistency into 4 categories that can be applied to the Kleene Clo-

ure operator. 
– True-value consistent predicates. Such a predicate denotes 

that when the result of the current event compared to all

selected events is true, then it is always true and it is safe to

include such an event without further evaluation of its pred-

icate. For instance, in pattern SEQ(a, b+, c) predicate b[i].val

> max(b[1..i-1].val) once true remains like this for a partic-

ular b [ i ]. val . Other events that do not satisfy this property

are marked as unsafe, not discarded but re-evaluated in the

result construction phase. 

– False-value consistent predicates. Events that are evaluated

as false under such a predicate, compared to the selected

events, can be immediately discarded as they will always be

false and never qualify. As an example, in pattern SEQ(a, b+,

c) predicate c.val > max(b[1..i].val) is and remains false for

the current instance of event type c. Other events must be

checked again in the result construction phase. 

– True and false-value consistent predicates. Events of this

category are safe if they pass the predicate evaluation, or

discarded if they do not. For instance, in pattern SEQ(a, b+,

c) predicate b[i].val > 5. 

– Inconsistent predicates are predicates that are neither true-

value nor false-value consistent. This category’s pruning is

postponed until the result construction phase. As an exam-

ple, in pattern SEQ(a, b+, c) predicate b[i].val > avg(b[1..i-

1].val). 

Based on the above categories, it can be decided whether a

redicate can be evaluated on-the-fly and prune nonconforming

vents, or such an evaluation must be postponed until the result

reation phase. 

.1.3. Hashing for equality predicates 

Mei and Madden (2009) address the issue of equality predi-

ates and multi-class equality predicates. They propose the use of

ash-based lookups, whenever it is possible, in an effort to reduce

earch costs for equality predicates between different event classes

types). Multi-class predicates can be attached to the operators as

ther predicates. 

The mechanism employed involves the use of buffers of events

n all nodes of the utilized tree model representation, with the

eaves being primitive events and the internal nodes being oper-

tors. Based on the equality predicate, a hash table is created in

he buffer (of the leaf node that takes part in the equality predi-

ate) as events arrive and when the predicate is employed (further

p in the tree) hash lookups are performed to prune results, that

o not conform to the predicate. 

Hash tables are created on the buffers of leaf nodes, either to

ome or to all the involving events depending on the used oper-

tor. If the operator is AND, then a hash-table is created on all

articipating event buffers. If the operator is SEQ a hash table is

reated to the first event in the sequence that takes part in the

redicate. Hash construction can be easily extended with multiple

quality predicates , where the use of a secondary hash table is pos-

ible for sequential patterns to facilitate faster pruning of irrelevant

vents. 

.2. Query rewriting/reordering 

Query rewriting is a popular optimization technique that allows

 non-optimized query expression to be rewritten in a more ef-

cient one. The rewritten query must produce exactly the same

esults as the original one and must exhibit enhanced perfor-

ance upon the optimization objectives. There are several papers

n the literature that adopt this optimization technique and though

chultz-Moller et al. (2009) poses as a distributed solution, since

ptimizations are performed in a central node, here we view it as

 centralized technique. 
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Schultz-Moller et al. (2009) address the issue of query rewriting

in three operators Union, Next and Exception , that have the same

functionality as the aforementioned OR, SEQ and NOT respectively.

The basic intuition is to transform the original patterns to equiva-

lent ones with lower CPU cost. For the Union (OR) operator, since

the detection of the complex event relies on detecting one involved

event without any order, different ordering of the events may re-

sult in more efficient evaluation. Based on the commutative and

associative property of this operator, the authors map the problem

to finding the optimal prefix code for compression of data, i.e., a

set of bit strings in which no string is the prefix of the other. A

prefix code is also represented by a binary tree, where each inter-

nal node is a one or a zero and each leaf represents the frequency

of the character. They use the greedy Huffman algorithm to create

that tree and the optimal order of the Union patterns is generated

with a depth first traversal. The Next (SEQ) operator also has the

associative property but not the commutative one, i.e., the order of

the events cannot be altered. The authors propose a dynamic pro-

gramming solution where the lowest cost pattern can be found by

enumerating all equivalent patterns and computing each cost. The

same principle applies for the Exception (NOT) operator and there-

fore the same algorithm with the Next operator is used. 

Mei and Madden (2009) tackle the issue of query rewriting

using algebraic rule-based transformations. The transformations,

performed by the authors, differ from the solution proposed by

Schultz-Moller et al. (2009) since the basic transformation is al-

gebraic and thus can alter the used operators. As an example, the

expression SEQ(A, AND(!B, !C), D) is equivalent with the expres-

sion SEQ(A, !OR(B, C), D) where ! is the NOT operator. They imple-

ment a series of such equivalence rules that can generate an ex-

ponential number of equivalent expressions for a given query pat-

tern. Instead of searching all those expressions exhaustively, they

transform the query when the rewritten expression has a smaller

number of operators or the expression contains lower cost opera-

tors. The higher cost operator is the AND operator, followed by the

SEQ operator and the less expensive one is the OR operator based

on their cost model. After the query is simplified the authors pro-

pose an algorithm for reordering the operators in a similar con-

ceptual way as in Schultz-Moller et al. (2009) . Using a dynamic

programming algorithm, they try to find the optimal order of the

events, that are included in the query. The optimal order though in

this implementation can be found in a set of different (left-deep,

right-deep, bushy) tree structures, which are derived from a single

logical query plan. They use an algorithm which essentially enu-

merates the power set of the operators. 

The technique proposed in Kolchinsky et al. (2015) does not ex-

plicitly rewrite a given event query, but silently reorders the in-

corporation of incoming events in partial matches until the right

moment comes. More precisely, the novel lazy evaluation approach

proposed in Kolchinsky et al. (2015) utilizes incoming events on

partial or full pattern match evaluation not according to the or-

der by which event type instances arrive, but in increasing order

of event type selectivity. That is, events of more frequent event

type participating in a posed query are buffered until the rarer

event type instantiations are received. After the reception of the

rarer event, the evaluation of the infrequent and buffered events is

performed to determine potential pattern matches. In order to per-

form the lazy evaluation approach two NFA variants are invented.

The first one, termed Chain-NFA, is used in cases where selectiv-

ity of events is known in hand. The second, termed Tree-NFA, uses

a tree like structure to dynamically and adaptively route incoming

events according to their frequency (selectivity). Interestingly, Tree-

NFAs are useful when selectivity is not known in hand and may be

learned and altered on-the-fly as new events arrive. 

Rabinovich et al. (2011) present an assertion-based pattern

rewriting framework for two operators, namely all (AND) and se-
uence (SEQ). They advocate the splitting of patters into discon-

ected components that can be independently processed. The ac-

uisition of the disconnected components is achieved through the

ollowing steps: (a) the pattern is converted into conjunctive nor-

al form (CNF) by employing De Morgan laws, (b) a variable de-

endency graph is created, to recognize independent components,

here variables in the WHERE clause of the query are repre-

ented by nodes and their connection by edges, (c) the pattern is

plit into maximal number of independent partitions which imply

he finest granulation that can be performed. This work combines

oth rewriting (as in Mei and Madden, 2009 ) and reordering (as

n Schultz-Moller et al., 2009 ) to enable query granularization. 

It is worth noting that the approaches of Mei and Madden

2009) ; Kolchinsky et al. (2015) are the only ones that include pro-

isions for adapting the produced query plans to changing data

istributions, as marked in Table 4 . In order to recompute the plan

n-the-fly, Mei and Madden (2009) maintain a running estimate

f event statistics, using sampling operators attached to the leaf

uffers of the utilized tree structure. In this implementation, sim-

le windowed averages are used to maintain the rates of each in-

ut stream and the selectivity of each predicate. When any statistic

sed in a plan varies by more than some error threshold, the oper-

tor ordering algorithm is rerun. A new plan is installed, provided

hat the performance improvement predicted by the cost model is

reater than another, performance related, threshold. On the other

and, the Tree-NFA representation of Kolchinsky et al. (2015) aids

n dynamically routing events on-the-fly, according to their selec-

ivity. 

.3. Memory management 

Since the input to CEP approaches is an infinite stream of

vents and queries are bound with time constraints based on the

pecifications of the WITHIN clause, intermediate results (partial

atches) can grow exponentially. They can, therefore, fill all avail-

ble memory since time windows can be as large as desired. The

emory management feature though is not handled explicitly in

ost approaches, since it also affects system’s throughput in most

ases. We choose not to categorize as memory management op-

imizers approaches inventing efficient indexing structures ( Wu

t al., 2006; Mei and Madden, 2009 ) in their effort to optimize

hroughput or other criteria, since these approaches do not directly

im at shedding the storage load. 

On the contrary, the shared buffer approach presented

n Agrawal et al. (2008) does constitute a mechanism aiming at

educing memory usage. Agrawal et al. (2008) use buffers to en-

ode partial and complete matches for each query run. The basic

rinciple is to share both storage and processing across multiple

uns in the NFA-based query plans. The initial approach is to build

 buffer for each single run and then merge such individual buffers

nto a shared one, for all the runs. 

Each individual buffer contains a series of stacks, one for each

tate of the NFA except the final state. Each stack contains pointers

o events that triggered a transition in the NFA’s state and thus

re included into the buffer. Further, each event has a predecessor

ointer to the previously selected event in either the same stack

r the previous one. For any event that triggered a transition to

he final state, a traversal across the predecessor pointers reveals

he full detection of a complex event, as specified by the evaluated

uery. 

Consequently, those buffers are combined into a single shared

ne to reduce the memory and processing overhead. This process

s based on merging the corresponding stacks of individual buffers,

y merging the same events in those stacks while maintaining

he predecessor pointers. This process though can result in erro-

eous results, since it is unable to distinguish predecessor pointers
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Fig. 7. Query evaluation and shared buffer creation example from Agrawal et al. (2008) . 
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rom different runs. To alleviate this problem an identifier num-

er(version) for each individual run is used to label all such point-

rs created in that particular run. An additional issue is that runs

annot pre-assign version numbers, since non-deterministic states

an spawn new runs at any time. Thus the version number is dy-

amically grown as the run proceeds. 

This technique guarantees that the version number is compati-

le with a possibly ancestor run (spawned by it), since they would

hare a common prefix. The versioned shared buffer can thus en-

ode compactly all possible runs. To extract a detection of a com-

lex event, the algorithm takes the version number of the run and

raverses from the most recent event (in the last stack) along the

ompatible predecessor pointers to the event that started the run.

 detailed example with a query (a), its respective NFA and an

vent stream example (b), the generated results (c) and the gen-

ration of the versioned shared buffer from the individual ones (d)

s illustrated in Fig. 7 . 

We conclude this section with Table 4 which compactly

resents the main optimization strategies adopted by each of the

pproaches discussed so far, as well as those that will be presented

n the following section. It can be easily observed that predicate-

ased pruning and query rewriting/reordering are the most well

tudied optimization means. As Table 4 shows, efficient buffer us-

ge is explicitly considered only in SASE, whereas the rest of the

ptimization strategies cited in the table are dedicated to serving

ertain approaches. 

. Probabilistic model – centralized techniques 

The current section reviews approaches that have been pro-

osed in the literature of CEP under uncertainty. In that, apart from

he volume and velocity aspects, we also concentrate on the di-

ension of veracity in Big Event Data. As in Section 3 , we classify

orresponding techniques to centralized due to the fostered archi-

ectural scheme of the underlying network that includes a single

rocessing node. Surveys especially focused on uncertainty issues

an also be found in Artikis et al. (2012) ; Alevizos et al. (2015) .

ere, we concentrate on aspects closely related to query processing

nd optimization in the probabilistic context. Again, Table 4 out-

ines the optimization strategies adopted by the approaches dis-

ussed in this (and the previous) section, while Table 5 summa-

izes their complexities. Before presenting specific approaches, we
egin our study by discussing the impact of uncertainty on query

rocessing compared to what has already been presented. 

.1. Impact of uncertainty on query processing 

Consider the case where uncertainty in event occurrence, as de-

ned in Section 2.1.2 , is examined. Content uncertainty manipula-

ion is analogous upon having a mechanism, as the one described

n Cugola et al. (2014) , by which uncertainty in event content is

nterpreted to uncertain event occurrence for composite events. In

ection 2.1.2 , under uncertain event occurrence, we made the con-

ention that any given event is represented along with its occur-

ence probability < e, p e > . The complementary case, that of e

ot occurring, can be denoted as < ¬ e, 1 − p e > . Now, assume that

he pattern operator, against which complex events are detected,

ntails n event types in its input list (also see Section 2.2 ). In gen-

ral, an event tuple may possess more than two probabilistic in-

tances Zhang et al. (2010) , but even for two distinct cases for

 single event occurrence there exist up to 2 n possible instances

f inputs for the chosen operator that need to be examined for

atching the given pattern. Each such instance is considered a pos-

ible world . As a consequence, the actual input to the evaluation

rocess of an event query is a set W of cardinality | W | = 2 n , in-

tead of a single event instance in the case of deterministic event

odel. Previous works ( Chuanfei et al., 2010; Ré et al., 2008; Shen

t al., 2008; Zhang et al., 2010; Wang et al., 2013; Cugola et al.,

014 ) employ the model of possible worlds in order to perform

vent query evaluation. 

Having elaborated on the way uncertainty affects the input

f query evaluation mechanisms, we then focus on the internals

f query processing. Techniques on pruning intermediate results

uring pattern matching evaluation, such as those presented in

ection 3 , are still applicable in order to exclude possible worlds

hose instances are inconsistent with the examined query pat-

ern. These techniques, though, defy the uncertainty dimension. A

orm of a predicate that is tailored for probabilistic event handling

s that of a confidence threshold that can be incorporated in the

osed query to filter possible worlds that are highly improbable,

s discussed in Section 2.2 . 

A direct effect of that HAVING clause is that intermediate stages

f pattern evaluation can output confidence values below the given

hreshold thus enabling the CEP system to prune further evaluation
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of the corresponding possible world. The ability of pruning inter-

mediate results based on the above confidence parameter is explic-

itly taken into consideration in SASE+ inspired techniques in Zhang

et al. (2010) ; Shen et al. (2008) ; Chuanfei et al. (2010) ; Wang et al.

(2013) and is noted in Table 4 as a predicate-based pruning (op-

timization) technique. The confidence value of a pattern operator

expresses the occurrence probability of a complex event in the RE-

TURN clause of the above query, which in turn outputs a number

of possible worlds for the complex event it detects. 

Admitting uncertainty in primitive events requires the defini-

tion of a mechanism that maps the probability values attached

on them to uncertainty quantifications on the derived, complex

events. Taking one step further, a similar formula needs to be uti-

lized to estimate the uncertainty of complex events that are com-

prised of other complex events and/or primitive ones. Given an op-

erator such as SEQ, AND, OR and so on, a matched pattern respon-

sible for the detection of a complex event receives propagated un-

certainty values based on the assumptions that are made regarding

the (in)dependence of the events it receives as input. 

Different uncertainty propagation assumptions may affect

memory usage. We thus review the assumptions existing uncer-

tain CEP techniques employ to attach probability values to com-

plex events. Due to its simplicity the most popular assumption

employed in Wasserkrug et al. (2012a;2008;2012b); Zhang et al.

(2010) is the event independence assumption , at least up to the level

of primitive events. Cugola et al. (2014) considers both primitive

and complex events to be independent since it considers general

event hierarchies and traces, where existing dependencies would

severely impact the complexity of processing. The approaches in Ré

et al. (2008) ; Wang et al. (2013) employ the Markovian hypothe-

sis to propagate uncertainty among events. That is, the probabil-

ity of an event occurrence depends only on the probability of the

very previous event (given an event selection strategy) and not

on the sequence of events that preceded it. Eventually, the works

in Cugola et al. (2014) ; Wasserkrug et al. (2012a;2008;2012b) ; fos-

ter Bayesian Networks (BNs) to propagate uncertainty along the

rules describing complex events, while Chuanfei et al. (2010) use

Bayesian formulas to determine the uncertainty of complex events.

In a nutshell, a BN is a Directed Acyclic Graph (DAG) in which

nodes represent random variables and an edge between nodes rep-

resents a dependency between them, in the sense that the event at

the beginning of the edge affects the event towards the direction

of the edge. 

4.2. Frameworks considering ubiquitous uncertainty 

We first elaborate on techniques that account for all uncer-

tainty flavors discussed in Section 2.1.2 , from content uncertainty,

to uncertain event occurrences and uncertain rules. This cate-

gory includes the works of Cugola et al. (2014) ; Wasserkrug et al.

(2012a;2008;2012b) . The framework that was initially modeled

in Wasserkrug et al. (2012a ) and later enhanced in Wasserkrug

et al. (2008;2012b) assumes independent primitive events, while

dependencies among primitive and complex as well as between

complex events are inferred based on BNs. A basic structure that

is employed involves a triggering graph as marked in Table 2 .

This graph expresses the rules (corresponding to operator matches

in the previously discussed frameworks) under which complex

events, either derived from primitive ones or lying in nodes of

complex event hierarchies, are triggered (occur). The triggering

graph together with a quasi-topological order, defines the trigger-

ing order or stated differently the required order of events’ oc-

currence. Such a graph is static and represents event types and

their relationships that form the rules. An algorithm is proposed

which, as events arrive in the CEP system, automatically and pro-

gressively constructs a Bayesian network examining a particular
ule’s instantiation. BNs essentially instantiate parts of or complete

ules expressed by the triggering graph by considering event in-

tances instead of generic event types. Furthermore, they quantify

vent dependencies in Conditional Probability Tables (CPTs). How-

ver, the CPTs and the BN may be constructed from scratch with

ach new event, due to the non-monotonic reasoning of the rules,

hich is inefficient. To improve efficiency, a sampling algorithm is

roposed to obtain a sample from the BN without actually con-

tructing it. Instead, a sample for the primitive events is generated

sing the mutual independence assumption. Then, the algorithm

raverses the rules in the triggering graph and triggers events ac-

ording to each rule, given the sampled event history. In addition,

he instantiation of complex events according to each rule is based

n probabilistic rule definitions. The proposed sampling algorithm

bviously introduces an approximate inference process to improve

fficiency (throughput in Table 2 ) on the counterweight of sacri-

cing accuracy. However, this kind of approximation differs from

he one caused by the confidence threshold in the HAVING clause

f the posed query ( Section 2.2 and Section 2.5 ). As already dis-

ussed, the latter constitutes a predicate-based pruning scheme,

hile the sampling algorithm of Wasserkrug et al. (2008) heuris-

ically assesses materialized event probabilities. Hence, it is noted

s a separate optimization means in Table 4 . 

The CEP2U model discussed in Cugola et al. (2014) also consid-

rs content, occurrence as well as rule uncertainty. For each un-

ertain attribute of an event, the information received by the CEP

ngine is a couple: < value, pdf > where value is the observed

alue of the attribute and pdf is its probability density function.

rimitive events hold zero uncertainty about their occurrence, but

ossess uncertain attributes, while the probability of occurrence

f complex events is derived from the uncertainty of primitive

vents’ attributes. The uncertainty in attributes of complex events

s again derived from their ancestors by combining their pdf s un-

er the independence assumption. Eventually, uncertainty in rules

s modeled, similarly to Wasserkrug et al. (2008) , utilizing BNs

hich are constructed independently of the previously mentioned

ncertainty propagation process. In other words, CEP2U produces

wo probabilities of occurrence for complex events and hierarchies.

ne by consulting uncertainty related with events and one by in-

ependently examining the uncertainty coming from rules mod-

led by BNs. The two are synthesized by computing their prod-

ct. The result is the uncertainty of the complex event occurrence.

EP2U’s model is validated by a corresponding implementation in

he T-Rex engine ( Cugola and Margara, 2012a ). To match incom-

ng events based on posed predicates an algorithm is used that

valuates constraints and their satisfaction probability sequentially

gainst each incoming event. Additionally, using the functionality

f T-Rex ( Cugola and Margara, 2012a ), CEP2U can make use of a

hread pool to process multiple rules (patterns) in parallel. 

.3. Approaches considering temporal uncertainty 

The SASE-inspired framework of Zhang et al. (2010) focuses on

he uncertainty embodied in the temporal reference of streaming

vents. A time interval is used to bound the occurrence time of

ach event and the timestamps of different events are assumed

o be independent of each other. The set W of all possible worlds

s derived by breaking, based on a given time granularity, events’

ime intervals to distinct time values of so called point events. The

uthors initially present their point-based framework that entails

hree steps. A stream expansion step by iterating all over the possi-

le timepoints in events’ intervals. A pattern matching step follows

here, given a point event that generates an initial partial match

f a pattern, “skip till any match” (see Section 2.3 ) is used to dy-

amically construct a DAG. The latter DAG is rooted at the given

vent and spans the point event stream, such that each path in
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his DAG corresponds to a unique match starting from the root. A

atch collapsing phase first collects matches as they are produced

y the pattern matching module and groups them based on their

ignature (unique sequence of event ids in a match). It then col-

apses them to a particular format before confidence values can be

alculated. Since this basic approach results in enumerating expo-

entially many point based matches, a second event-based evalua-

ion framework is proposed. In the latter framework, the algorithm

onceptually walks through the DAG of events three times: first

orward according to the pattern, examining the tightness of the

ower bounds of event intervals belonging to a potential match;

econd backwards, for doing the same with the upper endpoints

f each event interval, and third backwards again, checking the

onsistency of the matches with the time-based query window. A

hird framework is introduced considering events in their arrival,

nstead of query, order. 

In the same spirit, the recent work of Zhou et al. (2014) loosens

he event independence assumption made in Zhang et al. (2010) ,

onsidering dependencies among some of them. Zhou et al.

2014) propose an index structure for event data where the tem-

oral dependency relationship of events is captured using a set of

nteger codes. These also aid in deducing the ordering of events

ithin formed dependency groups. An additional structure is used

o index all the attributes and time intervals of the events. Based

n the above pair of indexes, algorithms are developed to effi-

iently extract patterns from the event data. 

.4. Query rewriting in the probabilistic context 

The Lahar CEP system proposed in Ré et al. (2008) presents an

pproach for evaluating pattern queries over correlated streams.

n Lahar’s approach primitive events streamed into the system are

agged with their corresponding probabilities. Two modes of oper-

tion are considered: real-time or archived. In the real-time sce-

ario, the system does not possess correlation information among

treams. Thus, it assumes stream independence, but also Marko-

ian correlations for events belonging to the same stream. On the

ther hand, in the archived scenario Markovian streams are con-

idered. A query of interest is broken down to a number of sub-

oals and query classes are identified based on the variables that

re shared amongst the subgoals. Efficient algorithms for process-

ng each query class are accordingly proposed. The first class of

ueries involves those termed as regular queries . Regular queries

ainly consist of selections and do not share any variables among

heir subgoals. They are translated to regular expressions using a

our step procedure which initially defines a set of symbols on

hich a simple automaton operates. Then, the W set of all pos-

ible worlds is translated into a sequence of subsets of the pre-

ious symbols, while a third step involves query translation into

 regular expression. Finally, the distribution of the Markov chain

hat is induced by W is recovered and used to evaluate the regu-

ar expression. Regular query evaluation can be made in real time

ince regular queries’ evaluation cost is linear to the number of

ossible worlds. Moreover, their evaluation can be made in an in-

remental fashion. Extended regular queries , apart from selections,

llow for joins and projections and possess shared variables across

ll their subgoals. As a result, they can be decomposed to regular

ueries and be processed independently, synthesizing probabilities

n the final outcome based on the independence assumption. Safe

ueries involve more complicated projections and sequences, while

nsafe queries are hard to evaluate and thus an approximation al-

orithm is proposed. Both safe and unsafe queries are only des-

ined for the archived mode which goes beyond the focus of our

iscussion. 
.5. Event processing with lineage 

The work in Shen et al. (2008) considers uncertain event oc-

urrence. Following the SASE+ query language paradigm, and more

recisely concentrating on the SEQ operator, the query under study

ses the (probabilistic) confidence predicate along with a corre-

ponding threshold in the HAVING clause for qualifying simple

r complex events based on the uncertainty values computed for

hem. Consequently, as already discussed ( Section 2.2 ), approxi-

ate inference is performed using the predefined threshold for

runing. The work considers the possible worlds model to feed

orresponding instances to a SEQ operator for testing matches. In

rder to perform the pattern matching, NFAs are used to repre-

ent the structure of an event sequence. To keep track of simul-

aneous state instances, an auxiliary data structure, namely Active

nstance Graph (AIG), is employed. The AIG is a DAG connecting

vents with previous candidate events, i.e. whose possible occur-

ence may lead to the recognition of a complex event. In particular,

or matching patterns, sequence scan is called when new events

rrive and a search regarding the possible predecessors in the ac-

ive instances is initiated. By backward-traversing the AIG, the se-

uences that, even partially, satisfy a complex event definition may

e retrieved. Dynamic filtering over predecessors also using the

onfidence threshold or other predicates is performed and even-

ually the DAG is maintained by adding active instances that sat-

sfy the conditions. When an accepting state is reached, sequence

onstruction is called to generate resulted sequences. As regards

he dependence hypothesis, lineage, representing sufficient depen-

ency information of query results, captures where an event came

rom. Lineage is represented as a function that associates each pos-

ible world with a Boolean formula whose symbols are other pos-

ible worlds involving primitive events or event sequences. 

.6. A single-pass, pruning and filtering algorithm 

Chuanfei et al. (2010) handle uncertain event occurrences by

roposing an algorithm that requires a single scan over the proba-

ilistic stream in order to detect complex events satisfying a given

vent query’s requirements. The work considers probabilities of se-

uences of events, i.e., the SEQ operator, to be computed based on

he Bayesian formula. To efficiently update and query the corre-

ponding conditional probabilities an indexing structure, namely

he Conditional Probability Indexing Tree (CPI-Tree), is used. The

lgorithm employs NFAs to perform pattern matching and Chain

nstance Queues (CIQs) to organize streaming events based on their

ype and order of arrival. CIQs are composed of nodes, one for

ach state of the respective NFA, where relevant event instances

re stored. In that, CIQs’ nodes resemble the stacks used in Agrawal

t al. (2008) . The main difference is that the links connecting CIQs’

odes head only forward with respect to the position of the NFA

tate a node corresponds to. 

The pruning and filtering algorithm operates in two phases.

uring the enter phase, event instances that remain capable of ag-

regating sequences that satisfy a given confidence threshold are

ot pruned and are admitted to the corresponding CIQs’ nodes. In

he search phase, CIQs’ nodes are scanned starting from the one

orresponding to the first state of the NFA and heading forward.

he algorithm builds sequences by connecting event instances of a

ype involved in the evaluated pattern to relevant event instances

f the next event type in the pattern, meanwhile calculating the

robability of each chain. A confidence threshold is used to fil-

er out chains that are highly improbable. Eventually, an additional

ayer of approximate inference regards the utilization of a toler-

nce parameter. Tolerance is computed based on the value of the

aximum conditional probability so far and the user specified con-

dence threshold. It is subsequently attached to the confidence
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threshold so as to increase the potential for pruning while ensur-

ing high recall in the detected sequences. 

5. The distributed case 

There are two ways of distributing complex event processing.

The first is to centralize the stream monitoring and distribute, or

more precisely parallelize, the complex event processing to multi-

ple sites, as proposed by Schultz-Moller et al. (2009) . The second

is to distribute the stream monitoring to multiple sites (which re-

ceive multiple input streams, one per site) and centralize the pro-

cessing to a central site, as proposed by Akdere et al. (2008) . No-

tably, the work in Wang et al. (2013) examines both approaches in

the probabilistic context, although communication related perfor-

mance reports of the distributed monitoring rationale are absent

from the empirical evaluation. This is denoted in Table 4 by the

missing mark in the communication cost column of Wang et al.

(2013) . 

5.1. Distributed processing 

The work in Schultz-Moller et al. (2009) discusses the idea that

distributing the query processing across multiple nodes, i.e., of a

computer cluster, drastically enhances the system’s performance in

terms of throughput. While not considering the sources to be part

of the system, communication is performed with event messages

through high-rate dedicated lines. As such, the system architec-

ture differs from the distributed monitoring of event generating

sources, that we will review in the next subsection. Although many

sources can issue events, these are routed through the central node

to the processing nodes. The central node has all the available in-

formation, concerning the deployed operators, but does not per-

form any processing of the incoming events. 

The basic insight is that parallelizing the processing via dis-

tributing query operators (see Table 4 ) elevates the problem of

memory management, as well as system throughput. Memory

management is enhanced, since the partial matches (automaton

instances) are distributed through many nodes, and are therefore

able to deal with larger time windows. Throughput is also opti-

mized, through the fact that each node receives less events for less

queries, thus overall the system processes more events per time

unit. 

The main optimization in Schultz-Moller et al. (2009) is that

the queries are rewritten to more efficient ones, as described in

Section 3.2 . The reason for grouping their optimization technique

as centralized is that all the optimizations are performed in the

central node and only the processing is distributed. This is per-

formed with the use of a greedy algorithm for choosing operator

deployment plans. The algorithm reuses already deployed opera-

tors and deploys the remaining operators in a bottom-up fashion.

Existing operators are stored in a hash map for fast retrieval. First,

a submitted query is traversed top-down to find the largest equiv-

alent deployed operator in the hash map, if any, starting with the

entire query. If found, the expression is replaced with a marker

containing the operator identifier and location to allow opera-

tors to be connected once deployed. Next, the remaining opera-

tors are deployed bottom-up. The assignment of each operator is

selected by recursively placing the left and right sub-expressions

of the operator and then the operator itself. An operator is as-

signed by calculating the cost of placing the operator on each

node and selecting the lowest cost node. This approach practi-

cally selects good deployment plans, but they are not necessarily

optimal. 
.2. Distributed monitoring 

The work in Akdere et al. (2008) considers an architectural

cheme of multiple streaming sources and a single base-processing

ode (see Fig. 8 ). Each source is a receiver of an input stream of

vents and the base node is a coordinator node that communi-

ates with all the sources, for detecting complex events. In such

 scheme, as stated in previous sections, the main concern is that

he latency for detecting the complex events is user (or system)

pecified and that the communication cost for communicating with

he base node (coordinator) is controlled. 

With the above in mind, plans are generated trying to balance

he communication cost with the detection latency. The approach

ses FSMs for the physical event detection plans and event detec-

ion graphs for the logical model representation of all the existing

ueries. The event detection graph depicts (in a single graph) all

vailable queries, with leaf nodes being primitive events and in-

ernal nodes being operators or complex events. Using the event

etection graph, pareto optimal plans are created that take into ac-

ount event sharing across multiple queries, in the sense of Multi-

uery optimization , as well as event frequencies and acceptable la-

ency values. With these optimal plans being deployed, based on

he cost-latency model that they propose, they are able to gener-

te monitoring plans (FSMs), which conform with the chosen cost

nd latency constraints. These plans are then distributed across the

ources and through push and pull messages the coordinator de-

ects complex events. The activation of the FSM’s final state, after

he occurrence of all the related events in the way that the query

pecifies, signals the detection of a complex event. 

Based on the number of states of the FSM (see Fig. 2 ), they

an monitor any number of events that participate in the query.

he activation of a new state (through the detection of the cur-

ent state’s primitive event) marks the monitoring of a new set of

vents. The basic idea behind the number of selected states of an

SM (which is the monitoring order of events) is that; “process-

ng the higher frequency events conditional upon the occurrence of

ower frequency ones eliminates the need to communicate the former

n many cases, thus has the potential to reduce communication cost

n exchange of increased detection latency” ( Akdere et al., 2008 ). In

hat, a trade-off between latency and communication exists, by re-

rdering or rewriting (merging) FSM states. 

The plan generation is done by traversing the event detection

raph in depth-first manner, running the plan generation algorithm

n each node, in order to create a set of plans with a variety of

ost and latency characteristics. At the parent node of each com-

lex event, where all plans are propagated, the selection of the

lan marks the selection on the children nodes. This hierarchical

lan composition takes also into account shared primitive events

y multiple queries, so that it will be taken into consideration at

he plan selection. The plan generation algorithm is a dynamic pro-

ramming algorithm that achieves the minimum global cost for a

iven latency value, but has exponential time complexity and thus

s applicable to small problem instances. This is the reason that

he authors also applied a heuristic algorithm that runs in polyno-

ial time and, although it cannot guarantee optimality, practically

roduces near optimal results. 

Plan execution commences by activating the FSM’s starting

tate that triggers the continuous monitoring of some primitive

vents at the various sources, by informing them which events are

f interest by the coordinator. Once such an event is detected at a

ource node, it is pushed to the coordinator who makes the transi-

ion in the respective FSM to the next state and then pulls from the

ource nodes the next primitive event that the next state monitors.

nce a final state is reached, inside the time window specified by

he query, the coordinator detects a complex event. 
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Fig. 8. Distributed System Architecture (figure from Akdere et al., 2008 ). 
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1 Each event type in this case can be viewed as an identity operator returning for 

each input event instance, the instance itself. 
Another optimization employed in this paper is the use of spa-

ial and attribute-based constraints. The main intuition is simi-

ar to the centralized optimization that “pushes predicates down”

 Section 3.1 ), but this time the efficiency objective regards reduced

ommunication. By evaluating the predicates before the events are

ent to the central node, unqualified events are pruned and do not

dd overhead to the overall system performance. 

.3. Distributed monitoring over probabilistic event streams 

The sole technique considering probabilistic CEP monitoring

ver a number of distributed sources appears in Wang et al. (2013) .

n particular, Wang et al. (2013) discuss both distributed process-

ng in terms of parallelization, as Schultz-Moller et al. (2009) do,

ut also distributed monitoring in a fashion similar to Akdere et al.

2008) . The work proposes algorithms for parallel, distributed and

ierarchical complex event detection under uncertainty. In particu-

ar, it takes into consideration uncertainty in event occurrence , sup-

orting approximate inference by the definition of the desired con-

dence threshold in the HAVING clause of the posed query. Prim-

tive event instances from different streams are considered inde-

endent; however, events of a single stream evolved on a SEQ op-

ration are assumed to possess the Markov property. 

In its algorithmic part, Wang et al. (2013) extend the basic

uilding blocks of Shen et al. (2008) , that is Non-deterministic

inite Automata and the Active Instance Graph (AIG) structure.

odes in an AIG graph correspond to Active Instance Stacks (AISs)

f events that are received by the CEP system. As they arrive,

vents of the same type are stacked in an AIS, which is a node

n the AIG, based on their event type and the order of arrival. 

Initially, to enable parallelization, a plausible observation is

ade that the events which are related to state j of the NFA in

he AIS of a partition P i can be linked to the events which are re-

ated to state j − 1 in the AIS of partition P i −1 . That is because the

imestamp of the events in P i is larger than the timestamp of the

vents in P i −1 , under the assumption that input events are ordered

nd partitions are based on timestamps. In order to be suited in

he context of uncertain event processing, the links connecting AIS

odes are tagged by the corresponding probability values com-

uted based on the Markov property. The new structure is called

robabilistic AIS (PAIS) and resembles the partitioned structure of

ig. 6 with probability values attached in each stack element. 

As regards the complex event detection over distributed

treams, using the same structures, the moving temporal result

pproach is dictated as the preferable manner to accomplish the

ask. According to this approach, each node separately creates its

wn PAIS according to the local event stream. Then, to reduce

ommunication costs in the distributed setting, the node with the

argest PAIS is selected as the main node (similar to a coordina-

or in Akdere et al. (2008) ) and the rest of the distributed sources
end their PAIS to that node. Hierarchical probabilistic CEP is han-

led by different pattern matching components (agents) which can

e connected through channels to form an EPN. 

We conclude this section by summarizing in Table 5 the com-

lexity of the approaches presented in Sections 3 and 4 and

he current section, as well. For presentation uniformity reasons,

hough different techniques utilize different optimization strate-

ies (see Table 4 ), we abstract the algorithmic parameters using

 to summarize the number of event types, automaton states or

uery pattern operators 1 involved in a query. S denotes the in-

ut size which is a (potentially unbounded) window of observa-

ions coupled with the number of possible worlds for probabilis-

ic techniques. Obviously, n � S holds and in practice n receives a

mall value even for more complex queries. Furthermore, we use

 to denote the set of processing nodes or sites for distributed ap-

roaches. Eventually, we make an attempt to extract the complex-

ty of approaches that do not explicitly report it by studying their

lgorithmic description. We stress, however, that this is just our

stimation which we mark by underlining respective references

n Table 5 . The work in Zhang et al. (2014) presents an exten-

ive study on performance bottlenecks, analyzing the complexity

f event pattern queries and commenting on features that render

vent queries computationally expensive. 

. Issues on CEP in cloud computing platforms 

In our study so far we dealt with techniques opting for effi-

ient query processing over unbounded, high speed event streams.

oreover, we integrated studies on uncertain events as well as dis-

ributed architectural settings with geographically dispersed pro-

essing nodes. In that, we described the status and capabilities

f current approaches regarding the manipulation of the volume,

elocity and veracity aspects of Big Event Data as promised in

he introductory part of our work. Nonetheless, Big Data also

equires exceptional hardware technologies to efficiently process

arge quantities of data within tolerable elapsed times, the char-

cteristics of which are not explicitly taken into account by the

echniques discussed so far. 

The cloud computing paradigm entails access to such hardware

nfrastructures, more directly via the Infrastructure-As-a-Service

Iaas) capability, that serves as a pool of configurable comput-

ng resources. These resources include, but are not limited to, en-

anced processing power in multiple nodes, high memory capac-

ty and high speed network connectivity. With the emergence of
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Table 6 

Cloud-friendly optimization characteristics per approach. 

Approach Parallelism Adaptivity Distributed network Multi-query optimization 

Schultz-Moller et al. (2009) � × × ×
SASE ( Wu et al., 2006; Zhang et al., 2014; 

Agrawal et al., 2008; Zhang et al., 2010 ) 

× × × ×

Akdere et al. (2008) × × � � 

Zstream ( Mei and Madden, 2009 ) × � × ×
Kolchinsky et al. (2015) × � × ×
Wasserkrug et al. (2012b;2008;2012a) × × × ×
Rabinovich et al. (2011) × × × ×
Lahar ( Ré et al., 2008 ) × × × ×
Chuanfei et al. (2010) × × × ×
Shen et al. (2008) × × × ×
Wang et al. (2013) � × � ×
CEP2U ( Cugola et al., 2014; Cugola and 

Margara, 2012a ) 

� × × � 
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streaming cloud platforms (such as S4, 2 Storm, 3 Spark 4 and so on)

the way efficient event query processing in the cloud computing

paradigm is going to be achieved needs to be rethought. In or-

der to take the maximum benefit from the cloud, thus optimizing

query processing, the basic properties any candidate CEP technique

should possess are closely related to: (a) parallelism, in order to

take full advantage of the availability of multiple computing nodes,

and (b) the potential for elasticity . In a nutshell, elasticity refers to

the fundamental property of dynamically adding or removing re-

sources devoted to the execution of a query. 

First, with respect to the first of the above characteristics, it is

easy to conceive that parallel algorithms for efficient query pro-

cessing are capable of increasing throughput by taking advantage

of multiple processing nodes. Due to this fact the performance

objective, i.e. throughput or time cost is not altered compared to

what was discussed in Section 2.5 and summarized in Table 3 . An

additional criterion however relates to the utilization of the pro-

cessing nodes provided by the cloud platform. Overly high utiliza-

tion leads to low throughput which may in turn cause violations of

time requirements (restrictions) for resource occupation ( Doulamis

et al., 2014 ). On the other hand, under-utilization leads to ineffi-

cient resource usage increasing monetary costs. 5 

Second, the notion of elasticity resembles the adaptivity con-

cept discussed in Section 3.2 for the approaches in Mei and Mad-

den (2009) and Kolchinsky et al. (2015) , in the sense that it ad-

justs the query plan by adding/removing resources ( Mei and Mad-

den, 2009 ) or by shuffling ( Kolchinsky et al., 2015 ) event tuples

based on selectivity estimates. However, beyond that, elasticity dis-

tinguishes cloud computing from other paradigms, such as cluster

or grid computing, by also aiming at matching the amount of re-

sources allocated to the (event) processing task with the amount

of resources it demands, avoiding over- or under-utilization. The

degree to which the aforementioned matching is achieved may be

measured in various metrics ( Lehrig et al., 2015 ). 

Additional features desired in a cloud setting involve the need

for multi-query optimization approaches over cloud platforms. This

becomes a necessity so as to provide query plans that are opti-

mal for the whole set of event processing tasks of a particular

end user, thus alleviating monetary costs. To complete the pic-

ture, the realization of CEP over planetary-scale Big Data calls for

distributed, i.e. including a number of dispersed resource pools,

streaming cloud architectures ( Flouris et al., 2016 (to appear )). 

Given our previous discussion, Table 6 summarizes what we

choose to term “cloud-friendly characteristics” of the CEP ap-
2 http://incubator.apache.org/s4/ . 
3 http://hortonworks.com/hadoop/storm/ . 
4 https://spark.apache.org/streaming/ . 
5 For example, see https://cloud.google.com/pricing/ . 

 

 

 

 

 

roaches discussed in the previous sections. As the table demon-

trates, the vast majority of the discussed techniques totally ne-

lects the potential for cloud deployment by not synthesizing par-

llel processing with adaptivity in query plans. On the other hand,

ew works include provisions for parallelism ( Schultz-Moller et al.,

009; Wang et al., 2013; Cugola et al., 2014 ), geographically dis-

ersed resource pools ( Akdere et al., 2008; Wang et al., 2013 ) and

he potential for multiple query optimization ( Akdere et al., 2008;

ugola and Margara, 2012a ). What is more, is that despite the fact

hat Mei and Madden (2009) ; Kolchinsky et al. (2015) are the sole

pproaches that include adaptivity provisions, they are deprived

rom parallelization properties. In what follows, we focus on how

arallelism can be incorporated in CEP and in adaptivity/elasticity

spects that candidate CEP approaches should tackle upon target-

ng on deployments on cloud computing platforms. 

.1. Parallel CEP 

Recent literature ( Hirzel, 2012; Balkesen et al., 2013; Schultz-

oller et al., 2009; Wang et al., 2013 ) describes different strategies

f parallelism tailored for CEP. Based on the ideas discussed in the

forementioned works, upon operating on cloud platforms, event

uery processing can take advantage of multiple processing nodes

n one of the following ways: 

– Partition-based parallelization. Parallelism by partitioning

the input event stream based on certain predicates is dis-

cussed in Hirzel (2012) . The generic concept is to use one

or more attributes of incoming event tuples as the keys

in a partition-map that assigns certain tuples to a process-

ing unit. The partition-map ensures partition contiguity (see

Section 2.3 ) and partition isolation during the extraction of

pattern matches,i.e., by definition there is no need to syn-

thesize partial matches between partitions. This kind of par-

allelism favors the adoption of SASE ( Wu et al., 2006 ) in-

spired techniques and structures (such as PAIS) discussed

in Section 3.1 . Partition-based parallelization is a straight-

forward solution to incorporate partition contiguity as the

chosen event selection strategy. Nevertheless, the adoption

of an alternative event selection mode makes things more

complicated. The reason is that full pattern matches are not

isolated in a single partition anymore and an amount of

partial matches would need to be continuously pipelined

among processing nodes. Another important issue not ad-

dressed in Hirzel (2012) is that the user-defined partition

map and keys may need to be periodically adjusted to avoid

unbalanced workload on certain processing units and under-

or over-utilization upon changing data distributions. 

– State-based parallelization. State-based paralleliza-

tion ( Balkesen et al., 2013 ) entails that each processing

http://incubator.apache.org/s4/
http://hortonworks.com/hadoop/storm/
https://spark.apache.org/streaming/
https://cloud.google.com/pricing/
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unit is assigned a thread that is responsible for a certain

FSM or NFA state. The processing is distributed in the sense

that both buffer management as well as predicate-related

optimizations ( Sections 3.1 and 4 ) concerning individual

states are performed in each node individually. Partial

pattern matches derived in each processing node that pos-

sesses tuple instances about a particular state in the FSM

(or NFA), need to be pipelined to the node that processes

tuples involving the next state in the FSM (or NFA) to

extract full matches. An inherent limitation of pure (i.e.

without combining it with other parallelization schemes)

state-based parallelization is that the degree of parallelism

cannot be configured. More precisely, it is only dictated by

the number of event types incorporated in the pattern op-

erators of the posed query. Moreover, partitioning incoming

data according to the states in the FSM does not take into

consideration event tuples’ distribution thus being prone to

load imbalance. 

– Operator-based parallelization. This strategy, used 

in Schultz-Moller et al. (2009) , was discussed in

Sections 3.2 and 5.1 as a representative approach. In

a nutshell, operator-based parallelism assigns operators

to processing units while operators can send events to

each other within a processing node and also to opera-

tors on other nodes so as to detect full pattern matches.

Operator-based parallelism has similar drawbacks with the

state-based approach. 

– Run-based parallelization. According to run-based paral- 

lelism ( Balkesen et al., 2013 ) processing is performed in

batches of event tuples. Each batch includes ordered, i.e.,

pattern matching takes place on a given sequence of in-

put events, tuples and possesses an identifier. Based on

this identifier, it is assigned to a particular processing node

where it initiates a run. To extract full matches that span

multiple nodes, the end of a batch must be replicated at

the beginning of the runs belonging to nodes receiving con-

tiguous batches. Although the technique presented in Wang

et al. (2013) does not consider runs in batches of event tu-

ples, its rationale resembles run-based parallelization. This

is mainly due to the fact that it bases tuple assignment

on (time) order of reception as well as it replicates part of

the tuples received by a processing unit to nodes possess-

ing contiguous relevant events. For fixed batch size, this ap-

proach is less prone to load imbalance. On the other hand,

according to the techniques presented in Balkesen et al.

(2013) , the part of a batch that needs to be replicated de-

pends on the number, say n , of event types participating in

the query operators. The degree of parallelization is also de-

pendent on n since increasing the degree of parallelism for

low n results in replicating entire batches in nodes receiving

contiguous ones. 

.2. Towards elasticity in CEP 

Irrespectively of the parallelization strategy, opting for elastic-

ty during processing complex events is not always an easy task.

ere, we elaborate on the main issues that need to be tackled in

rder to achieve both elastic resource allocation and unhindered

vent query processing. Dynamic resource allocation requires mi-

ration to a new query plan when mis-utilization is detected or

oS requirements ( Doulamis et al., 2014 ) are violated. Nonetheless,

pon deciding the new query plan expected to optimize elasticity

elated metrics ( Lehrig et al., 2015 ), the actual migration process

till needs to take place. Since the CEP system is already in action,

revious (to migration) state needs to be handled with caution so

s to avoid compromising the correctness of the CEP output. Previ-
us state in the CEP setup mainly involves partial pattern matches

hat are processed in search of further expansion and event tuples

ncluded in the currently processed window based on the WITHIN

lause of the query ( Section 2.2 ). 

The migration itself may be conducted in two alternative ways

adapted from Zhu et al., 2004 for a cloud setup): (a) in a stop-

igrate-resume fashion or (b) on-the-fly. In the first case, the

vent processing tasks are stalled. Tuples in the current time win-

ow are replicated to the proper processing nodes based on the

ew plan. Also, previous partial matches are transferred to the

odes that are valid, given the chosen parallelization tactic, to in-

estigate further expansion. Memory resources consumed by the

ld query plan are freed. Having prepared the deployment of the

ew query plan, query processing is restarted. 

Pausing query processing for a while may not be acceptable for

 variety of surveillance, monitoring or security applications which

ely on continuous query processing and timely complex event de-

ection to actuate decision making procedures. Therefore, for such

EP applications, on-the-fly migration is the only option. On-the-

y migration does not severely differ from what was described

bove. Nonetheless, instead of replicating state information in an

ffline fashion, on-the-fly migration initiates a parallel, totally new

nstance of the query processing. The input and output buffers of

odes executing the previous plan are shared between the old and

ew processing nodes with the old plan being progressively aban-

oned. 

On-the-fly monitoring enables unhindered event query execu-

ion on par with elastic resource allocation on the counterweight

f raising the workload and thus the costs of cloud usage. On

he other hand, the stop-migrate-resume approach adds minimum

verhead in resource utility, but implements elasticity by stopping

uery processing. This may be unacceptable for many application

cenarios as it implies zero throughput during the migration pro-

ess. 

. Predictive analytics and CEP 

Predictive Analytics (PA) refers to a wide range of methods for

nderstanding data and discover knowledge out of them ( Siegel,

013 ). It has been subject of extensive research, especially in the

elds of data mining and machine learning. In general, PA and CEP

ave been proven mutually beneficial ( Tóth et al., 2010 ). For exam-

le, PA can be used to learn new complex events and rules from

ata ( Fülöp et al., 2012; Seipel et al., 2013 ) or to learn predictive

odels based on complex events generated by a CEP engine ( Miwa

t al., 2010 ). Machine learning in particular has also been used to

xtract events from structured data, such as videos ( Tang et al.,

012 ). However, consistent with the focus of our study, in this

ection we concentrate on the synergies among CEP and PA ap-

roaches within the scope of event query optimization in both

entralized and distributed setups. In particular, we discuss how PA

an be useful in a CEP system to (a) proactively determine when

nd how query plans should be adapted to avoid low throughput

r mis-utilization, (b) reduce communication costs in distributed

EP settings. With respect to our discussion in the previous sec-

ions, the first of these issues is closely related to the adaptivity

nd elasticity concepts discussed in Sections 3.2 and 6.2 , while the

econd relates to distributed CEP settings studied in Section 5 and

t the beginning of Section 6 (also see middle columns of Table 6 ).

When processing large, high velocity event streams, a crucial

roperty of algorithms is scalability. In fact, if time or memory

emands do not scale well with the number of tuples, candidate

ethods will fail to timely process potentially infinite streams and

EP system responsiveness will diminish over time. Methods that

bide by these requirements are often termed online ( Kamp et al.,

014b ). In PA, online model building maintains a model w ∈ W
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from an abstract model space W . For each incoming event tuple

z t ∈ Z at timestamp t , the model is updated via an update rule: 

ϕ : W × Z → W 

w t = ϕ(w t−1 , z t ) . 

Here, Z can be an arbitrary input space, such as the set of all pos-

sible event tuples. 

When the model is used for prediction, these methods are in-

stances of machine learning, where the most common tasks are

the classification of event tuples or the prediction of an unknown

function value based on the tuples, i.e., regression. In this case, the

model represents a function that maps tuples to the target value.

Machine learning with constant updates and constant time and

space complexity is a well researched field, termed online learn-

ing ( Anderson, 2008 ). 

When the task is instead to learn new rules or adapting rules

to changes in the event distribution, online model building can

be viewed as an instance of data mining. Here, the model usually

comprises of patterns in the events, such as frequent event sets

or subgroups. That is, a model can be regarded as a set of com-

plex event patterns (or queries) that all abide a pre-defined inter-

estingness criterion. Online adaptation of the model is difficult in

this setting, because most criteria for event sets or subgroups to be

interesting are defined in relation to the events that have been al-

ready observed. If the interestingness criterion can be linked to the

frequency of single events, methods from online frequent itemset

mining can be used ( Chang and Lee, 2003 ). Moreover, frequencies

of events in a stream can be estimated using online kernel den-

sity estimation ( Kristan et al., 2011; Desobry et al., 2005 ). Regard-

ing query optimization, online estimation of event frequencies can in

particular be used to determine changes in the frequency distributions

of events, enabling dynamic query planners to decide when and how

existing query plans should be adapted. 

When applying these techniques in a distributed setting, in-

formation has to be exchanged from local sites to form a global

model. Since centralization of events in Big Data environments is

infeasible, either compressed versions of the event tuples or the

local models themselves have to be exchanged. In practice, the

model itself is orders of magnitude smaller than the set of ob-

served event tuples, even when tuples are compressed. Thus, when

possible, it is most beneficial to exchange only the model itself.

For linear models, i.e., those that can be expressed as a finite-

dimensional vector w ∈ R 

d , the most common practice is to com-

bine local models to a global model by calculating their average.

That is, the global model w t ∈ R 

d at time t , with respect to w t, l : l

∈ [ N ], N ∈ N local models, is defined as: 

w t = w t = 

1 

N 

N ∑ 

l=1 

w t,l . 

In specific cases it can be shown that the average model is similar

to a hypothetical centrally computed one ( Dekel et al., 2012 ). How-

ever, in general no guarantee for the model quality can be given.

Recently, a novel way of combining linear models has been sug-

gested. The global model is defined as the Radon point ( Gärtner

and Missura, 2014 ) of the local models, where the Radon point is

an approximation of the center point of the set of local models.

It has been shown that this way of combining models can expo-

nentially improve probabilistic guarantees of local models ( Gärtner

and Missura, 2014 ). Given a sufficient number of local models, a

global model generated by this approach maintains the quality of

the hypothetical central one. 

Exchanging only sketches of the tuples, event statistics or only

the local models themselves reduces the communication overhead

of distributed processing significantly. However, in what we dis-

cussed so far, information is exchanged for each incoming tu-
le. For high-velocity event streams, real-time services or appli-

ations on mobile devices, this amount of communication is still

rohibitive. The state-of-the-art approach to this problem is to

xchange information in mini-batches, i.e., only after a certain

mount of events has been processed at each local site. In spe-

ific settings of online learning it has been shown that the reduced

ommunication does not decrease the model quality severely. In

articular, it has been shown that, in these settings, mini-batching

etains asymptotic quality guarantees of centralized models ( Dekel

t al., 2012 ). 

Recently, a software framework has been released for

ommunication-efficient distributed machine learning based

n the idea of mini-batching ( Li et al., 2014 ). A major drawback

f this method is that it communicates even if the exchange

f information does not improve the global model. A more

ata-driven strategy is to define a function that measures the

sefulness of a model synchronization (i.e., the centralization of

ocal models and their combination to a global model) and only

ynchronizes if the usefulness exceeds a user-defined thresh-

ld. There exist two major challenging issues that need to be

onfronted in such an approach: (a) a proper definition of a use-

ulness measure and (b) its communication-efficient monitoring.

sefulness measures may include information about the local

odels as well as local event tuples, thus a naive monitoring

f such a measure would require the exchange of information.

owever, this would render using an adaptive model synchro-

ization method pointless, because the communication saved by

he adaptiveness is spend to monitor the usefulness function.

oreover, reasonable usefulness measures will seldom be linear

n the input and monitoring non-linear functions over distributed

ata sources has been a major difficulty. In order to apply such

n approach, each local site has to be able to monitor the global

sefulness measures in a communication-efficient manner. With

ecent seminal advances on communication-efficient monitoring

f non-linear functions ( Sharfman et al., 2007; Giatrakos et al.,

012; 2014 ) new methods of adaptive, communication-efficient

odel synchronization have been developed. To that extend, so

ar two usefulness measures have been proposed that both can

e monitored communication-efficiently. We will describe both

easures and outline how they can be monitored. 

The first measure ( Gabel et al., 2015 ) has been developed based

n the idea that, in order to decide whether the global model

hould be updated, one has to decide if the data observed at each

ocal site deviates significantly from the data used to generate the

urrent global model. This idea has been applied to least squares

egression, where the input space Z = R 

d × R consists of pairs ( x t ,

 t ), where x t ∈ R is a feature vector and y t ∈ R is the respective tar-

et value. E.g., x t can be a binary vector indicating the presence of

vents in an event tuple. The model w t ∈ R 

d is again a real-valued

ector and the task is to minimize the squared error over a collec-

ion of data items E ⊂ Z, i.e.: 

 

∗ = arg min 

w ∈ R d 
∑ 

(x,y ) ∈ E 
‖ xw − y ‖ 

2 
2 . 

his optimization problem has a closed-form solution. Combining

ll feature vectors in a matrix X ∈ R 

| E|×d and target values in a vec-

or y ∈ R 

| E| , we can express w 

∗ as: 

 

∗ = 

(
X 

� X 

)−1 
X 

� y. 

iven a data window of size b , we set E t =
 (x t−b , y t−b ) , . . . , (x t , y t )) } and X t , y t accordingly, so that 

 t = ϕ(X t , y t ) = (X 

� 
t X t ) 

−1 X 

� 
t y t . 

Abbreviating A = X � X, c = X � y yields w = A 

−1 c. Furthermore, A

nd c are time dependent and distributed over N ∈ N local sites so
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hat at each point in time t we have A t, 1 , c t, 1 , . . . , A t,N , c t,N with 

 t = 

1 

N 

∑ 

l∈ [ N] 

A t,l , c t = 

1 

N 

∑ 

l∈ [ N] 

c t,l . 

he usefulness measure u now is defined as: 

 t = 

1 

N 

∑ 

l∈ [ N] 

‖ A 

−1 
t ′ c t ′ − A 

−1 
t,l 

c t,l ‖ , 

here t ′ denotes the time of last synchronization. A synchroniza-

ion is triggered, whenever u t > ε for some threshold ε ∈ R + .
f u t ≤ ε, this implies that also the difference between the last

omputed global model and the current one is below ε. This can

e monitored communication-efficiently using the safe-zone ap-

roach ( Keren et al., 2012 ), where each local site l monitors the

ollowing condition: 

 A 

−1 
t ′ c t ′ − A 

−1 
t,l 

c t,l ‖ ≤ ε . 

sing this approach, the communication overhead for model syn-

hronization could empirically be reduced by at least one order of

agnitude ( Gabel et al., 2015 ). 

The second approach ( Kamp et al., 2014a ) is based on the idea

hat model synchronizations are most beneficial if models are most

iverse, and can be avoided when they are similar. It has been ap-

lied to online learning with linear models, where 

 t = ϕ(w t−1 , z t ) . 

he global model w t ∈ R 

d is approximated by the average of the

ocal models, i.e.: 

 t ≈ w t = 

1 

N 

∑ 

l∈ [ N] 

w t,l . 

s mentioned above, for specific cases it has been shown that the

verage model is similar to the true global model (i.e., the hypo-

hetical centrally computed one). Now the usefulness measure is

efined as the variance amongst the models, i.e.: 

 t = 

1 

N 

∑ 

l∈ [ N] 

‖ w t,l − w t ‖ 

2 
2 . 

s in the previous approach, a synchronization is triggered, when-

ver u t > ε for some threshold ε ∈ R . Since w t is unknown to the

ocal sites without synchronization, again the safe-zone approach

s applied. The local conditions that are monitored (without hav-

ng to communicate) at each site are 

 w t,l − w t ′ ‖ 

2 
2 , 

here t ′ again denotes the time of last synchronization. It has

gain been empirically shown that applying this technique, over-

ead communication can be reduced by an order of magnitude.

oreover, the communication overhead can be bounded by the

umber of local sites N and the loss bound, i.e., a measure of the

ardness of the learning problem ( Kamp et al., 2014b ). 

The impact of the results discussed in this section on CEP is

wo-fold. On the one hand, predictions obtained from such learn-

ng techniques enable proactive determination of query plan adap-

ation, for instance, when imminent resource mis-utilization is pre-

icted. On the other hand, when applied within a CEP system to

redict the upcoming of future events, predictive analysis can re-

uce transmission costs by allowing communication only when ac-

ual data yield complex events that deviate from what is predicted.

dditionally, combining the potential for adaptivity and communi-

ation efficiency in distributed settings, approaches such as Gabel

t al. (2015) ; Kamp et al. (2014a ) can be extended to learning and

onitoring distributions over events. This enables data-driven dy-

amic query planning, where current query plans are altered as

oon as the distribution over events—monitored locally at each site,
ut combined to a global model using the approaches discussed

bove—deviates from the distribution previously used to generate

he query plan. Lastly, these novel approaches could be extended

o other predictive analysis methods such as to communication ef-

cient rule mining for scalable rule learning. 

. Conclusion 

Having reviewed the state-of-the-art CEP approaches focusing

n efficient query processing and query optimization issues, we

onclude our study summarizing our findings and point out in-

eresting directions for future research. First, as our study reveals,

espite the fact that centralized event processing in both the de-

erministic and uncertain contexts has been studied to some ex-

ent, especially from a data management perspective in SASE ( Wu

t al., 2006; Zhang et al., 2014; Agrawal et al., 2008; Zhang et al.,

010 ), important issues that arise in distributed settings have been

urprisingly overlooked. This observation regards both distributed

parallel) processing and distributed monitoring over geographi-

ally dispersed sites, as pointed out in Section 5 . More precisely: 

– Although techniques for parallel CEP have been proposed in

the literature, they are deprived from adaptivity considera-

tions. 

– Load balancing schemes for efficient resource manipulation

and throughput maximization are absent from the discus-

sion in related works. 

– Existing techniques do not consider efficient processing of

multiple queries combined with load balancing and adaptiv-

ity capabilities. 

– Distributed monitoring techniques in the deterministic as well

as probabilistic context are examined only in Akdere et al.

(2008) and Wang et al. (2013) . Nonetheless, Akdere et al.

(2008) ; Wang et al. (2013) view events as atomic units ar-

riving at each site. Another meaningful event definition in

distributed settings, not examined in the literature, regards

complex events whose occurrence cannot be determined

by a single site, but depends on the union of local event

streams. For instance, in a simple form such an event may

involve a global counter or sum ( Etzion and Niblet, 2011 )

(comprised of local counters or sums in each site) exceed-

ing a posed threshold. 

The above exhibit that CEP over Big Data enabling technolo-

ies such as cloud platforms is still in an early stage. Efficient

uery processing over streaming event data in a cloud comput-

ng paradigm requires a constructive collaboration among just load

alancing techniques, elastic (i.e. adaptive) resource allocation and

fficient in situ processing schemes with provisions for synthesiz-

ng their final outcomes in the global context. In addition, many

re the cases were application requirements for unhindered opera-

ion mandate the development of efficient ways for on-the-fly mi-

ration to new query plans, as part of the elastic resource alloca-

ion property. The need for such approaches is much more evident

n cloud platforms with potentially dispersed resource pools apart

rom a number of proximate processing units. 

PA and CEP synergies also open interesting directions towards: 

– Data-driven, elastic query planning. Especially in cloud plat-

forms, predicting mis-utilization or QoS standards’ viola-

tion ( Doulamis et al., 2014 ) can lead to proactive migration

to efficient query plans. 

– PA can reduce communication in distributed CEP platforms

by allowing transmissions only when actual complex events

occur beyond what is predicted. 

All the above interesting directions are especially useful for the

ealization of CEP to planetary-scale Big Event Data. In fact, they
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constitute the focal points currently being studied in the context of

the FERARI project 6 for which a multi-cloud CEP system ( Flouris

et al., 2016 (to appear ) is being developed and enhanced. 
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