
Contents lists available at ScienceDirect
Information Systems

Information Systems 36 (2011) 386–405
0306-43

doi:10.1

� Cor

E-m

kotidis@

ad@di.u
journal homepage: www.elsevier.com/locate/infosys
Collection trees for event-monitoring queries
Antonios Deligiannakis a, Yannis Kotidis b,�, Vassilis Stoumpos c, Alex Delis c

a Technical University of Crete, Greece
b Athens University of Economics and Business, Greece
c University of Athens, Greece
a r t i c l e i n f o

Article history:

Received 2 June 2009

Received in revised form

2 June 2010

Accepted 19 August 2010
Recommended by: B. Kemme
include their measurements in the query result at every query epoch, in many event
Keywords:

Aggregate queries

Sensor networks
79/$ - see front matter & 2010 Elsevier B.V. A

016/j.is.2010.08.003

responding author.

ail addresses: adeli@softnet.tuc.gr (A. Deligian

aueb.gr (Y. Kotidis), stoumpos@di.uoa.gr (V.

oa.gr (A. Delis).
a b s t r a c t

In this paper we present algorithms for building and maintaining efficient collection

trees that provide the conduit to disseminate data required for processing monitoring

queries in a wireless sensor network. While prior techniques base their operation on the

assumption that the sensor nodes that collect data relevant to a specified query need to

monitoring applications such an assumption is not valid. We introduce and formalize

the notion of event monitoring queries and demonstrate that they can capture a large

class of monitoring applications. We then show techniques which, using a small set of

intuitive statistics, can compute collection trees that minimize important resources

such as the number of messages exchanged among the nodes or the overall energy

consumption. Our experiments demonstrate that our techniques can organize the data

collection process while utilizing significantly lower resources than prior approaches.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Many pervasive applications rely on sensory devices
that are able to observe their environment and perform
simple computational tasks. Driven by constant advances
in microelectronics and the economy of scale, it is
becoming increasingly clear that our future will incorpo-
rate a plethora of such sensing devices that will
participate and help us in our daily activities. Even though
each sensor node will be rather limited in terms of
storage, processing and communication capabilities, they
will be able to accomplish complex tasks through
intelligent collaboration.

Nevertheless, building a viable sensory infrastructure
cannot be achieved through mass production and deploy-
ment of such devices without addressing first the
ll rights reserved.

nakis),

Stoumpos),
technical challenges of managing such networks. In this
paper we focus on developing the necessary data collec-
tion infrastructure for supporting data-hungry applica-
tions that need to acquire and process readings from a
large scale sensor network. While previous work has
focused on optimizing specific types of queries such as
aggregate [23], join [2], model-based [11,20] and select-all
[8,29] queries, we propose a data dissemination frame-
work that can address the needs of multiple, concurrent
data acquisition requests in an efficient manner.

It is generally agreed that one cannot simply move the
readings necessary for processing an application request
out of the network and then perform the required
processing in a designated node such as a base station.
Wireless sensor nodes have limited energy capacity and
such an approach will not only result in overburdening
their radio links, but will also quickly drain their energy as
radio transmission is by far the most important factor in
energy consumption [24]. Thus, most recent proposals
rely on building some type of ad hoc interconnect for
answering a query such as the aggregation tree [23,34].
This is a paradigm of in-network processing that can be

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2010.08.003
mailto:adeli@softnet.tuc.gr
mailto:kotidis@aueb.gr
mailto:stoumpos@di.uoa.gr
mailto:ad@di.uoa.gr
dx.doi.org/10.1016/j.is.2010.08.003


A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 387
applied to non-aggregate queries as well [8]. In this paper
we concentrate on building and maintaining efficient data

collection trees that will provide the conduit to dissemi-
nate all data required for processing many concurrent
queries in a sensor network, including long-term and ad
hoc type of queries, while minimizing important re-
sources such as the number of messages exchanged
among the nodes or the overall energy consumption.

While prior work [5,30,32] has also tackled similar
problems, previous techniques base their operation on the
assumption that the sensor nodes that collect data
relevant to the specified query need to include their
measurements (and, thus, perform transmissions) in the
query result at every query epoch. However, in many
monitoring applications such an assumption is not valid.
Monitoring nodes are often interested in obtaining either
the actual readings, or their aggregate values, from sensor
nodes that detect interesting events. The detection of such
events can often be identified by the readings of each
sensor node. For example, in vehicle tracking and
monitoring applications high noise levels may indicate
the proximity of a vehicle. In military applications, high
levels of detected chemicals can be used to warn nearby
troops. In industrial settings, where the sensors monitor
the condition of machines, high temperature readings
may indicate overheating parts. In other applications, as
in the case of approximate evaluation of queries over the
sensor data [7,25,28], an event is defined when the
current sensor reading deviates by more than a given
threshold from the last transmitted value. In all of these
scenarios, each sensor node is not forced to include its
measurements in the query output at each epoch, but
rather such a query participation is evaluated on a per
epoch basis, depending on its readings and the definition
of interesting events. In this paper we term the monitor-
ing queries where the participation of a node is based on
the detection of an event of interest as event monitoring

queries (EMQs). It is important to note that typical
monitoring queries, considered in the bulk of research
so far, are a subclass of EMQs, as the former correspond to
the case where the participation of sensor nodes in the
query result at each epoch is fixed (either true, or not)
throughout the query execution.

Our techniques base their operation on collecting
simple statistics during the operation of the sensor nodes.
The collected statistics involve the number of events
(or, equivalently, their frequency) that each sensor
detected in the recent past. Our algorithms utilize these
statistics as hints for the behavior of each sensor in the
near future and periodically reorganize the collection tree
in order to minimize certain metrics of interest, such as
the overall number of transmissions or the overall energy
consumption in the network. The formation of the
collection tree is based on the collection and local
transmission of only a small set of values at each node
termed as cost factors in our framework. Using these cost
factors each sensor selects its parent node, through which
it will forward its results towards the base station, based
on the estimated corresponding attachment cost. In a
nutshell, the attachment cost of a parent selection is the
increase in the objective function (i.e., the number of
transmitted messages) resulting from this selection. Given
the estimates of attachment costs that our algorithms
compute, our work demonstrates that they are able to
design significantly better collection trees than existing
techniques.

Our contributions are summarized as follows:
�
 We formally introduce the notion of EMQs in sensor
networks. EMQs are a superset of existing monitoring
queries, but are handled uniformly in our framework,
irrespectively of the minimization metric of interest.

�
 We present detailed algorithms for minimizing

important metrics such as the number of messages
exchanged or the energy consumption during the
execution of an EMQ. The presented algorithms are
based on the collection and transmission of a small,
and of constant size, set of statistics. We introduce
our algorithms along with a succinct mathematical
justification.

�
 We present alternative techniques that we considered

in our work and discuss their intuition and drawbacks.

�
 We extend our framework for the case of multiple

concurrent EMQs of different types.

�
 We present a detailed experimental evaluation of our

algorithms. Our results demonstrate that our techni-
ques can achieve a significant reduction in the
number of transmitted messages, or the overall energy
consumption, compared to alternative algorithms.

2. Related work

The database community has long been the advocate
of using an embedded database management system
for data acquisition in sensor networks [23,34]. The use
of a declarative SQL-like query interface allows rapid
development of applications in such systems without the
need to manage hand-coded programs at each sensor
node [24].

In the database community different types of popular
queries have been discussed, such as aggregate
[6,7,23,26,28], join [2], model-based [11,20] and select-
all queries [8,29]. Tracking queries that seek to determine
the spatial extent of a particular phenomenon have also
been considered [12,33]. In [23] the nodes are first
organized in a tree topology, termed the aggregation tree.
During query execution, each epoch is subdivided into
intervals and parent nodes in the aggregation tree listen
for messages containing partial aggregates from their
children nodes during pre-defined time-slots. The rest of
the time the nodes may power-down their radios in order
to reduce their energy and bandwidth consumption.
Another notable method for synchronizing the transmis-
sion periods of nodes is the recently proposed wave
scheduling approach of [10]. The work in [36] describes a
framework that profiles recent data acquisition activity by
the nodes and computes their waking window though an
in-network execution of the critical path method. This
technique is complementary to our work, as it helps
identify a proper scheduling for data transmission by the



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405388
nodes, while our methods focus on optimizing the routing
topology. Alternative techniques do not utilize an aggre-
gation tree but rather they compute aggregation queries
using decentralized algorithms [3,19].

Many of the low-level networking details have already
been discussed in the networking community and,
thus, can be utilized in our framework. As an example,
nodes in unattended wireless networks must be able to
self-configure [4] and discover their surrounding nodes
[13]. Prior work on computing energy-efficient data
routing paths (such as the aggregation tree) [16,30] have
tackled similar problems, but these techniques base their
operation on the assumption that the sensor nodes that
collect data relevant to the specified query need to include
their measurements in the query result at every query
epoch. However, this assumption does not hold in event
monitoring queries that are the scope of our framework.
In the other end of the spectrum, the work in [21,14]
discuss join and aggregation queries involving rare events.
Thus, they follow an alternative path, which is to
construct the data collection network on-the-fly when
such events occur. However, this practice in unsuitable for
out setting involving sensor nodes with both low and
high participation frequencies, since it would incur a
high overhead for frequently maintaining the collection
network. Furthermore, the work in [14] assumes the
existence of a high speed connection for all nodes at the
boundaries of the network, through which the data that
reaches the boundary nodes can be communicated.

Recently, there has been a realization that readings
from sensor nodes are inherently dirty [9,15,22,31]. In
[17] the authors present ESP, a data cleaning framework
in support of pervasive applications. ESP allows program-
mers to specify five pipelined cleaning stages using
high-level declarative queries over data streams produced
by the sensors. The same issue arises in other domains,
such as in data streams generated by RFID applications
[18]. Our framework may also compliment this work, as
often data cleansing can be performed by appropriate
query rewriting [17] and, thus, results in a continuous
query that can use our optimization framework for data
gathering.
3. Motivational example

In Table 1 we present examples of the two main classes
of monitoring queries in sensor networks. We borrow the
syntax of TinyOS [23] to denote the epoch duration (e)
and the lifetime of the query (t). The predicate inclusion-

Conditions has been added in order to specify which
Table 1
An aggregate and a non-aggregate query over the values collected by the sens

Aggregate query

SELECT AggrFun(s.value)

FROM Sensors s

WHERE inclusionConditions(s)=true

SAMPLE PERIOD e FOR t
sensor nodes will participate in the query evaluation per
epoch. At each query epoch, all the sensor nodes that
include their collected data in the query result are termed
in our framework as epoch participating nodes. For queries
that wish to collect data from all the sensor nodes at each
epoch, the above predicate always evaluates to true.

When a monitoring query specifies inclusion predicates,
these may contain either static or dynamic predicates (or
both) regarding the sensor nodes. Examples of static
predicates may involve, but are not limited to, the collection
of measurements from: (i) sensors with specific identifiers;
(ii) immobile sensors in a specific area; or (iii) sensors
monitoring a specific quantity, in cases of sensor networks
with diverse types of sensor nodes that monitor different
quantities. Static predicates are very useful in a variety of
applications and have received the focus of the bulk of past
research [23,34]. Inclusion conditions that contain only
static predicates result in a fixed subset of the sensor nodes
participating in the query output at each epoch. This allows
for simple data dissemination and collection protocols based
on fixed collection trees that need to be altered only when
either node or communication failures exist.

However, there exists a large class of monitoring queries
that cannot be expressed using static inclusion conditions.
Examples include vehicle tracking and equipment monitor-
ing applications where inclusion predicates need to be
conditioned on readings taken by the sensor nodes such as
noise levels or temperature readings. In its most simple
form a dynamic inclusion predicate may be a condition of
the form ‘‘current reading4threshold’’ . More complex
forms may require the evaluation of a user defined function
over a history of accumulated readings. In the case of
approximate evaluation of queries over the sensor data
[7,25,28], the inclusion predicate is satisfied when the
current sensor reading deviates by more than a given
threshold from the last transmitted value. We call such
predicates, whose evaluation depends also on the readings
taken by the nodes, as dynamic predicates as they specify
which nodes should include their response in the query
evaluation at each epoch (i.e., nodes whose values exceed a
given threshold, or deviate significantly from previous
readings). We term those monitoring queries that contain
dynamic predicates as event monitoring queries (EMQs).

Given a monitoring query, existing techniques seek to
develop collection trees that specify the way that the data
are forwarded from the sensor nodes to the Root node.
Periodically these collection trees may be reorganized in
order to adapt to evolving data characteristics [28].

An important characteristic of EMQs, which is not
taken into account by existing algorithms that design
collection trees, is that each sensor node may participate
or nodes.

Non-aggregate query

SELECT s.id, s.value

FROM Sensors s

WHERE inclusionConditions(s)=true

SAMPLE PERIOD e FOR t



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 389
in the query evaluation, by including its reading in the
query result, only a limited number of times, based on
how often the inclusion conditions are satisfied. We can
thus associate an epoch participation frequency Pi with
each sensor node Si, which specifies the fraction of epochs
that this node participated in the query result in the
recent past.

Given estimates of the epoch participation frequencies,
one can design significantly more efficient collection trees
than prior approaches. Consider the sample scenario
depicted in Fig. 1(a). In this figure, 100 sensor nodes are
placed in a grid. The sensor identifiers appear next to each
sensor node. We also distinguish the Root node at the
lower left corner (depicted as a dark square), a monitoring
node that performs queries over the data collected by the
sensor nodes. In our sample network we assume that each
sensor node can communicate with its immediate
Fig. 1. (a) Identifiers of sensors in grid arrangement; (b) estimat

Fig. 2. (a) Collection tree for MinHops algorithm. Cost=7709 transmissio
horizontal, vertical or diagonal neighbors, while only
node S90 can communicate with the Root node. In
Fig. 1(b) we depict sample estimates for the number of
times each sensor node will participate in the query result
within the next 100 epochs. Thus, the epoch participation
frequencies for all the sensor nodes, can be derived by
dividing these values by 100. In the above scenario, given
the presented epoch participation frequencies, six interior
nodes along with all the boundary nodes on the upper and
rightmost edges of the network always detect events,
while the remaining interior nodes detect events with a
lower probability, whose average value is about 5%. For
the aforementioned sample scenario, in Fig. 2(a) we depict
a sample collection tree chosen by an algorithm, termed
as MinHops that seeks to minimize the number of hops
that each node’s data needs to traverse until it reaches the
Root node. TAG [23] utilizes such an algorithm for
ed number of participations in query result in 100 epochs.

ns; (b) collection tree for our algorithm. Cost=3838 transmissions.



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405390
building the collection tree. Next to each node we depict
the actual number of transmissions that each node
performed within these 100 epochs. Similarly, in
Fig. 2(b) we present the collection tree that our algorithms
created for the evaluation of the SUM aggregate. One can
easily establish the significant reduction in the number of
transmissions that our algorithm achieved (3838 vs 7709,
a twofold reduction).

A first observation is that our algorithm seeks to forward
the query results from nodes with high epoch participation
frequencies through a limited number of interior nodes,
compared to the MinHops algorithm. Moreover, we note that
our algorithm does not necessarily route its messages
through the neighboring node with the highest epoch
participation frequency. For example, node S14 has chosen
to forward its results through node S23 and not through
nodes S24 or S13, even though P23=3% is lower than both
P24=7% and P13=8%. While, a detailed description of why
this occurs is deferred until later in this paper, we note
that what is important when deciding how to best form the
collection tree is the estimated impact that each of
the algorithm’s decisions has on the desired minimization
metric. For example, when selecting a parent node in the
collection tree, the impact may involve (depending on the
minimization metric) the estimated increase in the trans-
mitted messages in the path from the parent node towards
the Root node. Given this brief explanation, we note in our
example that node S23 is an immediate neighbor of S32, a
node with a high epoch participation frequency. Thus, since
the nodes in the path of S32 to the Root node will probably
be forced in making several transmissions, due to the events
transmitted by S32, the additional messages transmitted by
having S14 select S23 as its parent node will mostly influence
the path between S23 and S32. Such an observation cannot be
made for S24 or S13, since they lie one hop further from a
node with a high epoch participation frequency.

4. Problem formulation

We first introduce the types of EMQs that our framework
supports and then present the optimization problems
tackled in this paper. We then discuss the cost model used
in our algorithms in order to estimate the energy consump-
tion of a sensor node during the transmission process.

4.1. Supported queries

In Table 1 we presented the two main classes of SQL
queries that our framework supports. It is important to
Table 2
Characteristics and examples of aggregate function types.

Category Type of partial state needed State size

Distributive Aggregate values for descendants Constant

Algebraic Aggregate values for descendants, Constant

but for different aggregate function

Holistic Entire data of descendants Proportion

Unique Distinct values of descendants Data-depe

Content-sensitive Aggregate-specific Data-depe
emphasize at this point that even non-participating nodes
may take part in the query evaluation process by
forwarding messages towards the Root node. However,
the collected values of non-participating nodes influence
neither the reported query result nor its size.

The first class of supported queries involve non-
aggregate queries over the values of epoch participating
sensor nodes. In this type of queries the amount of data
transmitted by any node of the collection tree depends on
the number of epoch-participating sensors that are
descendants of that sensor node.

The second class of supported queries involves aggre-
gate functions over the measurements collected by the
participating sensor nodes. A good classification of
aggregate functions is presented in [23], depending on
the amount and type of state required in non-leaf nodes in
order for them to calculate the aggregate result for the
partition of descendant, in the collection tree, participat-
ing sensors. Table 2 summarizes this classification.

A crucial part of the operation of our algorithms is the
estimation of the amount of data that will be transmitted
in a given (or candidate) collection tree. In order to
accurately estimate this information, the aggregate func-
tion being used needs to be distributive, algebraic or
holistic (see Table 2). Unique and content-sensitive
aggregate functions can only be supported by using a
worst case estimate for the amount of transmitted data.
Note that holistic aggregate queries share similar char-
acteristics with non-aggregate queries and, thus, are
treated in a similar way in our framework.

4.2. Problem definition

In this paper we seek to develop dissemination
protocols for the classes of EMQs described in Section
4.1. The goal is, given the type of query at question, to
design the collection tree so as to minimize either:
1.
al t

nde

nde
The number of transmitted messages in the network.

2.
 The overall energy consumption in the network.

The minimization of additional metrics of interest is
discussed in Section 6. Our algorithms do not make any
assumptions about the placement of the sensor nodes,
their characteristics or their radio models. However, in
order to simplify the presentation, in our discussion we
will focus on networks where any communication
between pairs of sensor nodes is either bidirectional or
impossible.
Examples

MAX, MIN COUNT, SUM

AVG

o #epoch-participating descendants MEDIAN

nt COUNT DISTINCT

nt Histogram of values



Table 3
Typical radio parameters.

Symbol Typical value

SC 1mJ

ETX 50 nJ/bit

ERF 100 pJ/bit/m2

ERX 50 nJ/bit

Table 4
Symbols used in our algorithm.

Symbol Description

Root The node that initiates a query and which collects the

relevant data of the sensor nodes

Si The i-th sensor node

Pi The epoch participation frequency of Si

Di The minimum distance, in number of hops, of Si from

the Root

jaggrj The size of the (non-)aggregate values transmitted by a

node

Etri,j
Energy spent by Si to transmit a new packet of jaggrj bits

to Sj

DEtri,j
Energy spent by Si to transmit additional jaggrj bits to Sj

(on an existing packet)

ACi,j Attachment cost of Si to a candidate parent Sj

CFi, DCFi,

HCFi

Cost factors utilized by neighboring nodes of Si when

estimating their attachment cost to Si

A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 391
4.3. Energy consumption cost model

A sensor node consumes energy at all stages of its
operation. However, this energy consumption is minimal
when the sensor is in a sleep mode. Furthermore, the
energy drain due to computations may, in some applica-
tions, be significant, but it is typically much smaller than
the cost of communication [24]. Due to this fact and
because our algorithms do not require any significant
computational effort by the sensor nodes, we ignore in the
cost model the power consumption when the sensor node
is idle and the consumption due to computations. We
will thus focus on capturing the energy drain due to
data communication in data driven applications. More
particular, we need to estimate the energy consumption
of a node Si when either transmitting, receiving or
idle listening for data. The notation that will be used
in our discussion here, and later in the description of our
algorithms, is presented in Table 4. Additional definitions
and explanations are presented in appropriate areas of
the text.

We first describe the cost model used to estimate the
energy consumption of a node Si during the data
transmission of jaggrj40 bits of data to node Sj, which
lies in distance disti,j from Si. The energy cost can be
estimated using a linear model [27] as

Etri,j
¼ SCiþðHþjaggrjÞ � ðETXi

þERFi
� dist2

i,jÞ ð1Þ

where (i) SCi denotes the energy startup cost for the data
transmission of Si. This cost depends on the radio used by
the sensor node; (ii) H denotes the size of the packet’s
header; (iii) ETXi

denotes the per bit power dissipation of
the transmitter electronics; and (iv) ERFi

denotes the per
bit and squared distance power delivered by the power
amplifier. This power depends on the maximum desired
communication range and, thus, from the distance of the
nodes with which Si desires to communicate. Thus, the
additional energy consumption required to augment an
existing packet from Si to Sj with additional jaggrj bits can
be calculated as: DEtri,j

¼ jaggrj � ðETXi
þERFi

� dist2
i,jÞ.

For the case when each sensor node receives data, we
need to keep in mind that each sensor must open its radio
in order to receive data or queries transmitted by
neighboring nodes. This startup cost is incurred when
the node wakes up from its sleep mode and, in contrast to
the data transmission case, is not directly related to the
reception of data (since the sensor may receive no data).
Thus, this mandatory cost is not taken into account in
our model.

When a sensor node Si receives H+bj bits from node Sj,
then the energy consumed by Si is given by:
Ereci
¼ ERXi

� ðHþbjÞ, where the value of ERXi
depends on

the radio model. Some typical values [27] of SC, ETX, ERX

and ERF are presented in Table 3.
The energy consumed by a sensor node when idle

listening for data is significant and often comparable to
the energy of receiving data. For example, in the popular
MICA2 nodes the ratios for radio power draw during idle-
listening, receiving of a message and transmission are
1:1:1.41 at 433 MHz with RF signal power of 1 mW in
transmission mode [35]. Thus, due to the similar energy
consumption by a sensor while either receiving or idle
listening for data, our algorithms focus on the energy
drain during the transmission of data.

5. Algorithm overview

We now present our algorithms for creating and
maintaining a collection tree that minimizes the desired
metric (number of messages or energy consumption). We
also provide detailed pseudocode in addition to a formal
analysis. Our algorithms are based on a top-down
formation of the collection tree. The intuition behind
such an approach is that the epoch participation
frequency of each node in the collection tree influences
the transmission frequency of only nodes that lie in its
path to the Root. We thus demonstrate in this section
that estimating the magnitude of this influence can be
easily achieved by a top-down construction of the
collection tree, while requiring the transmission of only
a small set of statistics.

5.1. Construction/update of the collection tree

The algorithm is initiated with the query propagation
phase and periodically, when the collection tree is
scheduled for reorganization. The query is propagated
from the base station through the network using a flooding
algorithm. In densely populated sensor networks, a node Si

may receive the announcement of the query from
several of its neighbors. As in [23,34] the node will select
one of these nodes as its parent node. The chosen parent
will be the one that exhibits the lowest attachment cost,



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405392
meaning the lowest expected increase in the objective
minimization function. For example, if our objective is to
minimize the total number of transmitted messages, then
the selection will be the node that is expected to result in
the lowest increase in the number of transmitted
messages in the entire path from that sensor until the
Root node (and similarly for the rest of the minimization
metrics). At this point we simply note that in order for
other nodes to compute their attachment cost, node Si

transmits a small set of statistics Statsi and defer their
exact definition for Section 5.2.

The result of this process is a collection tree towards
the base station that initiated the flooding process. A key
point in our framework is that the preliminary selection of
a parent node may be revised in a second step where each
node evaluates the cost of using one of its sibling nodes as
an alternative parent. Due to the nature of the query
propagation, and given simple synchronization protocols,
such as those specified in [23], the nodes lying k hops
from the Root node will receive the query announcement
before the nodes that lie one hop further from the Root

node. Let RecSk denote the set of nodes that receive the
query announcement for the first time during the k-th
step of the query propagation phase.

At step k of the query propagation phase, after the
preliminary parent selection has been performed, each
node Si in set RecSk, needs to consider whether it is
preferable to alter its current selection and choose as its
parent a sibling node within set RecSk�Si.

1 Each node
calculates a new set of statistics Statsi, based on its
preliminary parent selection, and transmits an invitation,
which also includes the node’s newly calculated Statsi

values, that other nodes in RecSk (and only these nodes)
may accept. Of course, we need to be careful at this point
and make sure that at least one node within RecSk will not
accept any invitation, as this would create a disconnected
network and prevent nodes from RecSk to forward their
results to nodes belonging in RecSk�1. We will achieve this
by imposing a simple set of rules regarding when an
invitation may be accepted by a sensor node.

Let CandPari denote the set of nodes in RecSk that
transmitted an invitation that Si received. Let Sm be the
preliminary parent node of Si, as decided during query
propagation. Amongst the nodes in CandPari, node Si

considers the node Sp such as the attachment cost ACi,p is
minimized. If ties occur, then these are broken using the
node identifiers (i.e., prefer the node with the highest id).2

Then Sp is selected as the parent of Si instead of the

preliminary choice Sm only if all of the following conditions
apply:
�

tha

in

con

nod

an
ACi,poACi,m. This condition ensures that Sp seems as a
better candidate parent than the current selection Sm.
1 Note that at this step any initially selected parent of a sibling node

t lies within the transmission range of Si has already been examined

the preliminary parent selection phase and does not need to be

sidered.
2 Alternative choices are equally plausible. For example, prefer the

es with the highest/lowest identifiers depending on whether this is

odd/even invocation of the collection tree formation algorithm.
�
 ACi,prACp,i. This condition ensures that it is better to
select Sp as the parent of Si, than to select Si as the
parent of Sp.

�
 If ACi,p = ACp,i, then the identifier of Sp is also larger

than the identifier of Si. This condition is useful in
order to allow nodes to forward messages through
neighbor nodes in RecSk and also helps break ties
amongst nodes and to prevent the creation of loops.

The collection tree may periodically get updated, either
because of a significant change in data distribution or
because of the addition/termination of queries in a multi-
query setup discussed in Section 7. Such updates are
triggered by the base station using the same protocol used
in the initial creation. In this case, the nodes compute and
transmit their computed statistics in the same manner,
but do not need to propagate the query itself.

5.2. Calculating the attachment cost

Determining the candidate parent with the lowest
attachment cost is not an easy decision, as it depends on
several parameters. For example, it is hard to quantify the
resulting transmission probability of Sj, if a node Si decides
to select Sj as its parent node. In general, the transmission
frequency of Sj (note that this is different than the epoch
participation frequency of the node) may end up being as
high as min{Pi+Pj,1} (when nodes transmit on different
epochs) and as low as Pj (when transmissions happen on
the same epochs and PirPj). A commonly used technique
that we have adopted in our work is to consider that the
epoch participation by each node is determined by
independent events. Using this independence assumption,
node Sj will end up transmitting with a probability
Pi+Pj�PiPj, an increase of Pi(1�Pj) over Pj. Similarly, if
Sj�1 is the parent of Sj, this increase will also result in an
increase in the transmission frequency of Sj�1 by
Pi(1�Pj)(1�Pj�1), etc. In our following discussion, for
ease of presentation, when considering the attachment
cost of Si to a node Sj, we will assume that the nodes in the
path from Sj to the Root node are the nodes Sj�1,
Sj�2,y,S1.

5.2.1. Minimizing the number of transmissions

The attachment cost of Si when selecting Sj as its
parent node can be calculated by the increase in the
transmission frequency of each link from Si to the Root

node as

ACi,j ¼ PiþPið1�PjÞþPið1�PjÞð1�Pj�1Þþ � � � ð2Þ

A significant problem concerning the above estimation of
ACi,j is that its value depends on the epoch participation
frequencies of all the nodes in the path of Sj to the Root

node. Since the number of these values depends on the
actual distance, in number of hops, of Sj to the Root node,
such a solution does not scale in large sensor networks.

Fortunately, there exists an alternative formula to
calculate the above attachment cost. Our technique is
based on a recursive calculation based on a single cost

factor CFi at each node Si. In our example discussed above,



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 393
the values of CFi and ACi,j can be easily calculated as

CFi ¼ ð1�PiÞ � ð1þCFjÞ

ACi,j ¼ Pi � ð1þCFjÞ ð3Þ

One can verify that expanding the above recursive
formula and setting as the boundary condition that the
CF value of the Root node is zero gives the desired result.
Thus, only the cost factor, which is a single statistic, is
needed at each node Sj in order for all the other nodes to
be able to estimate their attachment cost to Sj.

We also need to note that the formulas presented
above also address the case of non-aggregate or holistic
aggregate queries. In these cases the size of the trans-
mitted data increases proportionally to the number of
each node’s epoch-participating descendants in the
collection tree, as we approach the Root node. Thus,
sometimes the transmitted data by a node may be split
into multiple messages due to the maximum packet size.
However, we first note that such cases typically occur in
higher levels of the collection tree (and, thus, by a
potentially small subset of the sensor nodes) and that,
more importantly, our techniques seek to compute and
utilize simple statistics. Our study of alternative cost
models that incorporated this factor yielded only minor
improvements while significantly increasing the commu-
nication cost during the collection tree formation. We
thus omit such extensions from our presentation.

5.2.2. Minimizing total energy consumption, distributive

and algebraic aggregates

This case is very similar to the case described above.
When considering the attachment cost of Si to a candidate
parent Sj, we note that additional energy is consumed by
nodes in the path of Sj to the Root node only if a new
transmission takes place. This is because each node
aggregates the partial results transmitted by its children
nodes and transmits a new single partial aggregate for its
sub-tree [23]. Thus, the size of the transmitted data is
independent of the number of nodes in the subtree, and
only the frequency of transmission may get affected. Let
Etri,j

denote the energy consumption when Si transmits a
message to Sj consisting of a header and the desired
aggregate value(s)—based on whether this is a distribu-
tive or an algebraic aggregate function. The energy
consumption follows the cost model presented in Section
4.3, where the ERFi

value may depend on the distance
between Si and Sj (thus, the two indices used above).
Using the above notation, and similarly to the previous
discussion, the attachment cost ACi,j is calculated as

ACi,j ¼ Pi � Etri,j
þPi � ð1�PjÞ � Etrj,j�1

þPi � ð1�PjÞ � ð1�Pj�1Þ � Etrj�1,j�2
þ � � �

¼ Pi � ðEtri,j
þCFjÞ where

CFi ¼ ð1�PiÞ � ðEtri,j
þCFjÞ ð4Þ

If one wishes to take the receiving cost of messages into
account, all that is required is to replace in the above
formulas the symbols of the form Etrk,p

with ðEtrk,p
þErecp Þ,

since each message transmitted by Sk to Sp will consume
energy during its reception by Sp.
5.2.3. Minimizing total energy consumption, holistic

aggregate and non-aggregate queries

This case is slightly more complex than the case
described above. When considering the attachment cost
of Si to a candidate parent Sj, we need not only consider
the new messages generated in the path from Sj to the
Root node, but also the energy consumption due to the
increase in the length of messages that would have been
transmitted anyway. Recall that the energy consumption
for each transmission of jaggrj bits by Si to Sj is given by:
DEtri,j

¼ jaggrj � ðETXi
þERFi

� dist2
i,jÞ. Calculating the afore-

mentioned number of messages is simple, as we have
already discovered a similar recursive formula that
estimates the attachment cost when only considering
the transmission of new messages. So, we will utilize two
new recursively computed statistics. The DCF value of a
node will be similar to the CF value, but will use the DEtr�,�

transmission costs, instead of the Etr�,� transmission costs
used in the CF formula. The HCF value of a node will be
equal to the sum of the DEtr�,� values in the nodes path to
the Root node. One can verify that the energy consump-
tion due to the enlargement of messages, because of the
attachment of Si to Sj, that would have been transmitted
anyway is: Pi � ðHCFj�DCFjÞ. The required formulas are
presented below:

CFi ¼ ð1�PiÞ � ðEtri,j
þCFjÞ

HCFi ¼DEtri,j
þHCFj

DCFi ¼ ð1�PiÞ � ðDEtri,j
þDCFjÞ

ACi,j ¼ Pi � ðEtri,j
þCFjÞþPi � ðHCFj�DCFjÞ ð5Þ

5.2.4. Summary

Table 5 summarizes the statistics required to be
transmitted by each node during the query propagation.
Note that the invitation phase always requires one more
transmitted statistic, as the nodes need to check whether
it is more beneficial to be attached to another node or the
reverse (see the last two rules in Section 5.1). As it can be
clearly seen from this table, our algorithms utilize only a
limited number of statistics, which are computed using
only information transmitted by neighboring sensor
nodes.

A final and important note that we need to make at
this point involves the estimation of the attachment cost
when seeking to minimize the overall energy consump-
tion in all the types of queries discussed in this paper.
When each sensor node Si examines the invitations of
neighboring nodes (and only in this step) and estimates
the attachment cost to any node Sj, in our implementation
it utilizes the same ERF value in order to determine the
value of Etri,j

, independently on the distance of Si to Sj. This
is done so that the value of Etri,j

is the same for all
candidate parents of Si, as desired by the proof of Theorem
1 in order to guarantee the lack of loops in the formed
collection tree.

Theorem 1. For sensor networks that satisfy the connectiv-

ity requirements of Section 4.2 our algorithm always creates

a connected routing path that avoids loops.



Table 5
Statistics attached to messages.

Minimization metric Type of aggregate Decision Invitation

Transmissions Aggregate Non-aggregate CFi Pi, CFi

Energy consumption Distributive algebraic CFi Pi, CFi

Energy consumption Holistic non-aggregate CFi, HCFi, DCFi Pi, CFi, HCFi, DCFi

A. Deligiannakis et al. / Information Systems 36 (2011) 386–405394
Proof. We only sketch the proof here. It is obvious that
any node that will receive the query announcement will
select some node as its parent node. We first demonstrate
that no loops can be introduced and prove this by
contradiction. Assume that the parent relationships in
the created loop are as follows: S1-S2- � � � Sp-S1. Let Di

be the distance (in number of hops) of node Si from the
Root. Since each node can select as its parent node a node
with equal or lower D value, the existence of a path from
S1 to S2 means that D2rD1 and the existence of a path
from S2 to S1 means that D1rD2. Therefore, D1=D2.

The attachment cost ACi,j calculated using the afore-

mentioned statistics is of the form: Pi � ðaiþCFjÞ,
3 where

ai is a constant for each node Si. Considering that S1

selected S2 as its parent and not Sp, we get:

AC1,2rAC1,p¼)CF2rCFp. By creating such inequalities

between the current parent and child of each node,

summing these up (note that because one of the nodes in

the loop will exhibit the highest identifier, for at least one

of the above inequalities the equality is not possible), we

get that: CF1þ � � � þCFpo CF1þ � � � þCFp.

We therefore reached a contradiction, which means that

our algorithm cannot create any loops. &
5.3. Algorithm implementation

In Algorithm 1 we present the complete algorithm for
the decisions of a sensor node. This algorithm is invoked
both at the query propagation phase and when updating
the collection tree. Each node first waits to receive the
decisions by nodes that lie one hop closer to the Root

node (Line 2). Based on the received decisions it performs
an initial parent selection using the ProcessDecisions

subroutine described in Algorithm 2 (Lines 3–4). It then
calculates some necessary statistics and transmits an
invitation to neighboring nodes (Lines 5–6). The node
then waits (Line 7) to receive invitations from neighboring
nodes and makes a final decision on its parent selection
using the ProcessInvitations subroutine presented in
Algorithm 3 (Lines 8–9). The node then transmits its final
decision (Line 10) to neighboring nodes and ignores any
received decisions or invitations until the next update
period when the collection tree will be reorganized
(a counter denoting the reorganization period can be
attached to the queries transmitted by the Root node in
order to help the nodes understand the transition to a
3 In the case of energy minimization for holistic or non-aggregate

functions, described in Section 5.2.3, it suffices to substitute CFj with

CFj + HCFj �DCFj in this proof.
new update period). An interesting observation that we
have not mentioned so far involves the nodes with zero
epoch participation frequencies. For these nodes, the
computed attachment costs to any neighboring node will
also be zero. In such cases we select the candidate parent
which produces the lowest value for the attachment cost
if we ignore the node’s epoch participation frequency (i.e.,
minimizes the Etri,j

þCFjþHCFj�DCFj value when referring
to the minimization problem of Section 5.2.3). This
decision is expected to minimize the attachment cost, if
the sensor at some point starts observing events.

Algorithm 1. BuildCollectionTree() Subroutine
1:
 {Si is the node being examined}
2:
 Wait to receive decisions by neighboring nodes
3:
 Set Dec
��!

as the received decisions by the nodes with minimum D

values (ignore other decisions).
4:
 k = ProcessDecisions ðDec
��!
Þ {Returns index of selected parent}
5:
 Di=1 + Dk
6:
 Transmit invitation to neighboring nodes
7:
 Wait to receive invitations by neighboring nodes
8:
 Set Inv
�!

as the received invitations by the nodes with D values

equal to Di (ignore other invitations).
9:
 m=ProcessInvitations ðInv
�!
Þ {Returns index of selected parent}
10:
 Transmit decision
11:
 Ignore received decisions and invitations until next

reorganization
Algorithm 2. ProcessDecisions ðDec
��!
Þ Subroutine
1:
 {Si is the node being examined}
2:
 Select Deck as the decision with the minimum attachment cost. If

Pi=0 utilize in the calculations a non-zero value at this step to

prevent all nodes from having the same (zero) attachment cost
3:
 Let Sk be the sender of Deck
4:
 Set parent(Si)=Sk
5:
 Calculate statistics (cost factors) for current node based on

current parent selection
6:
 Return k {Index of selected parent node}
Algorithm 3. ProcessInvitations (Inv
�!

, k) Subroutine
1:
 {Si is the node being examined}
2:
 {Sk is the current parent node}
3:
 In the following discussion, all estimations of the attachment

cost utilize the same ERFi
value, as discussed at the end of

Section 5.2.3
4:
 Select Invm as the invitation with the minimum attachment

cost. If Pi = 0 utilize in the calculations a non-zero value at this

step to prevent all nodes from having the same (zero)

attachment cost
5:
 Let Sm be the sender of Invm
6:
 if ACi,m rACi,k then
7:
 Return k {No benefit in changing parent node}
8:
 end if

9:
 Calculate ACm,i using information from Invm



P

F
le

a

A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 395
10:
2P  

2D 

2 2  + P 

ig. 3.
ads

ttach
if ACi,m 4ACm,i then
11:
 Return k {Reverse decision is better}
12:
 else if ACi,m= =ACm,i AND i4m then

13:
 Return k {Base decision on identifier}
14:
 end if

15:
 Set parent(Si)=Sm
16:
 Calculate statistics (cost factors) for current node based on

current parent selection
17:
 Return m {Index of selected parent node}
6. Discussion and extensions to the basic algorithm

In this section we first provide alternative techniques
that we considered for our optimization problem, as well
as their drawbacks when compared to our approach. We
also elaborate on some decisions made in our algorithms
and discuss some extensions to our basic algorithms.
6.1. Alternative techniques considered

In our work we investigated several alternative ways of
building collection tree, while utilizing statistics collected
by the sensor nodes. The two most promising approaches
were to select the parent node of each sensor based on
either its epoch participation frequency or the actual
transmission frequency of the node.

The first approach involved selecting as a parent node
the neighboring node with the highest epoch participation
frequency. This seemed as the most intuitive approach at
the beginning. The problem with this approach is that we
have no knowledge about the epoch participation fre-
quencies of the sensor nodes on the path of the candidate
parent towards the Root node. The locally best option
may end up being a poor decision overall. Moreover, this
algorithm could not perform good decisions even in
the case of very simple scenarios. For example, consider
the scenario of a sensor network with simply three
sensors (besides the Root node) depicted in Fig. 3. Let
the minimum possible distance of each node from the
Root node be: D1=1, D2=D3=2. An algorithm where the
sensor nodes would select as parent node the neighboring
node with the maximum P value would result in node S2
3P   =  0.2

S2 S3

1P   =  0.1

 =  0.1

  =  2 3D   =  2

1D   =  1

3 2 3 1 (1 − P  ) + P  (1 − P  )(1 − P  ) = 0.252
2Attachment Cost of S  :

3P   =  0.2

S2 S3

S1S1 1P   =  0.1

2P   =  0.1

2D   =  2 3D   =  2

1D   =  1

2 2P  + P  (1 − P  ) = 0.191

Attachment Cost of S   :2

Parent selection using the neighbor with the maximum P value

to wrong decision in (a). In (b) the parent selection using the

ment cost leads to the best decision.
selecting node S3 as its parent node. Assuming the case of
a distributive aggregate query (like the SUM of all measure-
ments), we first observe that this decision would result in an
increase on the expected number of transmissions by: P2 +
P2(1�P3) + P2(1�P3)(1�P1). On the other hand, if S2 had
selected S1 as its parent node (as in Fig. 3(b)), then the
corresponding expected number of transmissions due to this
decision would have been: P2 + P2(1�P1). One can easily
verify that for a large range of values (but not for all) for
P1, P2, P3 the second decision would have been more
beneficial. For example, for P1=0.1, P2=0.1 and P3=0.2, this
algorithm would select a solution with expected cost per
epoch equal to 0.1+0.1(1�0.2)+0.1(1�0.2)(1�0.1)=0.252,
while the second solution has an expected cost of only:
0.1+0.1(1�0.1)=0.19.

The second alternative approach was based on the idea
that if a node performs a large number of transmissions,
then selecting it as a parent node would result in only a
small number of additional transmissions from nodes in
its path to the Root node. This approach has multiple
drawbacks. First of all, it makes no distinction on whether
the transmissions by a node are due to corresponding
transmissions by its descendants in the collection tree, or
because of a high epoch participation frequency by the
node itself. Our experimental evaluation of this technique
indicated that in the case of moving phenomena (or
moving sensor nodes) even in cases of large changes in
the epoch participation of some sensor nodes the collec-
tion tree was not altered significantly (except perhaps
near its leaves), as the sensor nodes seek to forward their
results through nodes (and paths) that exhibited large
transmission frequencies in previous epochs. This resulted
in a large number of nodes with low epoch participation
frequencies to transmit a large number of messages. In
general, this second alternative approach performed
significantly worse in our experimental evaluation
that both our proposed techniques based on the attach-
ment cost of a node and compared to the first alternative
technique, discussed earlier in this section, that
utilized solely the epoch participation frequencies of each
sensor node.

A final alternative approach that we considered was to
build the collection tree bottom-up, starting from the
nodes that are most distant from the Root. Using such an
approach, a node that performs a parent selection actually
has no real idea of the incurred attachment cost, and thus
whether the node is being directed towards a ‘‘desired’’
area of the collection tree, since the path from the node’s
parent to the Root has not been formed. The node is only
aware of its transmission frequency and of the epoch
participation frequency of its candidate parent. Our
experience with such a bottom-up construction of the
collection tree was that it consistently provided signifi-
cantly worse results than our presented techniques and is,
thus, omitted from our discussion.
6.2. Power of independence assumption

In order to calculate the attachment cost when
selecting a parent node, in Section 5.2 we made the



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405396
simplification to consider that the epoch participation by
each node is independently derived. Clearly, there are
many practical scenarios where this assumption may not
hold, for instance when nearby nodes observe the same
event. From an algorithmic standpoint, removing this
assumption does not allow us to compute and use local
statistics in a recursive manner. One might be tempted to
assume that the independence could have been raised by
requiring each node to transmit, along with its locally
calculated statistics, a bitmap specifying at which epoch
the node participates in the query. Each node receiving
this bitmap could make, when considering candidate
parents, a better estimation of the increase in the epoch
participation frequency that each parent selection would
incur. However, note that this approach: (i) requires more
information to be transmitted by each node. Since the
extra information corresponds to a long bitmap, this
information may require multiple messages for its
transmission; (ii) this solution still has the pitfall that
the attachment cost is overestimated, since it assumes
that any increase in transmissions to the parent node is
due to the node at question, ignoring the contribution by
sibling subtrees; and (iii) this procedure can only utilize
one-hop dependencies in epoch participation—multi-hop
dependencies require the bitmaps of all nodes in the path
to the root node, in order for the cost estimation to be
more accurate. Clearly, this is a non-realistic scenario.

If no local statistics can be computed, then the other
alternative solution to our problem is a centralized
computation, where the root node would have to know
which node transmitted in which epoch (thus, requiring a
bitmap by each node in the network), something that
would severely affect the bandwidth consumption in the
network.

In conclusion, using the independence assumption
seemed as the only viable solution in order to help us
reach our decisions, while utilizing an in-network con-
struction of the collection tree. Our experimental evalua-
tion with data sets that exhibit significant dependency
between the epoch participation frequencies of neighbor-
ing nodes reveals that our techniques still manage to
produce significantly better collection trees (with
respect to the number of transmitted messages and the
overall energy consumption) when compared to existing
techniques.
6.3. Refining the utilized statistics

Our presented techniques for constructing the collec-
tion tree utilize a two-step approach, where each sensor
node makes a preliminary parent selection, addresses an
invitation to neighboring nodes with equal minimum
distance from the Root node, awaits for the correspond-
ing invitation of the neighboring nodes and then finalizes
its parent decision and broadcasts it. A potential problem
with this approach is that multiple neighboring nodes
may decide to alter their parent selection at the same step
(i.e., when reaching their final decision) and, thus, create a
long routing path through nodes having the same
minimum distance D from the Root node. However, note
that when these nodes reached their decision, they were
not aware that something like this might happen. The
statistics that they utilized in order to reach their decision
involved statistics included in the invitations of neighbor-
ing nodes. Unfortunately, statistics were calculated based
on the preliminary parent selection of each node. We can
improve our algorithm by refining the statistics that each
node uses when making its final decision as follows.

After each node receives the invitations of neighboring
nodes, it does not make its decision immediately. Instead,
it selects a subset of these nodes termed the candidate set.
This set includes the set of neighboring nodes that seem
as better candidate parents (using the attachment cost of
each selection, as described so far) than the preliminary
choice performed. The node then waits until it receives
the final decision from these nodes, or until a timeout
occurs. This timeout can be specified at the query setup
phase. Having received the final decisions from the nodes
in its candidate set (with their updated statistics included
in the message), the node then makes its final decision.
This modification of the algorithm is slightly more
complicated, as it involves a timeout step.

6.4. Minimizing other metrics

Our techniques can be easily adapted to incorporate
different minimization metrics, than the ones presented
in Section 4.2. For example, the formulas for minimizing
the number of transmitted bits can be derived using the
formulas for the energy minimization for the correspond-
ing type of query (i.e., distributive, non-aggregate). In
these formulas one simply has to substitute the term Etri,j

with the size of a packet (including the packet’s header)
and to substitute the term DEtri,j

with the size of each
transmitted aggregate value (thus, ignoring the header
size). In the case where the goal is to maximize the
minimum energy amongst the sensor nodes, the attach-
ment cost can be derived from the minimum energy,
amongst the nodes in a sensor’s path to the Root node,
raised to �1 (since our algorithms select the candidate
parent with the minimum attachment cost).

6.5. Reducing the load of sensors

Our presented algorithms sometimes lead to cases
where some sensor nodes with cost factors significantly
lower than those of their neighboring nodes will poten-
tially have a large number of children nodes in the
resulting collection tree. In situations where the epoch
participation frequency does not vary significantly over
time, this scenario will result in a quick drain of the
sensors’ energy. One way to solve this problem is by
having each node select its parent in a probabilistic

manner. We can thus associate, for each sensor Si, with
each candidate parent node Sj (amongst the candidate
parents that satisfy the conditions presented in Section
5.1) of Si a cost value CVi,j, where CVi,j ¼minfs,1=ACi,jg. In
this equation the value of CVi is capped by a sanity bound
s (i.e., a maximum value). The sanity bound is used to
ensure that nodes with zero attachment cost will not



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 397
exhibit an infinite value of CVi,j. We then associate a
selection probability SPi,j to each candidate parent Sj as

SPi,j ¼
CVi,jP

jCVi,j
ð6Þ

Using this probabilistic process for selecting a parent
node will result in a distribution of the load of individual
nodes that would be otherwise overburden by a determi-
nistic selection.

One may be tempted to further reduce the load of
individual nodes by taking into account, for example, the
amount of available energy at each node. One way to
accommodate this in our calculations, would have been to
divide the cost factors by the parent node’s remaining
energy level.4 While this approach does not minimize a
specific cost metric, it allows us to prefer parent nodes
with low attachment costs and higher levels of residual
energy. However, we believe that such an extension would
be inappropriate and contradicts a foundational principle
in building viable sensor networks: an application should
not be concerned at serving the needs of individual nodes.
What matters in the network as a whole. For example,
cluster formations regularly place more load at specific
nodes (the cluster leaders) at an attempt to reduce the
cumulative drain of network resources. As a result, certain
nodes ‘‘take the hit’’ for the good of their local community.
Our focus on reducing global metrics (like the total number
of messages or the overall energy consumption) stems
from the same principle. In our prior work [20] we have
demonstrated that network lifetime is increased when
emphasis is put on minimizing global metrics, at the
expense of the operation of certain nodes in a network. Our
proposed techniques are built around the same premise.

Of course, if certain nodes are deemed to be critical for
the application at hand, or when certain sensors face
severe energy limitations, we can easily modify our
algorithm so as not to consider these nodes when
selecting a parent node.
6.6. Taking into account the quality of links

A question that naturally arises is whether our
presented algorithms can take into account the existence
of message failures, which is common in sensor networks.
When such failures occur, reliable communication can be
achieved through a protocol that includes a mechanism
for acknowledgments and retransmissions. Let fpi,j denote
the probability that a message transmitted by Si will not
be received by Sj. Using a protocol that performs
retransmissions, the expected number of transmissions
for the successful reception of the aforementioned
message is 1=ð1�fpi,jÞ. Thus, our algorithms can easily be
adapted as follows (the presentation here focuses on the
CF factor, but the adaptation to the other cost factors is
straightforward): (i) any CFi value previously computed as
ð1�PiÞ � ðaþCFjÞ (where a may represent in the equations
4 Note that this approach is different than the case of Section 6.4,

where only the minimum energy of a node in the entire path to the Root

is used to derive the cost factors.
of this paper the values of 1 or Etri,j
) will now be computed

as ð1�PiÞ � ða=ð1�fpi,jÞþCFjÞ; and (ii) any attachment cost
previously computed as Pi � ðaþCFjÞ will now be com-
puted as Pi � ða=ð1�fpi,jÞþCFjÞ.

7. Multi-query optimization

In the multi-query scenario, each node Si may choose
different parent nodes for each posed query. Thus, the
resulting network topology may not be a tree after-all
but a directed acyclic graph. In the case of multiple
concurrent queries we need to introduce some additional
(or augmented) notation for the presentation of our
algorithms. Let Pi

k denote the epoch participation frequency
of Si regarding the k-th query. Let fi(k) denote the index of the
selected parent node of Si for the k-th posed query.

In order to be able to derive recursive formulas for the
estimation of the attachment cost, in our approach we
break the posed queries into two groups. The first group of
queries contains the distributive and algebraic aggregate
queries, while the second group contains the holistic and
non-aggregate queries. In our discussion below we
assume that the group of queries handled in each case
contains a total of M queries of similar type.

7.1. Minimizing total number of transmissions

If we process the queries in order based on their
identifier (i.e., from 1 to M) and consider the attachment
cost ACi,j

k of Si to Sj regarding the k-th query, we need to
estimate how many new messages will be transmitted by
Sj and, recursively, by any node in the path from Sj to the
Root node. Note that because we may have selected Sj as
the parent node for other queries as well, the transmission
of results for the k-th query does not always generate new
messages in a link. Therefore, we consider the additional
cost imposed on the link between Si and Sj only for query k

as: Pk
i �

Q
x o k

fi ðxÞ ¼ Sj

ð1�Px
i Þ.

Before the attachment that we are considering for
the k-th query, the joint epoch participation frequency
of Sj was: JPj ¼ 1�

QM
x ¼ 1ð1�Px

j Þ. After the attachment,
aggregates regarding the k-th query will be transmitted
by Sj with a frequency P0jk, which is increased over Pj

k by Pi
k

(1�Pj
k). Thus, the resulting increase in the overall (i.e., for

all queries) transmission frequency of Sj becomes

1�ð1�P0j
kÞ �

YM
x ¼ 1
xak

ð1�Px
j Þ

2
4

3
5� 1�

YM
x ¼ 1

ð1�Px
j Þ

 !

¼
YM
x ¼ 1
xak

ð1�Px
j Þ � ðP

0
j
k�Pk

j Þ ¼ Pk
i �

YM
x ¼ 1

ð1�Px
j Þ ð7Þ

Using the notation PRODk
i ¼

QM
x ¼ 1

fi ðxÞ ¼ fi ðkÞ
ð1�Px

i Þ and

partialPRODk
i,j ¼

Q
x o k

fi ðxÞ ¼ Sj

ð1�Px
i Þ, one can follow similar

arguments as in Section 5.2.1 and calculate the attach-
ment cost ACi,j

k as

ACk
i,j ¼ Pk

i � ðJCFk
j þpartialPRODk

i,jÞ

JCFk
i ¼ PRODk

i þð1�Pk
i Þ � JCFk

j ð8Þ



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405398
7.2. Minimizing total energy consumption

7.2.1. Distributive and algebraic aggregates

In the multi-query optimization scenario, when esti-
mating the attachment cost ACi,j

k of having Si select Sj as its
parent node for the k-th query, one needs to consider that
both new messages and/or new aggregate values in
existing messages (transmitted due to some other query)
may be generated. In particular:
�
 New messages (first summand of ACi,j
k presented

below) may be transmitted from Si to Sj if the queries
with index lower than k do not generate a message by
themselves (recall that the queries are processed in
order in our algorithm). The frequency of these new
messages is: Pk

i � partialPRODk
i,j.
�
 In the same link, new aggregate values (only second
summand of ACi,j

k presented below) but in
messages that would have been transmitted anyway
due to other queries are included with frequency:
Pk

i � ð1�partialPRODk
i,jÞ.
�
 In the path of Sj to the root node, new messages (third
summand of ACi,j

k presented below) and aggregate
values (fourth summand of ACi,j

k presented below) in
existing messages are generated. The number of total
aggregate values for the k-th query can be calculated
as in the single query case described in Section 5.2.1.
Out of these values, a fraction of them (the number is
derived in Section 7.1) involves new messages not
containing aggregates about other measures. In the
remaining cases the aggregates are attached to
messages that would have been transmitted anyway.

Using similar arguments as in Sections 5.2.3 and 7.1
(due to the generation of both new messages and
additional aggregate values in existing messages the
formulas below resemble strongly the ones in Section
5.2.3), the attachment cost ACi,j

k can be estimated as

ACk
i,j ¼ Pk

i � partialPRODk
i,j � Etri,j

þPk
i � ð1�partialPRODk

i,jÞ � DEtri,j

þPk
i � JCFk

j þPk
i � ðJECFk

j�JDCFk
j Þ

JCFk
i ¼ PRODk

i � Etri,fi ðkÞ
þð1�Pk

i Þ � JCFk
fiðkÞ

JECFk
i ¼ ð1�Pk

i Þ � ðDEtri,fi ðkÞ
þ JECFk

fiðkÞ
Þ

JDCFk
i ¼ PRODk

i � DEtri,fi ðkÞ
þð1�Pk

i Þ � JDCFk
fiðkÞ

ð9Þ

Note that in the single query scenario, the second and
fourth summands of ACi,j

k always evaluate to zero, as
partialPROD1

i,j ¼ 0 and JDCFi
k is always equal to JECFi

k, since
PRODi

k expands to (1�Pi
k).

7.2.2. Holistic aggregate and non-aggregate queries

The attachment cost ACi,j
k can in this case be derived

based on the analysis presented in Sections 5.2.3 and
7.2.1. The main difference compared to the case of
algebraic or non-aggregate queries involves the estima-
tion of the energy consumption due to additional
aggregates that are transmitted in existing messages.
The complete formulas become (note the similarity with
the single query scenario):

ACk
i,j ¼ Pk

i � partialPRODk
i,j � Etri,j

þPk
i � ð1�partialPRODk

i,jÞ � DEtri,j

þPk
i � JCFk

j þPk
i � ðJHCFk

j�JDCFk
j Þ

JCFk
i ¼ PRODk

i � Etri,fi ðkÞ
þð1�Pk

i Þ � JCFk
fiðkÞ

JHCFk
i ¼DEtri,f ðkÞ

þ JHCFk
fiðkÞ

JDCFk
i ¼ PRODk

i � DEtri,fi ðkÞ
þð1�Pk

i Þ � JDCFk
fiðkÞ

ð10Þ
8. Experiments

We developed a simulator for testing the algorithms
proposed in this paper under various conditions. In our
discussion we term our algorithm for minimizing the
number of transmissions as MinMesg, and our algorithm
for minimizing the overall energy consumption as
MinEnergy. Our techniques are compared against two
intuitive algorithms. In the MinHops algorithm, each
sensor node that receives the query announcement
randomly selects as its parent node a sensor amongst
those with the minimum distance, in number of hops, from
the Root node [23]. In the MinCost algorithm, each sensor
seeks to minimize the sum of the squared distances
amongst the sensors in its path to the Root node, when
selecting its parent node. Since the energy consumed by
the power amplifier in many radio models depends on the
square of the communication range, the MinCost algorithm
aims at selecting paths with low communication cost.

In all sets of experiments we place the sensor nodes on
random locations over a rectangular area. The radio
parameters were set accordingly to the values in Table 3.
The message header was set to 32 bits, similarly to the
size of each statistic and half the size of each aggregate
value.

Our algorithms require for their operation an estimate
of the epoch participation frequencies by each node. This
is achieved by maintaining a single counter at each node
that is increased whenever a transmission is made. We
used a periodic schedule that reorganizes the collection
tree every 200 epochs. Thus, every 200 epochs the
MinMegs or the MinEnergy algorithm was invoked
utilizing the epoch participation frequencies computed
in the previous 200 epochs by the nodes. Of course, the
MinHops and the MinCost algorithms are only executed
once, since they never need to reorganize the collection
tree. In all figures we account for the overhead of
transmitting statistics and invitation messages during
the creation of the collection tree in our algorithms. All
numbers presented are averages from a set of five
independent experiments with different random seeds.



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 399
8.1. Experiments with synthetic data sets

We initially placed 36 sensor nodes in a 300�300
area, and then scaled up to the point of having 900
sensors. We set the maximum broadcast range of each
sensor to 90 m. In all cases the Root node was placed on
the lower left part of the sensor field. We set the epoch
participation frequency of the sensor nodes with the
maximum distance, in hop count, from the Root to 1.
Unless specified otherwise, with probability 8% some
interior node assumed an epoch participation frequency
of 1, while the epoch participation frequency of the
remaining interior nodes was set to 5%.

We considered two setups for selecting which interior
nodes assume an epoch participation frequency of 1. In
the INDEPENDENT setting, these nodes are selected
randomly. In the DEPENDENT setting, the selected interior
nodes that have an epoch participation frequency of 1 are
spatially correlated. In particular: (1) an initial proper
(this will be defined shortly) set of interior nodes that
have an epoch participation frequency of 1 is selected
randomly. (2) Then, for each interior node X in the
aforementioned set, with a probability Pneighbor (with
probability 1�Pneighbor no node is selected) we decide to
include in the set a random neighbor (which did not
already have a high epoch participation frequency) of X.
(3) If a neighbor was selected in the previous step, we
follow the same procedure recursively in that node as well
(flip a coin, select another neighbor to activate, etc.).

In the DEPENDENT setting, the process results in the
formation of clusters of interior nodes with an epoch
participation frequency of 1. The number of nodes in each
cluster depends on the probability Pneighbor. High values of
0

500

1000

1500

2000

2500

3000
36-M

inM
esg

36-M
inEnergy-Aggr

36-M
inEnergy-nonAggr

36-M
inH

ops
36-M

inC
ost

144-M
inM

esg
144-M

inEnergy-Aggr
144-M

inEnergy-nonAggr
144-M

inH
ops

144-M
inC

ost
324-M

inM
esg

324-M
inEnerg

M
es

sa
ge

s 
(x

10
00

)

#Sensors

Routing Overhead
Mandatory Cost

Min Overhead
Max Overhead

Fig. 4. Messages and average message overhead for INDEPENDENT synthetic

non-aggregate query.
this probability results in our settings in fewer, but larger
clusters. Low values of this probability result in more,
smaller clusters. The expected number of nodes in each
cluster approaches 1=ð1�PneighborÞ. Using this estimate, we
may properly determine the number of interior nodes that
we initially (before starting to select neighbors of these
nodes, etc.) select to have an epoch participation fre-
quency of 1. The INDEPENDENT setting can be viewed as a
special case of the DEPENDENT setting, where Pneighbor = 0.

8.1.1. Experiments with the INDEPENDENT setting

We first evaluated for the INDEPENDENT setting a non-
aggregate ‘‘SELECT *’’ query over the measurements
obtained by the epoch participating sensor nodes. Since
in this query the measurements of each epoch participat-
ing node need to be propagated all the way to the Root

node, and the only sharing that can be achieved in
combined messages involves the message’s header, we
expect little energy savings in this case. We also evaluated
for the same setting a SUM aggregate query over the
values of epoch participating sensor nodes using all
algorithms. We present the total number of transmissions
for each type of query, algorithm and number of sensors
in Fig. 4. Note that the MinEnergy algorithm built very
different collection trees for the two types of queries. For
the remaining algorithms, the number of transmitted
messages was the same for both types of queries. The
corresponding average energy consumption by the sensor
nodes for each case is presented in Tables 6 and 7.

As we can see, our MinMesg algorithm achieves a
significant reduction in the number of transmitted
messages compared to the MinHops and MinCost
algorithms. The increase in messages induced by the
y-Aggr
324-M

inEnergy-nonAggr
324-M

inH
ops

324-M
inC

ost
576-M

inM
esg

576-M
inEnergy-Aggr

576-M
inEnergy-nonAggr

576-M
inH

ops
576-M

inC
ost

900-M
inM

esg
900-M

inEnergy-Aggr
900-M

inEnergy-nonAggr
900-M

inH
ops

900-M
inC

ost

 - Algorithm

data set. Results for MinEnergy presented for both aggregate SUM and



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405400
MinHops and MinCost algorithms compared to our
approach is up to 86% and 120%, respectively, with an
average increase of 66% and 93%, respectively.

However, since these gains depend on the number of
transmissions that epoch-participating nodes perform, it
is perhaps more interesting to measure the routing

overhead of each technique. We define the routing over-
head of each algorithm as the relative increase in the
number of transmissions when compared to the number
of epoch participations by the sensor nodes. Note that
the latter number is a mandatory cost that represents the
transmissions in the network if each sensor could
communicate directly with the Root node. For example,
if the total number of epoch participations by the sensor
nodes was 1000, but the overall number of transmissions
Table 6
Average power consumption (in mJ) for INDEPENDENT synthetic data

set with error bounds for aggregate SUM query.

Sensors Aggregate SUM query

MinMesg MinEnergy MinHops MinCost

36 94.38 87.20 166.12 125.78

144 72.84 67.56 140.81 117.18

324 66.06 61.83 141.46 103.22

576 62.52 58.73 133.71 101.84

900 61.29 56.68 127.79 99.93

7 7.51% 10.94% 5.66% 6.8%

Table 7
Average power consumption (in mJ) for INDEPENDENT synthetic data

set with error bounds for non-aggregate ‘‘SELECT *’’ query.

Sensors Non-aggregate ‘‘SELECT *’’ query

MinMesg MinEnergy MinHops MinCost

36 492.48 283.20 323.51 286.51

144 585.04 357.27 414.65 358.02

324 695.86 428.49 494.26 428.12

576 781.93 492.43 578.37 493.21

900 869.54 554.36 645.14 555.97

7 16.09% 7.62% 7.73% 8.54%

400

500

600

700

800

900

1000

1100

1200

1300

0 0.1 0.2 0.3 0.4

M
es

sa
ge

s 
(x

10
00

)

Participatio

MinCost
MinHops

MinEnergy
MinMesg

Fig. 5. Transmissions varying the epoch partici
was 1700, then the routing overhead would have been
equal to (1700�1000)/1000=70%. As we observe from
Fig. 4, our MinMesg algorithm often results in 3 times
smaller routing overhead compared to the alternative
algorithms considered. We also observe that the MinE-
nergy algorithm in the aggregate case produced results
very close to the ones of MinMesg. A main difference
between these two algorithms is that amongst candidate
parents with similar cost factors, the MinEnergy algo-
rithm is less likely to select a distant neighbor than the
MinMesg algorithm, which only considers epoch partici-
pation frequencies. This is a trend that we observed in all
our experiments. However, in the case of non-aggregate
queries, the MinEnergy algorithm formed very different
collection trees, as it avoided routing measurements
through very long paths.

The MinEnergy algorithm performs very well in both
types of queries. Compared to the MinHops algorithm, it
achieves up to a twofold reduction in the power drain for
aggregate queries and up to 17% for non-aggregate
queries. Compared to the MinCost algorithm the energy
savings are smaller but still significant (i.e., up to 76% in
the aggregate query). The MinMesg algorithm is obviously
a very poor choice, with respect to the energy consump-
tion, for non-aggregate queries.

We expect that the more the epoch participation
frequencies of sensor nodes increase, the less likely that
out techniques will be able to provide substantial savings
compared to the MinHops and MinCost algorithms. In
Fig. 5 we repeat the aggregate query of Fig. 4 at the sensor
network with 324 nodes, but vary the epoch participation
frequency Pi of those nodes that do not make a transmis-
sion at each epoch (i.e., of those nodes with Pio1). While
Fig. 5 validates our intuition, it also demonstrates that
significant savings can be achieved even when sensor
nodes have large Pi values (i.e., PiZ0:5).

A novel feature of our technique is the 2-step parent
selection phase. In Table 8 we compare the performance
of our MinEnergy algorithm in the aggregate SUM query
described above versus a variant that was not allowed to
select a node’s sibling as its parent node in the collection
tree. As we can see, the benefits from utilizing the
2-step process are important in all aspects (transmitted
0.5 0.6 0.7 0.8 0.9
n Frequency

pation frequency, INDEPENDENT setting.



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 401
messages and power consumption). Note that the 1-step
process constructs minimum-hop trees, similarly to
MinHops. However, each node selects its parent in an
informed manner (utilizing the estimated attachment
cost). The improvements that the 1-step process achieves
over MinHops can be viewed by comparing Table 8 with
the corresponding numbers of MinHops from Fig. 4 and
Table 6.

8.1.2. Experiments with the DEPENDENT setting

We now present a similar set of experiments using the
DEPENDENT setting. We provide results for two different
values of Pneighbor, a medium value of 0.5 and a high value
of 0.9. For brevity we present results for the SUM
aggregate query, as it will become obvious that the
results are very similar to the INDEPENDENT setting. For
the ‘‘SELECT *’’ query, the MinCost algorithm is again
competitive in terms of energy consumption, due to the
few opportunities (i.e., only the message header can be
shared) of merging information by different sensors.

In Fig. 6 we show the total number of transmitted
messages for the same setting as in Fig. 4, but for the
0

500

1000

1500

2000

2500

3000
6-M

inM
esg

6-M
inEnergy

6-M
inH

ops
6-M

inC
ost

12-M
inM

esg
12-M

inEnergy
12-M

inH
ops

12-M
inC

ost
18-M

inM
esg

18-M
inEnergy

18-M
inH

ops
18-M

inC
ost

24-M
inM

esg
24-M

inEnergy
24-M

inH
ops

24-M
inC

ost
30-M

inM
esg

30-M
inEnergy

30-M
inH

ops
30-M

inC
ost

M
es

sa
ge

s 
(x

10
00

)

#Sensors - Algorithm

Routing Overhead
Mandatory Cost

Min Overhead
Max Overhead

Fig. 6. Messages and average message overhead for

Table 8
Comparison of 1-step and 2-step parent selection for MinEnergy

algorithm.

# Sensors Transmissions Avg. energy consumption

1-Step 2-Step 1-Step 2-Step

36 115,963 80,813 153.40 87.20

144 388,171 255,122 124.36 67.57

324 790,751 524,317 115.21 61.83

576 1,222,320 879,019 99.15 58.74

900 1,833,270 1,330,900 93.88 56.68

7 22.44% 22.45% 10.94% 5.43%

Number of transmissions and average power consumption (in mJ) for

INDEPENDENT synthetic data set.
DEPENDENT setting. One can observe that the results are
very similar to the ones of the INDEPENDENT setting, and
qualitatively similar in both cases. A small reduction
(observe that the maximum value of the y-axis is different
in the two subgraphs) in the number of transmitted
messages is observed when we use a high value
Pneighbor=0.9 for the competitive MinHops and MinCost
techniques. With higher values of Pneighbor, each internal
node with a high epoch participation frequency has more
neighbors with the same behavior. Thus, the non-
informed parent selection that MinHops and MinCost
perform has a higher chance of being a correct choice
(i.e., select a parent with a high participation frequency)
as the value of Pneighbor increases. However, the benefits
and the behavior of all techniques is similar to the ones of
the INDEPENDENT setting.

The corresponding energy consumption in each case is
presented in Table 9. Again, the results are very similar to
the INDEPENDENT case.

In Fig. 7 we plot for each scale of the sensor field the
ratio of the average tree height of each algorithm to the
0

500

1000

1500

2000

2500

6-M
inM

esg
6-M

inEnergy
6-M

inH
ops

6-M
inC

ost
12-M

inM
esg

12-M
inEnergy

12-M
inH

ops
12-M

inC
ost

18-M
inM

esg
18-M

inEnergy
18-M

inH
ops

18-M
inC

ost
24-M

inM
esg

24-M
inEnergy

24-M
inH

ops
24-M

inC
ost

30-M
inM

esg
30-M

inEnergy
30-M

inH
ops

30-M
inC

ost

M
es

sa
ge

s 
(x

10
00

)

#Sensors - Algorithm

Routing Overhead
Mandatory Cost

Min Overhead
Max Overhead

SUM query in DEPENDENT synthetic data set.

Table 9
Energy consumption (in mJ) in DEPENDENT setting.

Scale MinMesg MinEnergy MinHops MinCost

Pneighbor=0.5

1 91.8808 81.305 167.251 120.289

2 68.9294 63.0658 136.705 114.274

3 65.4574 59.9246 137.12 110.17

4 60.9268 55.7408 131.656 100.26

5 58.301 53.9292 125.828 98.3386

Pneighbor=0.9

1 90.713 80.885 166.802 118.472

2 67.5194 61.7968 133.186 109.065

3 65.1932 59.6316 135.6 106.086

4 62.8632 58.4016 127.949 97.732

5 58.474 54.6552 121.062 94.7246



A. Deligiannakis et al. / Information Systems 36 (2011) 386–405402
corresponding tree height of MinHops, for values of Psimilar

of 0.5 and 0.9. Obviously, this ratio can only be larger than
1, since MinHops builds a minimum height tree. For the
INDEPENDENT setting the results are very similar to
(actually, slightly lower than) the ones of the DEPENDENT
setting for Pneighbor=0.5 and are, thus, omitted for brevity.
The trees that MinHops and MinCost build do not depend
on the epoch participation frequencies and, thus, do not
depend on the value of Psimilar. As we can see from Fig. 7,
MinMesg and MinEnergy build trees that are deeper than
MinHops (MinMesg actually built more shallow trees in
both cases), with this ratio increasing as the value of
Psimilar increases. This is to be expected, since with larger
values of Psimilar, it is more likely to create larger paths of
nodes belonging to the same level. Of course, the main
reason for the larger tree height of MinMesg and
MinEnergy is the sensors with large epoch participation
frequencies at the external part of the network. Thus,
MinMesg and MinEnergy may reduce the number of
400

500

600

700

800

900

1000

1100

1200

1300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s 
(x

10
00

)

Participation Frequency

MinCost
MinHops

MinEnergy
MinMesg

Fig. 8. Transmissions varying the epoch partic

1 2 3 4 5
Scale

1

1.2

1.4

1.6

1.8

2

Tr
ee

 H
ei

gh
t R

at
io

 to
 M

in
H

op
s

MinMesg (Psimilar = 0.5)

MinEnergy (Psimilar = 0.5)

MinCost
MinMesg (Psimilar = 0.9)

MinEnergy (Psimilar = 0.9)

Fig. 7. Ratio of tree height for all methods when compared to MinHops,

DEPENDENT setting.
transmitted messages, or the overall energy consumption,
but may increase the length of the constructed collection
trees.

Fig. 8 presents the results when we vary the epoch
participation frequency of the interior nodes which were
not selected to exhibit an epoch participation frequency of
1, for the DEPENDENT setting. The results are again
similar to the corresponding results of the INDEPENDENT
setting (Fig. 5).
8.2. Experiments with real data sets

We also experimented with the following two real data
sets. The Trucks data set contains trajectories of 276
moving trucks [1]. Similarly, the SchoolBuses data set
contains trajectories of 145 moving schoolbuses [1]. For
each data set we initially overlaid a sensor network of 150
nodes over the monitored area. We set the broadcast
range such that interior sensor nodes could communicate
with at least 5 more sensor nodes. Moreover, each sensor
could detect objects within a circle centered at the node
and with radius equal to 60% of the broadcast range. We
then scaled the data set up to a network of 1350 sensors,
while keeping the sensing range steady. In Figs. 9 and 10
we depict the total number of transmissions by all
algorithms for the Trucks and SchoolBuses data sets,
correspondingly, when computing the SUM of the number
of detected objects. In our scenario, nodes that do not
observe an event make a transmission only if they need to
propagate measurements/aggregates by descendant
nodes. We present the average energy consumption of
the sensor nodes in the same experiment for the School-
Buses data set in Table 10. As it is evident, our algorithms
achieve significant savings in both metrics. For example,
the MinCost algorithm, which exhibits lower power
consumption than the MinHops algorithm, still drains
about 15% more energy than our MinEnergy algorithm.
Moreover, both our MinMesg and MinEnergy algorithms
significantly reduce the amount of transmitted messages
by up to 31% and 53% when compared to the MinHops and
MinCost algorithms, respectively.
400

500

600

700

800

900

1000

1100

1200

1300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s 
(x

10
00

)

Participation Frequency

MinCost
MinHops

MinEnergy
MinMesg

ipation frequency, DEPENDENT setting.



0

100

200

300

400

500

600

700

800

900

1000

150-M
inM

esg

150-M
inEnergy

150-M
inH

ops

150-M
inC

ost

600-M
inM

esg

600-M
inEnergy

600-M
inH

ops

600-M
inC

ost

1350-M
inM

esg

1350-M
inEnergy

1350-M
inH

ops

1350-M
inC

ost
M

es
sa

ge
s 

(x
10

00
)

# Sensors - Algorithm

Routing Overhead
Mandatory Cost

Min Overhead
Max Overhead

Fig. 10. Transmissions—SchoolBuses data.

0

200

400

600

800

1000

1200

1400

150-M
inM

esg

150-M
inEnergy

150-M
inH

ops

150-M
inC

ost

600-M
inM

esg

600-M
inEnergy

600-M
inH

ops

600-M
inC

ost

1350-M
inM

esg

1350-M
inEnergy

1350-M
inH

ops

1350-M
inC

ost
M

es
sa

ge
s 

(x
10

00
)

# Sensors - Algorithm

Routing Overhead
Mandatory Cost

Min Overhead
Max Overhead

Fig. 9. Transmissions—Trucks data.

Table 10
Average power consumption (in mJ) for schoolbuses data set with error

bounds.

# Sensors MinMesg MinEnergy MinHops MinCost

150 75.65 67.64 94.33 75.51

600 61.19 51.10 84.67 58.74

1350 58.87 47.86 85.89 55.48

7 9.58% 5.5% 15.01% 17.77%

A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 403
8.3. Multi-query experiments

We then decided to mix the data sets. We separated
the SchoolBuses into two categories (by randomly color-
ing each schoolbus as either color A and B) and overlaid
this data set with the trucks data set. We then performed
three simultaneous queries requesting the total number
of trucks, schoolbuses of color A and schoolbuses of color
B observed in the network. We used a similar topology,



Table 12
Average power consumption (in mJ) for multi-query scenario.

# Sensors MinMesg MinEnergy MinHops MinCost

150 125.99 113.20 172.78 160.56

600 119.26 99.59 172.33 155.69

1350 115.75 93.55 169.95 146.02

Table 11
Kilobytes transmitted for multi-query scenario.

# Sensors MinMesg MinEnergy MinHops MinCost

150 944.59 1075.20 1259.52 1720.32

600 3604.48 3983.36 4945.92 6318.08

1350 7823.36 8611.84 10,977.30 13,250.60

A. Deligiannakis et al. / Information Systems 36 (2011) 386–405404
network scale and placement of the Root node as above
and compared our MinMesg and MinEnergy algorithm
with the MinHops and MinCost algorithms, which were
modified to select a single parent node for all queries (this
produced the best results for them). In Table 12 we depict
the energy consumption for all algorithms, with error
bounds below 10% in all cases, and find our MinEnergy to
yield up to 56% and 81% energy savings when compared
to MinHops and MinCost. In addition, our MinMesg
algorithm, which does not optimize on energy consump-
tion, drains more power than MinEnergy but still uses less
power than MinHops and even MinCost. In the multi-
query scenario the size of the transmitted messages varies
because not all messages carry the same number of query
responses. Therefore, instead of the number of trans-
mitted messages, we consider the total size of all
transmissions and list the experimentation results in
Table 11 with error bounds under 10%. Although MinHops
transmitted marginally fewer messages than the Min-
Mesg algorithm, it is until we look into the size of
transmitted messages that it becomes clear that MinHops
induces a 27%, or 40%, overhead to our MinEnergy, or
MinMesg, respectively.
9. Conclusions

In this paper we presented algorithms for building and
maintaining efficient collection trees in support of event
monitoring queries in wireless sensor networks. We
demonstrated that is it possible to create efficient
collection trees that minimize important network re-
sources using a small set of statistics that are commu-
nicated in a localized manner during the construction of
the tree topology. Furthermore, our techniques utilize a
novel 2-step refinement process that significantly in-
creases the quality of the created trees. We have also
demonstrated that our algorithms can handle a mix of
event monitoring queries (EMQs) including aggregate and
non-aggregate queries.
References

[1] Rtree Portal /http://www.rtreeportal.orgS.
[2] D.J. Abadi, S. Madden, W. Lindenr, REED: robust, efficient filtering

and event detection in sensor networks, in: VLDB, 2005.
[3] M. Bawa, H. Garcia-Molina, A. Gionis, R. Motwani, Estimating

aggregates on a peer-to-peer network, Technical Report, Stanford,
2003.

[4] A. Cerpa, D. Estrin, ASCENT: adaptive self-configuring sensor
network topologies, in: INFOCOM, 2002.

[5] J.-H. Chang, L. Tassiulas, Energy conserving routing in wireless
ad-hoc networks, in: INFOCOM, 2000.

[6] J. Considine, F. Li, G. Kollios, J. Byers, Approximate aggregation
techniques for sensor databases, in: ICDE, 2004.

[7] A. Deligiannakis, Y. Kotidis, N. Roussopoulosm, Hierarchical
in-network data aggregation with quality guarantees, in: EDBT, 2004.

[8] A. Deligiannakis, Y. Kotidis, N. Roussopoulos, Dissemination of
compressed historical information in sensor networks, VLDB
Journal 16 (4) (2007).

[9] A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, A. Delis,
Another outlier bites the dust: computing meaningful aggregates in
sensor networks, in: ICDE, 2009.

[10] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, Y. Yao, The cougar
project: a work in progress report, SIGMOD Record 32 (4) (2003)
53–59.

[11] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, W. Hong,
Model-driven data acquisition in sensor networks, in: VLDB, 2004.

[12] M. Duckham, S. Nittel, M. Worboys, Monitoring dynamic spatial
fields using responsive geosensor networks, in: GIS, 2005.

[13] D. Estrin, R. Govindan, J. Heidermann, S. Kumar, Next century
challenges: scalable coordination in sensor networks, in: MobiCOM,
1999.

[14] J. Gao, L.J. Guibas, N. Milosavljevic, J. Hershberger, Sparse data
aggregation in sensor networks, in: IPSN, 2007.

[15] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, Y. Theodoridis,
TACO: tunable approximate computation of outliers in wireless
sensor networks, in: SIGMOD, 2010.

[16] C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidermann, Impact of
network density on data aggregation in wireless sensor networks,
in: ICDCS, 2002.

[17] S.R. Jeffery, G. Alonso, M.J. Franklin, W. Hong, J. Widom, Declarative
support for sensor data cleaning, in: Pervasive, 2006, pp. 83–100.

[18] S.R. Jeffery, M.N. Garofalakis, M.J. Franklin, Adaptive cleaning for
RFID data streams, in: VLDB, 2006.

[19] D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of
aggregate information, in: FOCS, 2003.

[20] Y. Kotidis, Snapshot queries: towards data-centric sensor networks,
in: ICDE, 2005.

[21] Y. Kotidis, Processing proximity queries in sensor networks, in:
Proceedings of the 3rd International VLDB Workshop on Data
Management for Sensor Networks (DMSN), 2006.

[22] Y. Kotidis, A. Deligiannakis, V. Stoumpos, V. Vassalos, A. Delis,
Robust management of outliers in sensor network aggregate
queries, in: Proceedings of MobiDE, 2007, pp. 17–24.

[23] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, Tag: a
tiny aggregation service for ad hoc sensor networks, in: OSDI
Conference, 2002.

[24] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, The design of an
acquisitional query processor for sensor networks, in: ACM
SIGMOD, 2003.

[25] C. Olston, J. Widom, Offering a precision-performance tradeoff for
aggregation queries over replicated data, in: VLDB, 2000.

[26] S. Pattem, B. Krishnamachari, R. Govindan, The impact of spatial
correlation on routing with compression in wireless sensor
networks, in: IPSN, 2004.

[27] V. Raghunathan, C. Schurgers, S. Park, M. Srivastava, Energy aware
wireless microsensor networks, IEEE Signal Processing Magazine 19
(2) (2002).

[28] A. Sharaf, J. Beaver, A. Labrinidis, P. Chrysanthis, Balancing energy
efficiency and quality of aggregate data in sensor networks, VLDB
Journal (2004).

[29] A. Silberstein, R. Braynard, J. Yang, Constraint chaining: on energy-
efficient continuous monitoring in sensor networks, in: SIGMOD, 2006.

[30] S. Singh, M. Woo, C.S. Raghavendra, Power-aware routing in mobile
ad hoc networks, in: ACM/IEEE International Conference on Mobile
Computing and Networking, 1998.

[31] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, D.
Gunopulos, Online outlier detection in sensor data using non-
parametric models, in: Proceedings of VLDB, 2006, pp. 187–198.

http://www.rtreeportal.org


A. Deligiannakis et al. / Information Systems 36 (2011) 386–405 405
[32] N. Trigoni, Y. Yao, A.J. Demers, J. Gehrke, R. Rajaraman, Multi-query
optimization for sensor networks, in: DCOSS, 2005.

[33] W. Xue, Q. Luo, L. Chen, Y. Liu, Contour map matching for event
detection in sensor networks, in: SIGMOD, 2006.

[34] Y. Yao, J. Gehrke, The cougar approach to in-network query
processing in sensor networks, SIGMOD Record 31 (3) (2002) 9–18.
[35] W. Ye, J. Heidermann, Medium access control in wireless sensor
networks, Technical Report, USC/ISI, 2003.

[36] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras,
A. Pitsillides, The micropulse framework for adaptive waking
windows in sensor networks, in: MDM, 2007, pp. 351–355.


	Collection trees for event-monitoring queries
	Introduction
	Related work
	Motivational example
	Problem formulation
	Supported queries
	Problem definition
	Energy consumption cost model

	Algorithm overview
	Construction/update of the collection tree
	Calculating the attachment cost
	Minimizing the number of transmissions
	Minimizing total energy consumption, distributive and algebraic aggregates
	Minimizing total energy consumption, holistic aggregate and non-aggregate queries
	Summary

	Algorithm implementation

	Discussion and extensions to the basic algorithm
	Alternative techniques considered
	Power of independence assumption
	Refining the utilized statistics
	Minimizing other metrics
	Reducing the load of sensors
	Taking into account the quality of links

	Multi-query optimization
	Minimizing total number of transmissions
	Minimizing total energy consumption
	Distributive and algebraic aggregates
	Holistic aggregate and non-aggregate queries


	Experiments
	Experiments with synthetic data sets
	Experiments with the INDEPENDENT setting
	Experiments with the DEPENDENT setting

	Experiments with real data sets
	Multi-query experiments

	Conclusions
	References




