
Detecting Proximity Events in Sensor Networks

Antonios Deligiannakisa, Yannis Kotidis∗,b

aTechnical University of Crete
bAthens University of Economics and Business

Abstract

Sensor networks are often used to perform monitoring tasks, such as animal
and vehicle tracking, or the surveillance of enemy forces in military applications.
In this paper we introduce the concept of proximity queries, which allow us to
report interesting events, observed by nodes in the network that lie within a cer-
tain distance from each other. An event is triggered when a user-programmable
predicate is satisfied on a sensor node. We study the problem of computing
proximity queries in sensor networks and propose several alternative techniques
that differ in the number of messages exchanged by the nodes and the qual-
ity of the returned answers. Our solutions utilize a distributed routing index,
maintained by the nodes in the network, that is dynamically updated as new
observations are obtained by the nodes. This distributed index allows us to
efficiently process multiple proximity queries involving several different event
types within a fraction of the cost that a straightforward evaluation requires.
We present an extensive experimental study to show the benefits of our tech-
niques under different scenarios using both synthetic and real data sets. Our
results demonstrate that our algorithms scale better and require significantly
fewer messages compared to a straightforward execution of the queries.

1. Introduction

Sensor networks, consisting of primitive wireless devices that are able to ob-
serve their environment and perform simple computational tasks, are becoming
a popular paradigm in monitoring applications. While we are still years away
from the smart dust vision, there is a consensus that our future will incorpo-
rate a plethora of sensing devices that will participate and help us in our daily
activities. Such devices are expected to be rather limited in terms of storage,
processing and communication capabilities, but will be able to achieve complex
tasks by sheer numbers.

While we are still struggling to understand the technical difficulties of im-
plementing and managing such networks, it is becoming increasingly clear that

∗Corresponding author
Email addresses: adeli@softnet.tuc.gr (Antonios Deligiannakis), kotidids@aueb.gr

(Yannis Kotidis)

Preprint submitted to Information Systems March 12, 2011

we need to shift our focus from protocols that look at a single sensor at a time,
to methods that are able to correlate multiple sensor readings and reason from
them [18, 35, 55]. Such approaches will also help us cope with unexpected sensor
failures and dirty data that are unavoidable when we operate on cheap, unreli-
able hardware [30]. In this paper we make a small step towards this direction
by exploring techniques that allow us to correlate readings from neighboring
sensors in monitoring applications. In particular, we investigate a new type of
queries termed “proximity queries” that allow us to correlate interesting obser-
vations made by nodes in spatial proximity [36]. Monitoring applications trigger
events that assert the evaluation of a user-defined Boolean predicate on a sen-
sor. The definition allows different types of events, depending on the sensing
capabilities of the nodes in the network and on the application. For instance,
in an application where nodes are used to collect meteorological data, an event
may be associated with a sensor’s temperature readings exceeding a certain
threshold. Another type of event, in the same application, may be defined when
temperature readings fall below another, lower value. When both events are
detected, each by a different node, and these two nodes are in proximity, this
may indicate an abrupt, abnormal shift in temperature in the terrain. In a
military surveillance application, events may be used to detect the movement
of friendly and enemy forces. Proximity alerts then may be used for the early
warning of approaching enemy forces. In another application of wild animal
tracking, we may want to raise an alert when a predator is spotted in an area
occupied by a flock that we observe, assuming that the presence of each animal
can be detected by the use of some RFID technology or by matching sensory
data to stored patterns in the node [29].

In this paper we explore bandwidth-efficient algorithms for detecting prox-
imity amongst interesting types of events such as those presented in the afore-
mentioned applications. Our techniques are designed to handle moving events,
i.e. events that do not randomly appear and disappear in the monitored area,
but rather move along predefined or unknown paths in the terrain. The main
technical challenge arises from the need to correlate observations on different
sensors without communicating information about all events in the network,
as this would quickly drain the nodes. We provide a comprehensive study of
alternative methods to detect proximity events, including straightforward im-
plementations based on localized flooding, or on external processing algorithms
that seek to collect and process all sensor observations at a single node. We
further discuss methods that intelligently route events through the nodes in the
network in search of matching pairs, based on local indexing structures termed
routing indices. We explore both deterministic and probabilistic routing schemes
and study their trade-offs. Our findings indicate that the use of routing indices
provides substantial savings, in terms of communication cost, when processing
proximity queries. These savings, however, come at a small cost, in that the
algorithms may, in certain situations, miss pairs of matching events. However,
as it will be demonstrated in our experimental evaluation, many of these algo-
rithms are able to capture most proximity events in the network (some with
a median recall near 99%) and 100% precision, using a small fraction of the

2

messages that an exhaustive (i.e., centralized) implementation requires.
Our work builds upon the preliminary report we presented in [36]. In this

paper we have modified the indexing structures proposed in [36] to allow us to
filter events that cannot potentially join with a newly observed event. Moreover,
the new algorithms that we introduce in this paper do not require a training
process anymore due to the addition of a new step that handles situations when
no local information on other events is available. Furthermore, we introduce
and investigate alternative methods of propagating the announcements of events
and also consider the case when nodes monitor moving objects and discuss the
necessary alterations to our indexing scheme.

Our contributions are summarized as follows:

• We present the concept of proximity queries in sensor networks. Their defi-
nition captures a large number of interesting queries that may be used in a
variety of monitoring applications.

• We propose the use of a distributed routing index for capturing the spatial
distribution of interesting types of events in the sensor network. This index
requires minimal resources at each node and is updated dynamically, when
the nodes collaborate to provide answers to proximity queries. We consider
both deterministic and probabilistic routing protocols based on the values
maintained in the index, as well as alternative routing methods.

• We provide a detailed experimental evaluation where we study the effect of
various parameters in the recall and the cost of our algorithms in terms of the
number of transmitted messages. Our results demonstrate that our tech-
niques are very robust and can accurately process a variety of proximity
queries, while substantially reducing the number of messages exchanged in
the network. These benefits increase as the size of the network increases.

The rest of the paper is organized as follows. In Section 2 we discuss related
work. In Section 3 we formally introduce the notion of proximity queries. In
Section 4 we discuss several implementation issues and explore the benefits and
drawbacks of a straightforward execution of the queries. In Section 5 we discuss
our techniques in detail. Extensions of our basic techniques are presented in
Section 6. Finally, in Section 7 we present an experimental evaluation of our
proposed techniques, while in Section 8 we provide concluding remarks.

2. Related Work

Sensor networks consisting of wireless, battery-powered sensing devices, have
introduced new challenges in data management and have spawn several re-
cent proposals for embedded database systems, such as COUGAR [58] and
TinyDB [40]. Most of the proposed techniques explore in-network processing to
carefully synchronize the operation of the nodes [40, 62] and utilize the multi-
hop communication links to leverage the computation of expensive queries, such

3

as those involving aggregation [12, 16, 23, 28, 46]. Continuous monitoring que-
ries [15, 48], top-k [61] and distributed join algorithms [2] have also been con-
sidered. Alternative methods try to reduce the cost of data processing in sensor
networks through probabilistic techniques [11], data modeling [18, 35] or through
the use of decentralized algorithms [6, 33]. Our algorithms fall in the latter cat-
egory. Application of existing methods for computing set-expressions in data
streams [14] in the evaluation of proximity queries is an open research question
due to the different settings and cost considerations. The networking aspects of
wireless sensor networks have been extensively studied [4, 8, 9, 10, 24, 50, 60].
For example in [53] the authors discuss broadcasting and multicasting schemes
that can provide the underlying communication primitives for our framework.

Random-walk techniques have been utilized for event discovery. For exam-
ple, in [5] the authors utilize a random walk pattern for visiting sensor nodes
until a sufficiently large percentage of sensor nodes have been visited. Tech-
niques for biasing, at each step, the walk to unvisited neighboring nodes are
also discussed. In [43] the authors consider the problem of target discovery
when the target is stored at k different locations using a random walk tech-
nique. Using this technique, the random walk alternates its direction (moving
either away from, or towards to, the sink node) until it locates one of the k tar-
gets. This is a slightly different problem than the one that we consider, since we
are interested in locating pairs of matching events that occur within a maximum
distance from each other. However, given an event announcement, a random
walker can be easily modified to search for matching events instead. Please note
that if the matching events are random (contrary to the applications considered
in this paper, which involve moving events), then random walk techniques may
be the appropriate choice. We explore simple adaptations to the random walk
scheme in our experimental evaluation.

Most of these fundamental techniques have been devised to support event-
based monitoring applications. For example, in animal tracking an event such
as the presence of an animal can be determined by matching the sensor readings
to stored patterns [29]. The work in [48, 49] discusses spatio-temporal suppres-
sion techniques for reducing the cost of monitoring queries in sensor networks.
The authors of [55] propose an event detection mechanism based on matching
the contour maps of in-network sensory data distributions. The work in [37, 56]
discusses techniques that assert the coverage of the monitored area with mini-
mum energy cost. In [42], kernel-based techniques are used to detect abnormal
behavior in sensor readings. Detection of outlier observations by the nodes in a
decentralized manner has been discussed in [17, 25]. In [27] the authors describe
the implementation of a real system based on Mica2 motes for the surveillance
of moving vehicles.

The use of some of our techniques, like the threaded algorithms TRI-k and
PTRI-k share some common characteristics with techniques [39, 52] developed
for Peer-to-Peer (P2P) applications. Local routing indices have already been
proposed as an efficient method of locating content in P2P systems [13, 19, 57].
The idea of consulting a local routing table in order to compute the next hop
to route a message is fundamental in the Border Gateway Protocol (BGP) [45],

4

Internet’s global routing protocol. BGP routing differs from proximity search
mainly in that the destination of a message (packet) in embedded, while this
destination needs to be discovered in our framework. Moreover, the evaluation
of proximity queries in sensor networks possesses characteristics that differ sig-
nificantly from P2P searches. P2P networks searches initiated by a node often
utilize feedback information (such as if the query succeeded or not) and adjust
the weights in all the nodes that participated in the search accordingly [52].
This update process based on feedback information is unrealistic in a sensor
network due to the overhead that it will impose on other nodes that overhear
the exchanged messages. As an example, assuming that this feedback process is
triggered when a search initiated by Ssrc fails, and assume that for some nodes
this search failure occurs quite often simply because no matching events exist.
In this case we are faced with a situation where a lot of messages are wasted
when no matching events are in the neighborhood. If we decide to update the
weights when searches succeed, then we are facing the same problem in the other
extreme, when a lot of joins occur. Another important difference is the sym-
metry exhibited in the evaluation of proximity queries. Whenever a node Ssrc

observes an event X , it initiates a search for matching events. However, at the
same time the nodes that have observed these matching events initiate searches
of their own for nodes that observed the X event. Thus, when a search from
Ssrc successfully discovers matching events, the adjustment of the routing in-
dices in the nodes belonging to the path of this search allows for these matching
nodes to also discover Ssrc in the following epochs. This reverse step becomes
easier because multiple nodes overhear these messages and update their routing
indices at the same time. Thus, the use of a costly feedback mechanism, as in
the case of P2P networks, is not required.

A similar approach (i.e., no feedback mechanism) was also followed in [7],
where a rumor-based approach was proposed for locating events in a sensor
network. The proposed technique utilizes agents that upon the detection of an
event traverse the network propagating information about the event. To achieve
this, an agent carries a list of all events that is has encountered and upon arriving
at a node, it synchronizes this list with the node’s local list. If we make the
rough analogy that these lists correspond to the routing indices that we propose,
there is a key difference between the works of our techniques and the proposal
of [7]. In our approach, the routing indices are maintained locally and are never
transmitted in the network. These indices are updated “incrementally” upon
the announcement of an event. In contrast, the work of [7] utilizes an agent
that traverses the network carrying full information about the events it has
heard of from all locations it has visited. Since the amount of information is
increased at every node the agent encounters, after several hops the generated
lists can be prohibitively large, requiring multiple message exchanges between
the nodes. As will be explained, in our technique, an announcement of an event
is a short triplet containing information about the location, the type and the
time of the event, and can be easily fitted withing a single message. Furthermore,
information exchanges that require multiple messages are shown to increase the
energy drain of the nodes, because of the increased probability of collisions that

5

result in retransmissions [25]. A final difference between [7] and our proposal is
that it assumes synchronous stationary events (all events happen simultaneously
at fixed locations). Thus, the technique cannot be applied to the problem that
we consider, where events may be observed at any time during the operations
of the algorithm, and, more importantly, these events may freely move inside
the network.

In [31] the authors present Greedy Perimeter Stateless Routing (GPSR).
GPSR allows point-to-point communication of distant wireless nodes using the
positions of the nodes and a packet’s destination to make packet forwarding deci-
sions. Similar to our technique, GPSR makes greedy forwarding decisions using
only information about a node’s immediate neighbors in the network topology.
However, in our context we do not seek to route messages towards a stationary
destination; we assume that nodes monitor events with no specific knowledge of
the process that generates these events and their dynamics. Thus, we are fac-
ing the challenging task of training the nodes to react quickly and try to route
messages towards locations where we have greater chances of finding matching
events. An important aspect of out framework is that, while routing announce-
ments of events in the network, at the same time we use these announcements to
train nodes in a path towards the destination point(s) so that they themselves
can maintain an updated view of the dynamics in the network. This training
process is, in our framework, fully integrated in the routing scheme we employ
while announcing the events.

Data centric techniques [3, 21, 22, 29, 44, 47, 54] are built on the premise that
data is more important than the node that gathers them. In the data-centric
approach, relevant data is identified by its name at nodes within the sensornet
so that all data with the same name (e.g., event-types in our context) will be
stored at the same location (not necessarily the one that originally gathered the
data). Data-centric storage architectures have been extensively used in support
of range or nearest-neighbor queries in wireless sensor networks [20, 26, 38].
Unfortunately, data-centric storage will not work well in our problem where
the number of event types (not event instances) is rather limited. This will
result in a few nodes receiving most of the announcements. This limitation is
exemplified when multiple proximity queries with overlapping sets of events are
registered in parallel. Furthermore, the data-centric approach in our problem
will demonstrate poor performance when a lot of events are reported but only
a few proximity matches exist in the network.

3. Problem Formulation

We assume that the nodes are able to observe events1 drawn from a set
E={A, B, C, . . .}. The monitored events may correspond to arbitrary detected
conditions. For instance, in a weather monitoring application, event A may
indicate that the temperature readings have fallen below a predefined threshold.

1We will use the terms “events” and “event types” interchangeably hereafter.

6

Symbol Description

d The proximity threshold of a query.

deff The effective threshold of a query.

Ssrc A node that observed the processed event.

Scur The sensor node whose operation we are
currently describing.

Snb A neighboring node of the current sensor

NHcur The next hop list of Scur

Q({X, Y }, d, deff) A proximity query satisfied if events X and Y are observed by
nodes within a proximity threshold d. The query search may be
propagated only by nodes within deff from Ssrc

Table 1: Notation used in this paper.

In a surveillance application an event may indicate the identification, possibly
through the execution of a complex face-recognition algorithm, of a person near
the sensor. It is not required that each node can detect (or compute) all events,
as this depends on the node’s sensing capabilities and the application at hand.
We emphasize here that in an application there can be numerous concurrent
instances of an event observed at the same or different nodes. For example, in a
surveillance application multiple nodes may detect vehicles (or potentially the
same vehicle), or a single node may detect multiple types of vehicles, and each
such type may correspond to a different event from the set E .

The notation used throughout this paper is summarized in Table 1. Addi-
tional definitions and comments about these symbols are introduced in appro-
priate areas of the text.

We assume that a user or the application communicates with the wireless
sensor nodes using a special-purpose node called the base station. The base
station is often assumed to have increased processing and communication capa-
bilities than the rest of the network. A proximity query is initiated by the base
station and is denoted as Q(QS, d, deff), where

• QS ⊆ E is a non-empty subset of known events.

• d is a proximity threshold denoting the maximum acceptable distance of
nodes that observe matching instances of events.

• deff is the effective threshold of the query. While its exact definition is de-
ferred for Section 4.1, in a nutshell deff denotes the maximum acceptable
distance, from the sensor node that made the announcement, of a node
that will propagate an event announcement. The value of deff is decided
by the base station, based on the information that it possesses about the
topology of the sensor nodes.

The semantics of the query are such that the network should inform the base
station whenever two or more events from the set QS are detected in proximity.

7

When QS contains just one event, we are looking for nearby instances of the
same event. From the definition it is clear that proximity queries generalize
spatial joins, normally considered in centralized systems.

In this paper we mainly focus on the case where the set QS contains only two
events (say X and Y) and the proximity query has the form Q({X, Y }, d, deff).
It is easy to see that when more than two events are given, the query can be
written equivalently as a collection of proximity queries amongst two events.

Throughout this paper we will not make any assumptions on the distance
functions being used. For example, the proximity and the effective threshold of
a query may be computed by (but not limited to) any given Lk (1 ≤ k ≤ ∞)
distance norm. The extensions to where d refers to the distance in number of
hops between two nodes are straightforward. Moreover, in our discussion we
will assume that each node has precise information about its location.

Example 1. Let us now provide an example on the difference of d and deff .
Figure 1 demonstrates the computation of deff for the case a long path is
required to reach node Starget from Ssrc (note that the transmission range of the
nodes, denoted by the length of the arrow at the lower right corner of the figure,
is not sufficient so that Ssrc can directly reach Starget). A similar behavior could
have been observed if an obstacle between Ssrc and Starget forced the messages
to traverse a long path in order to circumvent the obstacle. Essentially, any node
that lies more than deff distance units from Ssrc will not process or propagate
any announcement corresponding to events observed at Ssrc. If the desired
distance metric is the number of hops, then we can set deff = d − 1 (in this
case, nodes that propagate the announcement are at most d−1 hops away from
Ssrc, while nodes that process the announcement are at most d hops away). If,
however, the distance metric is computed as the Lk distance of two nodes, then
deff may need to be larger than d, similarly to the example in Figure 1. In
the particular example, the value of deff is determined by the physical distance
between Ssrc and Sm in that figure, since Sm is the node that lies the furthest
from Ssrc in this path. The details on how to determine the node Sm and its
distance from Ssrc are described in Section 4.1.

Each proximity query may be registered and communicated to all nodes in
the network using a flooding algorithm (see for example [12, 16]) initiated by
the base station. In turn, the nodes should inform the base station whenever
the two events X and Y are detected by nodes S1 and S2 that are located
within distance d of each other. A strict requirement specifying that only S1 or
S2 should inform the base station does not exist. This information can be, for
instance, computed and communicated to the base station by any node in the
network, such as a node somewhere in between nodes S1 and S2 that becomes
aware of both events. In a sensor network application it is natural to consider
proximity queries as continuous queries, meaning queries that are registered
once and are then continuously evaluated by the nodes in the network, until
they are explicitly terminated. An alternative would be to include during query

8

eff

transmission range

d

S

S

target

S m

d

src

Figure 1: Computing the query effective threshold deff .

registration information about the lifetime of the query in the form of a time
interval. The output of a proximity query is a stream of quadruples of the form
(S1, X, S2, Y) indicating that node S1 (resp. S2) has observed event X (resp.
Y). Additional information, such as the location of the nodes, can be easily
included in the result.

If the proximity threshold d is zero, an alert is raised when an interesting
pair of events is detected at the same node. This is a trivial case in that each
node may process the query independently using only local information (i.e., its
own readings) without further knowledge on the observations of other nodes in
the network. When d is greater than zero, the query requires that the sensor
nodes collaborate in order to share their observations.

4. Alternative Techniques based on Stateless Query Evaluation

Before presenting our algorithms for the evaluation of proximity queries,
we first discuss in this section two straightforward algorithms for the evalua-
tion of proximity queries, and explain their shortcomings. Both algorithms are
agnostic on past observations made by the nodes (i.e., they do not maintain
state) and simply react to new observations (events) in a deterministic manner.
We assume that node Ssrc has just observed event X and there exists at least
one continuous query of the form Q({X, Y }, d, deff) registered in the network.
The generalization where more than two events are selected by the query is
straightforward.

4.1. Naive Algorithm - Use a Flooding Scheme

The first algorithm is based on flooding and simply broadcasts, in successive
steps, the announcement of the event to an area large enough to contain every

9

node within distance d of Ssrc. We sketch the algorithm in what follows. Node
Ssrc first checks whether an event of type Y is locally present, and if so, it notifies
the base station. This can be accomplished, for example, by using the inverse
routing path computed during query propagation [12, 40]. Then, if d > 0, the
sensor node Ssrc broadcasts a message to its neighborhood including the type
of the event (in our running example X), its location (i.e., the location of Ssrc)
and a timestamp tobs denoting the time that the observation took place.

Each neighboring node Snb that receives this message behaves in a similar
way. If dist(Ssrc, Snb) < d, the node checks whether a locally observed event
(i.e., an event Y) matches and should be reported to the base station. Then,
if dist(Ssrc, Snb) ≤ deff it broadcasts (X, Ssrc, tobs) to its neighborhood. Dur-
ing this process a node Si may receive the same message multiple times from
different neighbors. In order to reduce unnecessary traffic the node only re-
acts to the first announcement it receives for the event and ignores subsequent
messages. This is possible since the event X , its originator (node Ssrc) and
the timestamp of the observation are included in the message. The cascading
process terminates when all nodes that can be within distance d of Ssrc have
been reached. This is accomplished by properly selecting the effective threshold
deff , mentioned above, of the query. Its value depends on the physical layout
of the network. Let R(Ssrc, d) denote the set of nodes that lie within distance
d from Ssrc. Let P(Ssrc, d) denote the set of nodes that belong in the shortest
paths, excluding the final node of each path, between Ssrc and at least one node
in R(Ssrc, d). Thus,

P(Ssrc, d) =
⋃

Si∈R(Ssrc,d)

{minpath(Ssrc, Si) − Si}

To ensure that all the nodes within distance d from Ssrc are reached, deff must
be set to the maximum distance of any node in P(Ssrc, d) from Ssrc. Thus,

deff = maxSk∈P(Ssrc,d)(dist(Ssrc, Sk))

The proper value for deff could be determined by a base station that is aware
of the location of the nodes and can be included in the message that initiates
the query. While the case of mobile nodes is outside the scope of this paper,
in such fast changing mobile networks, calculating the exact value of deff may
be too costly, thus dictating the use either of a rough estimate of deff (i.e., one
would expect deff to be close to d for dense networks in many cases), or of a
conservative value deff = ∞.

In most practical cases deff will be roughly equal to d, unless we have a
sparse network or many obstacles in the terrain that prohibit communication
between certain nodes. We need to emphasize here that a larger value of deff

has dramatic effects in the cost of the naive execution based on flooding. On the
other hand, as it will be demonstrated in our experimental evaluation, our tech-
niques can actually benefit from a marginally increased value of deff because,
with a slightly increased number of messages, more nodes get the opportunity
to better tune their indices.

10

The main drawback of using flooding to propagate the announcements of
events is that, in a dense sensor network, these announcements will be received
(and transmitted) by many nodes, even though these nodes do not contain,
or are not in a path leading to, a matching event. Even though a node will
eventually react to the first announcement only, duplicate announcements still
drain energy during the reception of the messages. Since the cost of listening
is often comparable to the cost of transmission (e.g., in the popular Mica2
motes the ratio amongst the power consumption while idle-listening, receiving
of a message and transmitting is 1:1:1.41 at 433MHz with RF signal power of
1mW in transmission mode [59]), the aggregate power consumption during the
flooding algorithm can be prohibitively large.

4.2. External Computation

A simple alternative to flooding is for node Ssrc to transmit the announce-
ment of a new event X to the base station, which will then compute the results
to all running proximity queries externally. This practice however violates one
of the main principles in designing sensor networks, that is, to perform as much
computation as possible inside the network, and to leverage the large number
of nodes in order to reduce, as much as possible, unnecessary communication
with the base station [29]. Consider for example the case where a lot of nodes
locally observe events of type X but there is no event of type Y in the moni-
tored area. Then, all the traffic towards the base station will be wasted, since
the query Q({X, Y }, d, deff) has an empty answer set. Since in the external
algorithm the number of transmitted events per node depends on the number of
events observed in its subtree, we expect that this algorithm will perform worse
as the size of the network increases. In such cases, the base station and the
nodes surrounding it end up receiving and/or transmitting a significant amount
of messages, thus quickly draining their energy. This is also verified in our
experimental evaluation.

5. Query Processing Using Routing Indices

In this section we describe algorithms that utilize state information for com-
puting proximity queries. The presented algorithms are based on local indexing
structures, termed routing indices. These indices are maintained by the nodes
while processing new events announced in their neighborhood and, as it will
be demonstrated by our experimental evaluation, drastically reduce the num-
ber of messages required to process a proximity query. We first present some
important notes on the applicability of our algorithms to different topologies or
organizations of the sensor nodes, and then proceed by presenting an overview
of the operation of the nodes in our algorithms. We then describe the routing
indices needed in the sensor nodes for the operation of our algorithms, describe
how these indices are updated and, finally, how they are used by our algorithms
in order to properly guide the searches for matching events.

11

5.1. Applicability to Different Topologies and Node Organizations
It is important to note that the algorithms that we introduce in this section

can be applied to any given topology of the sensor nodes. Thus, the algorithms
that we will present do not assume any given topology. However, some presented
examples will use a grid arrangement for the sensor nodes, purely for ease of
presentation.

Moreover, in our algorithms we do not assume any given organization of
the sensor nodes. Our discussion will thus not assume any such organization,
and will be applicable to any flat sensor topology. However, we need to em-
phasize that our algorithms can also be applied in cases when the sensor nodes
are organized in clusters, but these clusters are not hierarchically organized. In
such an organization, the observed events by any node can be propagated to
the node’s clusterhead. Each clusterhead can then detect whether some match-
ing events have been observed by nodes within its cluster. However, not all
matching events observed by nodes within a distance d can be detected in such
a case. In the general case, the nodes within a distance d from a sensor that
observed an event cannot be assumed to belong to the same cluster, especially
for larger values of d. Thus, each clusterhead will need to communicate with
other clusterheads, in order to discover all matching events. One can, thus,
use for this communication phase the algorithms that we propose in this sec-
tion, applied over only the clusterheads. We also need to note that there is no
straightforward reason why restricting the non-cluster nodes to seek matching
events only through their clusterhead would reduce the number of transmitted
messages in our application, when compared to an alternative approach where
each node is free to select where to direct and propagate its searches, amongst
any of its neighbors.

On the other hand, our algorithms are not tailored to hierarchical organi-
zations of clusters. Each node in such hierarchical organizations could be used
to detect all matching events within its subtree. However, since in many cases
matching events can also be observed by nodes in different subtrees, the observed
events may need to be propagated all the way to the top of the hierarchy. Thus,
such organizations are expected to have, in our application, similar characteris-
tics and drawbacks with the external computation, presented in Section 4.2.

5.2. Node Operation Overview
Consider a given node Scur that receives the announcement of an event X

observed by node Ssrc. Note that the above assumption also covers the case
when Scur is a node that actually observed X (i.e., Scur = Ssrc). Briefly, the
sensor node will perform the following actions:

1. Determine if it has already responded to this announcement (i.e., has
received the same announcement from more than one nodes).

2. If not, determine whether X and some locally observed or registered, but
observed by other sensors, concurrent events (we describe later in this
section when two events can be considered to have been observed concur-
rently) satisfy one or more registered proximity queries. If so, it notifies
the base station about the relevant events.

12

3. Based on the node(s) through which it received the announcement, the
sensor updates relevant information (i.e., the weights of neighboring nodes
in its routing indices) regarding these nodes.

4. Based on the distance of the sensor from Ssrc and the effective query
thresholds specified in registered proximity queries involving the event X ,
the node determines if it needs to forward the announcement to neighbor-
ing nodes. This step is performed only if the received message specified
Scur as a node that will forward the request (this is clarified in the next
step).

5. If so, and the node has information on where matching events may be
located, based on its routing indices, then a proper subset of the neigh-
boring nodes is selected, denoted as the node’s next hop list NHcur, to
forward the announcement, and the node broadcasts the announcement
of the event X along with the list of the nodes in NHcur. If, however, the
node does not have any information on where to locate matching events,
then the node initiates a search to locate nodes with matching events.

We now describe in more detail the above operations. In Algorithm 1 we
sketch an implementation of the Accept() subroutine at sensor node Scur for
processing an incoming message during the course of the algorithm. In the algo-
rithm we can clearly distinguish the five actions mentioned above. In Lines 3–5,
the node first checks whether it has already responded to an announcement for
the same event and, if so, ignores the message. Duplicate announcements can
be easily distinguished based on (i) The node Ssrc that observed the event; (ii)
The observed event X ; and (iii) The timestamp tobs of the observation. Then, in
Lines 7–9, if a local or a registered (but observed by some other sensor) concur-
rent event Y has been detected at node SX′ , for which a query Q({X, Y }, d, deff)
is also registered and the distance of node SX′ is less or equal to d from the
originator of event X (node Ssrc), then the node informs the base station of the
two matching events.

A question that naturally arises at this point is when two events observed by
two different sensors are considered to satisfy a proximity query, since the times-
tamps of the observations may differ, even slightly. A simple solution involves
utilizing the notion of the query epoch. In many sensor network applications the
sensor nodes are asked to collect measurements at specified time periods (i.e.,
once every second). The time between two consecutive observations is termed
as the query epoch. If in our application the timestamp of the measurements is
expressed in terms of the epochs since the beginning of the query evaluation,
then two observations can be considered to refer to concurrent events if they
were collected within the same epoch. Otherwise, in case more complex times-
tamps are used, we may consider that two observations are concurrent if their
difference is less than a query epoch. Notice that it is straightforward to ex-
pand our algorithm to answer arbitrary spatio-temporal queries where the base
station specifies the maximum acceptable difference between the timestamps of
two matching events.

13

Algorithm 1 Accept Subroutine

Require: (X, Ssrc, tobs, NH)
1: {X is the event type reported by node Ssrc at time tobs}
2: {NH is a list of nodes, specified in the received message, that should continue

further the messaging process}
3: if HasSeen(X, Ssrc, tobs) then

4: return {Has already processed an announcement for this event}
5: end if

6: {Scur is the current node}
7: if Exists local or registered concurrent event Y observed at node SX′ and query

Q({X, Y }, d, deff) and dist(SX′ , Ssrc) ≤ d then

8: InformBaseStation(X, Ssrc, Y, SX′)
9: end if

10: UpdateLocalIndices(X, Str, tobs) {Str is the node that transmitted this processed
message}

11: {maxdeff is the largest effective threshold for any registered query
Q({X, Y }, d, deff)}

12: if Scur in NH and dist(Scur, Ssrc) ≤ maxdeff then

13: {A tuple in the routing index T (Snb, e, Star, t) means that the e event was ob-
served by Star at time t. Star can be reached through neighboring node Snb.}

14: Ecur={e ∈ E : ∃Q({X,e}, d, deff) ∧ ∃T (Snb, e, Star, t) ∧ dist(Ssrc, Star) ≤ d} ∧
(|tobs − t| ≥ 1 epoch) {Matching events, but not matching timestamps}

15: if Routing index contains info about any event in Ecur then

16: NHcur = PickHops(X, Scur, tobs){Pick next hops for event X and originating
node Scur}

17: Broadcast(X, Scur, tobs, NHcur)
18: else

19: InitiateSearch(X, Ssrc, tobs)
20: end if

21: end if

In Line 10 of Algorithm 1, a call to function UpdateLocalIndices() is made,
so that the routing indices of the node can be updated. This process is discussed
in Section 5.3.1. Finally, in Lines 11–20, if the node belongs to the next hop
list NH that is encapsulated in the received message and its distance from Ssrc

does not exceed the largest effective threshold amongst all matching proximity
queries registered at the node, then this node is responsible for propagating the
announcement further in the network. To accomplish this operation, the node
Scur first computes, as it will be explained shortly, a new list of next hops for
the message and finally broadcasts this list, along with the original event X ,
the identifier of the node Ssrc and the timestamp tobs of the observation. The
method through which the list of the next hops is selected varies on each of
our algorithms, and is presented in Section 5.3.3. Please note that the message
should intuitively be propagated only to nodes through which matching prox-
imity events can be detected. To achieve this, the algorithm removes in Line 14
from consideration events that have been observed by nodes Star that lie further
than the specified proximity threshold d from Ssrc. The algorithm also removes

14

(in the last conjunctive term of Line 14) from consideration events (events that
are either locally observed, or registered events that were observed at different
nodes) that the current node matched with the X event and reported to the base
station in order to avoid unnecessary traffic and to avoid duplicating reported
results. An important point is that if the node does not have any information
on where to locate matching events (either because it has never received the
announcement of such events or because the relevant information in its routing
indices has become outdated and evicted from them), then the node initiates a
search to locate matching events. This process is also described in Section 5.3.3.

It is worth noting that nodes that are not in the list of the next hops NH
are still able to check for local matching events and also to update their routing
information, since broadcast communication is used. Intuitively, there is a band
of nodes around the routing path that overhears the communication and is able
to either contribute to the query or tune its indices for future queries and events.

Example 2. In order to ease presentation and without affecting the applica-
bility of our techniques to other configurations, we provide an example where
the sensor nodes are placed in a two-dimensional n × n grid. We also slightly
deviate from the symbols used so far to denote the sensor nodes and rather
utilize two subscripts to denote the position of the sensors in the grid. Using
this notation, Si,j will denote the sensor node at location i,j in the grid, where
0 ≤ i, j < n. For this grid arrangement of the sensor nodes we will use the L∞

norm to compute distances between nodes.2 Thus, in our example:

dist∞(Si,j , Sk,l) = max(|i − k|, |j − l|)

Using this metric, nodes S0,0, S1,0, S2,0, S2,1, S2,2, S1,2, S0,2 and S0,1 are all
within distance 1 from sensor node S1,1. For this example we further assume
that a node can transmit a message to any of the nodes that are in adjacent
locations in the grid. In the above example node S1,1 can thus reach any of its
8 immediate neighbors. We note again that other distance metrics, placements
of nodes and transmission ranges are possible without affecting the generality
of our techniques.

In order to build our running example, we consider the scenario depicted in
Figure 2. Node S1,1 has just observed event X (that may indicate the presence of
say enemy forces) and assume that the continuous proximity queries Q1({X, Y },
3, 2) and Q2({X, W}, 3, 2) have been previously registered in the network. Note
that in the aforementioned grid topology the effective threshold deff actually
has a smaller value than d. This occurs because in the described grid topology
any node at distance d from Ssrc can be reached through nodes at distance d−1
from the same node. In the straightforward flooding algorithm, node S1,1 will
start a flooding process that will announce the triplet (X, S1,1, tobs) to all nodes
in the 5 × 5 area depicted in Figure 2. The number of messages transmitted in

2Please note that in our discussion so far we have not made any assumptions on the distance
function being used.

15

Figure 2: Grid Arrangement of Sensors in our running example. The 3 shaded rectangles
denote the nodes reachable by sensors S1,1,S2,2 and S2,3. The arrows denote which nodes are
selected to propagate the announcement.

that case will be equal to 16 and the number of messages received (including
nodes that are idle-listening) equal to 105.

In the same figure we also observe that an event of type Y was previously
detected by node S2,3. Thus, both events need to be reported in response to
query Q1. If node S1,1 had a way of knowing the position of event Y at grid
location (2,3) it would transmit a message indicating the presence of event X
at its location to its south-east neighbor S2,2, which would in turn pass this
information to node S2,3 and have the latter confirm the proximity alert by
responding to the base station with the tuple (X, S1,1, Y, S2,3).

In order to accomplish the task as described, node S1,1 that first observed
event X sends a broadcast message to its adjacent nodes indicating the lo-
cation of the event and the timestamp tobs of the observation (i.e., the tuple
(X, S1,1, tobs)) and that its south-east neighbor, node S2,2 should carry over
propagating the event to the rest of the network.3 All the other nodes in its
neighborhood can hear the announcement, and use the information to update
locally stored information but do not further react to it. Similarly, node S2,2

transmits a second message that is heard by all nodes in the second shaded area
and includes in the message the location of the event (X, S1,1, tobs) as well as the
next “hop”, node S2,3. Node S2,3 that has observed event Y reacts by informing
the base station of the new result to the proximity query (the required messages
are not depicted in the figure). The distance of node S2,3 from S1,1 is 2, which
is equal to the query effective threshold and the node further propagates the

3Please note that this example simply illustrates some steps of our algorithm. Section 5.3
describes how the next hop list NH - i.e., node S2,2 in our example - is formed.

16

announcement, indicating this time that both nodes S1,4 and S3,4 should be the
next “hops”. Nodes S1,4 and S3,4 do not need to propagate the announcement
further, because the effective threshold of the query has been reached. In all,
just three messages have been transmitted and the number of received messages
was 24, a significant reduction compared to the straightforward algorithm.

Notice that, in general, a node may indicate that more than one nodes
should further propagate the announcement of an event, in search of results to
the proximity query. In Section 5.3.3 we will describe algorithms for both of
these modes of operation, namely the threaded and the webnet modes. In the
threaded mode each node that simply propagates (and, thus, was not the node
that observed the event itself) the announcement of an event selects just one
node to include in its next hop list NH . On the contrary, in the webnet mode
each node can select multiple neighboring nodes to include in its next hop list.
This has the visual effect that the links between the nodes that propagate the
query form paths that look like threads or a spider web, respectively.

5.3. Routing Indices

Up to this point we have assumed that the nodes have the ability to properly
route the announcement of an event to one or more of their neighboring nodes
in the topology. This is accomplished by the use of a local routing index that
stores information about observed events. Using this routing index a node Scur

associates with each neighboring node Snb a weight, based on the matching
events that were routed to Scur through Snb and the timestamp of these events
(i.e., how old or current are they?). There are 3 major operations associated
with the routing indices of a node:

1. How to update the routing index when the node receives information on
new events.

2. How to determine the weights for neighboring nodes given the entries in
the routing index.

3. Given the routing index, how to determine the next hop list NH of the
node.

We now discuss the above operations in detail.

5.3.1. Updating the Routing Index

At each node Scur, the index is instantiated as a list of quadruplets T (Snb, e,
Ssrc, tobs), where Snb is a neighbor of node Scur, e is an event (from the set E),
Ssrc is the node that observed the corresponding event e and tobs denotes the
timestamp of the observation. We assume that the size of the index is bounded.
Thus, when the routing index becomes full older entries, based on their times-
tamp of observation, need to be evicted and replaced by new observations.

An open question is, given the tuples in the routing index, how to associate
a weight with each link and event-type. The larger the weight that is associated
with a link, the more likely it is to route a message using this link. Arguably,
there are many ways to determine the weights and different choices may work

17

better for certain applications. In our current implementation we target appli-
cations where events represent moving objects such as in vehicle and animal
tracking, in military surveillance etc. In such applications, events do not ran-
domly appear and disappear in the monitored area. They rather move along
predefined or unknown paths in the terrain. Thus, when a node Ssrc reports
an event of type X (for instance the presence of an animal) at time t, our
best guess for the location of the object at time t+1 will be the neighborhood
of Ssrc. Therefore, when node Scur hears about event (X, Ssrc, tobs) from its
neighbor Snb, the timestamp tobs can be used as a weight for the pair 〈Snb, X〉.
Intuitively, this process generates a reverse routing tree that is rooted at node
Ssrc that originally announced the event. This conceptual reverse routing tree
depends on the nodes that are included at each step in the NH list. Thus, one
cannot provide any guarantees on its optimality, with respect to the distance
(in hops) of each node from the root of this reverse tree.

Example 3. In our running example, node S2,3 will insert a new row with
values (S2,2, X, S1,1, tobs) when it receives the announcement from node S2,2.
In turn this entry will be used when an event of type Y or W (see the two
registered proximity queries in Example 2) is announced in the neighborhood of
S2,3 and will properly route the announcement back to node S1,1 to produce the
proximity alert, unless newer observations of the event X , in other locations,
get higher priority.

5.3.2. Determining the Weights of Neighbors

For each neighbor Snb of node Scur we compute the compound weight WSnb,X

for routing a message regarding X through Snb using the following equation:

WSnb,X,Scur
= max

e, Star, t
′ : ∃Q({X, e}, d, deff)

AND ∃T (Snb, e, Star, t
′)

AND dist(Ssrc, Star) ≤ d
AND |tobs − t′| ≥ 1 epoch

(t′) (1)

The compound weight WSnb,X is computed as the maximum of all registered
timestamps t′ (the maximization term), in the routing index entries, involving
events that are used in proximity queries of the form Q({X, e}, d, deff) (Line 1
of the conditioned term of Equation 1). An important point is that the dis-
tance of the node Ssrc, which detected the X event, from nodes that have
detected matching events should not exceed the distance specified in the prox-
imity query (Lines 2-3 of the conditioned term of Equation 1; also see Line 14
in Algorithm 1). Several techniques [34] have been proposed for determining
the location of sensor nodes, with perhaps the most popular techniques being:
(i) Deploying GPS enabled sensor nodes; or (ii) Deploying anchor points in the
network. Thus, in such scenarios nodes can piggyback information about the
location of Ssrc in their transmitted messages and store such information in the
routing indices. Of course, if the sensors are placed in predetermined positions
(i.e., in the grid arrangement of Example 2), then the nodes can determine the

18

NextHop (n) Event(e) Obs Time

S3,4 W S4,4 55
S1,4 Y S1,5 56
S3,4 Y S3,5 57
S1,4 W S1,4 58
S1,3 V S2,5 60

Table 2: Sample routing information at node S2,3.

location of other sensor nodes based simply on their identifier. Another require-
ment is that entries in the routing index that helped the current node Scur detect
and announce to the base station results to registered proximity queries at the
current epoch should not be used when calculating the weights of links (Line 4
of the conditioned term of Equation 1). Routing index entries corresponding to
the current epoch represent events that the node is aware of, and for which it
has already tested for matching proximity queries. Thus, entries corresponding
to the current timestamp (i.e., epoch) must be ignored, in order to direct the
search towards other nodes/areas where matching events may be detected.

The operation of determining the compound weights of neighboring nodes
dominates the running time of the Accept subroutine at each node. For each
entry in the routing table, the algorithm examines whether the recorded event
e matches X . Thus, the running time is O(|Q| × |RoutingIndex|), where |Q|
denotes the set of registered queries and |RoutingIndex| denotes the size of the
routing index. Please note that the compound weight of a neighboring node
regarding an event X is not affected if no matching events are received through
that node, an observation that allows us in some cases to reduce the computation
time by using precomputed values.

Example 4. Continuing the scenario described in Example 2 and illustrated
in Figure 2, in Table 2 we show a snapshot of the routing index for node
S2,3. Assume that the node has just received the announcement for event
(X, S1,1, 62) and recall that the following two proximity queries are registered:
Q1({X, Y }, 3, 2) and Q2({X, W}, 3, 2). Thus, only tuples involving the events
Y and W are relevant in this case. In this example the ranked list of weights
will be (we note that WS1,3,X is not defined in this example since V is not a
matching event): (i) WS1,4,X=58 and (ii) WS3,4,X=55, since dist(S3,5, S1,1) > 3.
Also note the first tuple involves the most outdated observation and is, thus,
the first candidate for eviction if new events are observed and the index reaches
its maximum size.

Based on our discussion above, the compound weight of each neighboring
node is determined by the latest timestamp of a matching event received through
that neighboring node. We now analyze why we opted for such a decision, and
did not settle on using different weighting methods, such as using the total
number of events heard through each neighboring node, or the distance of the
received events.

19

We first argue that the timestamp of received events should be a factor in
determining the compound weight of neighboring nodes. Please recall that our
assumption is that events do not randomly appear, but rather move around in
the space. A neighboring node through which several/close events were received
in the distant past may not be a proper choice, as these events may be currently
placed at entirely different/distant areas of the network. On the other hand,
for recently received event announcements we stand a better chance of directing
the search either directly to, or at least close to, the location of a matching
event. We also note that utilizing combinations of different metrics can be
easily incorporated in our framework. For example, it is straightforward to
break ties between neighboring nodes that have propagated the announcement
of an event at the same epoch, based on the distance of these events from the
current node Scur. We plan to explore such extensions in our future work.

5.3.3. Selecting the nodes in the NH list

We now describe how our algorithms determine which neighboring nodes
will be included in their NH list when transmitting a message. In this paper
we studied several variations that arise by the following cases:

• Restricting the maximum number k of neighbors included in the NH
list of the node(s) that observed an event and which initiate a search for
matching events. We note that a value of k = ∞ will result in these
node(s) always including all of their candidate neighboring nodes (we will
explain shortly that not all the neighboring nodes will be included in the
list) in their NH list.

• Varying the type of message propagation. We mentioned at the end of
Section 5.2 that a node that did not initiate a search (please note the
difference with the previous case) may include either only one neighboring
node in its NH list (in the threaded propagation mode), or include up to
k neighboring nodes (in the webnet propagation mode), where k is the
same parameter used by the nodes that initiated the search.

• Selecting the nodes in the sensor’s NH list using deterministic or proba-
bilistic decisions.

All the variations that we will describe in this section share the common
characteristics that they do not include in a node’s NH list neighboring sensors
through which the node received the announcement. This is why the set of can-
didate neighboring nodes is typically smaller than the set of neighboring nodes.
We examined all the variations that may arise from the possible combinations
of the algorithm’s characteristics. The most interesting cases involved are:

1. RI-k algorithm: This is our main algorithm where any node that propa-
gates the announcement of an event (whether it is the node that observed
the event or not) selects up to k neighboring nodes to include in its NH
list. The decisions are made deterministically, based on the compound
weight (see Section 5.3.2) of each neighboring node. Neighboring nodes

20

whose compound weight is zero are never selected. This means that fewer
than k neighboring nodes may be selected. The initials ”RI” denote the
use of routing indices.

2. TRI-k algorithm: This algorithm is similar to the RI-k algorithm. The
main difference is that it is a threaded algorithm, meaning that each node
that propagates the announcement of an event not observed by the node
itself will only include one node in its NH list. Moreover, unlike the RI-k
algorithm, a node that observes (resp., propagates the announcement of)
an event will always include k (resp., 1) neighboring nodes in its NH list
(assuming that at least k candidate neighboring nodes exist), even if fewer
than k (resp., 1) candidate neighboring nodes with non-zero compound
weights exist. In such a case the node first includes in its NH list all the
candidate neighboring nodes with non-zero compound weights and then
adds an appropriate number of neighboring nodes. The selection amongst
these nodes is performed in a random manner.

3. PRI-k algorithm: This algorithm is similar to the RI-k algorithm but
makes the decisions on which candidate neighboring nodes will be selected
in its NH list probabilistically. Given that after several epochs the ratio
amongst any two timestamps stored in a node’s routing index is likely to
be close to 1 (i.e., in Table 2, 60/55 ≈ 1.09), we need a way to assign
significantly larger probabilities to nodes with more recent observations.
In our implementations we, thus, first determine the compound weights of
all neighboring sensor nodes. If Wmin,X denotes the minimum non-zero
such compound weight, the probability of each neighboring node Snb with
a non-zero compound weight was set proportional to Wnb,X −Wmin,X +1
(after proper normalization - see Example 5).

4. PTRI-k algorithm: This algorithm is similar to the TRI-k algorithm
but makes its decisions on which candidate neighboring nodes will be
selected in its NH list probabilistically, similarly to the PRI-k algorithm.
Thus, a node that observes (resp., propagates the announcement of) an
event first examines whether it has at least k candidates neighbors with
non-zero compound weights. If this is true, then the choice of which
candidate neighboring nodes will be selected in its NH list is performed
probabilistically, similarly to the PRI-k algorithm. Otherwise, the NH
list will contain not only all candidate neighbors with non-zero compound
weights, but also an additional proper (such that the number of nodes in
NH becomes equal to k) number of random neighboring nodes with zero
compound weights.

Example 5. Continuing Example 4, for k=1 the S2,3 node will only include in
its NH list node S1,4, which exhibits the largest compound weight, when using
either the RI-k or the TRI-k algorithm. Similarly, when using the PRI-k or
the PTRI-k algorithms, the S2,3 node will include in its NH list only S1,4 with
a probability 58−55+1

(58−55+1)+(55−55+1) = 0.8 and include only S3,4 with a probability
55−55+1

(58−55+1)+(55−55+1) = 0.2.

21

Algorithm State Propagation Deterministic

Flooding N Webnet Y

External N Threaded Y

RI-k Y Webnet Y

PRI-k Y Webnet N

TRI-k Y Threaded Y

PTRI-k Y Threaded N

Table 3: Categorization of algorithms discussed in this paper.

An important observation that we have not clarified yet is what occurs in
Line 19 of the Accept() subroutine. Recall that the execution of the code reaches
this line when the node has no local information on how to route the announce-
ment of event X . Function InitiateSearch will initiate a threaded search using
the PTRI-k algorithm. We used the threaded algorithm in that scenario in
order (i) not to overburden the nodes around Scur in case they do not them-
selves contain entries on matching events in their routing indices; and (ii) to
allow these nodes to update their routing indices using the information of the
X event even if no matching event exists in the neighborhood of the node. This
call also serves to essentially train the routing indices of a node when it first
joins the network. The way to easily implement the potentially different search
behavior of a node is by adding another argument to the transmitted messages,
namely the maximum number k′ of nodes in the node’s next hop list NH . For
the nodes that propagate an announcement about an event that they observed,
k′ = k. Let us now consider the case of nodes that received an announcement
about an event observed at some other sensor. For such nodes, the value of k
for their transmitted messages is computed (as a function of the k′ value in the
received announcement) as follows:

• In all transmissions up to k′ sensors are included in a node’s NH list.

• However, if the transmission occurs at Line 17 of the Accept() Algorithm
and for webnet algorithms (i.e., RI-k or PRI-k), the k value specified in
the transmitted message is set to k′.

• Otherwise, for messages at Line 19 or for threaded algorithms, the trans-
mitted k value is set to 1.

Table 3 presents an overview of the characteristics of the algorithms discussed
in this paper.

5.3.4. Memory Requirements

Up to this point he have not concerned ourselves with the memory require-
ments for maintaining the routing indices. Please recall that the entries of the
index are utilized when computing the compound weight WSnb,X for routing a
message regarding X through neighboring node Snb based on Equation 1. This

22

equation, as explained, utilizes the most recent observation regarding X . Let
|E| indicate the number of event types relevant to all running queries and Nnbrs

indicate the maximum number of neighbors that a node has, then we need at
most |E| * Nnbrs entries in the routing index. Furthermore, especially for the
deterministic versions RI/TRI of our algorithms, assuming that the value of
k is selected by the application, only the top-k values per event are essential
for selecting the NH list members, thus upper-bounding in these cases the size
of the index by |E| * min(k,Nnbrs), which is typically a small value. In our
experiments we have used a modest maximum value of 20 entries for storing
the routing index. With the current trend in increasing the available memory
at each sensor via flash memory, we believe that the size of the index is not a
concern since we can easily store thousands of entries in the flash. Thus, in our
work, we do not explore the effect of limited memory (less than 20 entries) in
the performance of the index, as we believe such a study will be of limited value
for real application scenarios.

6. Extensions

We now discuss some useful extensions to our algorithms. We first discuss
the case when the communication between some sensor nodes is not symmetric.
We then describe how moving events are handled in our framework in the case
when the sensor nodes can collect additional information about these events.

6.1. Dealing with Asymmetric Communication

Many cases may arise when the communication between pairs of sensor nodes
is not symmetric. This means that a sensor Scur is able to receive messages
transmitted by another node Snb, but the reverse is not true. This may occur
due to either the different types of deployed sensors, or the need of some sensors
to limit their energy drain by decreasing their transmission range. In such cases
the weights associated with each neighboring node need to be assigned with
some care.

In particular, consider the aforementioned case where Scur receives an an-
nouncement by Snb about the observation of event X from node Ssrc at time
tobs. Since we assume that Snb cannot receive messages from Scur, the weight
Wnb,e about any event e is not defined. If Scur becomes aware of any matching
event and needs to forward messages towards Snb, then it needs to use its routing
tables and determine a routing path to Snb. Let Si denote the first node (i.e.,
the next hop) in that path. Then the aforementioned received announcement
from Snb needs to be used in determining the weight Wi,e.

6.2. Dealing with Moving Events

Up to this point we have only discussed the case where sensor nodes can only
detect the existence of an event, without being able to collect any additional
information about this event. However, when the event at question involves
the observation of possibly moving objects, then additional information, when

23

available, such as the direction or speed of the event [32] could help better tune
the routing index.

Consider the case, for instance, when each node, in addition to the location
of an object, can also determine its speed and direction. In this case we can
estimate, using this information along with the timestamp of this observation
(essentially the epoch lag between the current epoch and the epoch of the ob-
servation) and the position of the sensor node, the likely future location of this
event. In this case the PickNextHops() function of Algorithm 1 can be modified
to take into account this information by adjusting the weights of neighboring
sensors if (i) a matching event has been moved in the area of their observation;
or (ii) they can be used to route information towards the moved events (if these
events are estimated to lie more than one hops away). Please note that for
sensor nodes without any such sensing capabilities simply setting the speed of
the object to zero results in the setup that we have considered so far.

Example 6. Consider the scenario in Example 4 where node S2,3 has just re-
ceived the announcement for the event (X, S1,1, tobs). This node initially deter-
mines that dist∞(S2,3, S1,1) = 2. Recall that in the example Q1({X, Y }, 3, 2)
and Q2({X, W}, 3, 2) are the sample proximity queries that are registered at the
node. Table 4 represents the augmented routing table stored at node S2,3. When
compared to Table 2, one can detect that additional information is recorded such
as the direction and the speed of the event. Based on Table 4, the node first
seeks to determine the weights Wnb,X for each of its neighbors. For the S1,3 node
the observed event V does not match any of the proximity queries involving X.
However, note that at the third line of Table 4 the event Y was observed at node
S3,5. Based on the recorded statistics, the estimated new position of the event
at the current epoch t = 62 has moved (62 − 57) × 0.4 = 2 nodes northwest,
at node S1,3. Therefore, the weight WS1,3,X becomes equal to 57, based on the
timestamp of this observation. The neighboring node S3,4 can only be used to
find the matching event W , based on the first line of the routing index. Thus,
WS3,4,X = 55. Similarly, for node S1,4 the event W is estimated to have moved
(62−58)×0.25 = 1 nodes to the south (to node S1,5). However, the distance of
S1,1 from S1,5 exceeds the distance of the proximity query. The same is also true
for the estimate of the Y event listed at line 2 of the index. Thus, WS1,4,X = 0,
since no matching event is estimated to be reachable through S1,4 given the
specified proximity thresholds.

When nodes with advanced sensing and computation capabilities are avail-
able, we can take this process further and design a more effective routing index
using techniques such as those described in [51] that can capture a variety of
unknown motion patterns. Such extensions do not change the core logic of our
algorithm and are left for future work.

7. Experiments

In this section we study the performance of the various techniques that we
discussed in Sections 4 and 5 using a simulator that we developed. Unless

24

NextHop Event Obs Time Direction Speed
(n) (e) (nodes/epoch)

S3,4 W S4,4 55 - 0
S1,4 Y S1,5 56 - 0
S3,4 Y S3,5 57 NW 0.4
S1,4 W S1,4 58 S 0.25
S1,3 V S2,5 60 SE 0.2

Table 4: Sample routing index at node S2,3 and epoch t = 62.

1 2 3 4 5 6 7 8 9 10
Proximity Threshold d

5000000

10000000

15000000

20000000

25000000

30000000

C
os

t

NAIVE
RI-8
RI-6
RI-4
RI-3
RI-2

Figure 3: Cost of a query, varying d (RI-k).

1 2 3 4 5 6 7 8 9 10
Proximity Threshold d

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

R
ec

al
l

RI-8
RI-6
RI-4
RI-3
RI-2

Figure 4: Recall of the RI algorithm.

specified otherwise, our basic node topology was modeled as a 100 × 100 grid
of nodes (10K total). Due to the grid topology, in most of our experiments
(except from Figure 6 discussed later in this section) the proximity and the
effective thresholds are set to differ by 1 (i.e., deff = d − 1). Moreover, the
L∞ norm is used in order to express the distances between nodes, similarly to
Example 2. We tested our techniques using the following data sets:

• RandMoves: This is a synthetic data set of moving objects of various
types, depending on the configuration parameters. The objects are free
to move in the monitored space by performing random walks. The walks
are modeled so that when object X is at grid location (i, j) at time t, its
next position at t+1 is randomly chosen from one of the adjacent cells of
(i, j).

• Trucks: This is a real trace containing trajectories of moving trucks [1].
We randomly labeled 10 trucks as type X and 10 as type Y and overlaid
a network grid topology over the monitored area.

• SchoolBuses: This is a real trace containing trajectories of moving
schoolbuses [1]. We randomly labeled 10 buses as type X and 10 as type
Y and overlaid a network grid topology over the monitored area.

25

We first use the RandMoves data set with 20 objects, 10 of type “X” and 10
of type “Y ” in the 100x100 grid. In Figure 3 we compute the communication
cost of computing a single continuous proximity query Q({X, Y }, d, deff = d−1)
for 2,000 epochs using the RI-k algorithm, varying the proximity threshold
d (x axis). The total cost, following the suggestions in [59] is computed as
cost=1.41×(messages sent)+(messages received)+(messages idle listening). The
costs also account for the messages required to route a matching tuple back to
the base station, which in this run was placed in the center of the area (results
for other placements were analogous and are thus omitted). In each node, we
allotted space for 20 entries for the routing index and evicted older observations
using the time-stamps of the events.

The line labeled NAIVE depicts the performance of the flooding algorithm
discussed in Section 3. For RI-k we show results varying the k parameter (see
Section 5) from 2 up to 8. As expected, a smaller value of the k parameter
results in fewer messages in the network. Compared to the naive execution,
we note that even a value of k = 8 (i.e., max number of neighbors for this
grid topology) results in a reduction of the total cost by a factor of up to 4,
depending on the proximity threshold. This is because, our algorithm does not
route messages towards neighbors that have never announced a matching event
before. In comparison, the cost of RI-2 was up to 9 times smaller than that of
the naive flooding algorithm.

A potential drawback of using a small value for k is that, under certain
conditions, we might not be able to detect a few proximity events, because of
the pruning of messages towards some of the neighbors of a node. In Figure 4
we plot the recall of the RI-k algorithm varying d and for the different values of
k. We note that precision is a perfect 100% as we never return spurious tuples.
Thus, the recall metric, which is computed as the ratio

{relevant answers} ∩ {retrieved answers}

{relevant answers}

is simplified to computing the percentage of answers returned (i.e., all returned
answers are relevant). The lines show that a value of 2 or larger for k returns at
least 92% of the answers. The median value of recall is 93% and 96% for k=2,3
respectively, while it reaches 99% when k = 8.

We next repeat the same experiment, considering additional algorithms for
routing the events in the network. In Figure 5 we plot the recall of RI-k, PRI-
k as well as their threaded versions (TRI-k and PTRI-k respectively) varying
the k parameter when the proximity threshold d is set to 5. Figure 5 also in-
cludes two baseline algorithms that we consider in the evaluation. The first
algorithm, termed as RW-k, initiates k random walks, whenever an event is
observed. A more sophisticated version of this algorithm (denoted as informed
Random Walks, or iRW-k, in Figure 5), performs random walks by only con-
sidering neighboring nodes that have observed a matching event in the past.
The difference between iRW and RW is, thus, that the former avoids areas of
the network where a matching event has never been located. The x-axis in the
graph is the cost of the respective algorithm over the cost of NAIVE, while the

26

0 0.1 0.2 0.3 0.4
Relative Cost (over NAIVE)

0.2

0.4

0.6

0.8

1

R
ec

al
l

RI
PRI
TRI
PTRI
iRW
RW

Figure 5: Comparison of different algorithms, varying k.

0 0.1 0.2 0.3 0.4 0.5
Relative Cost (over NAIVE)

0.2

0.4

0.6

0.8

1

R
ec

al
l

RI
PRI
TRI
PTRI
iRW
RW

Figure 6: Extending the query effective range by 2.

y-axis shows the recall. Please note that seven different points for each algo-
rithm are depicted, due to the different values of k being used (i.e., k = 2, . . . , 8).
RI-k provides between 92%-99% recall with a relative cost of 14%-29%. TRI-k,
depending on k, provides additional savings (up to 1-10 over naive) in query
execution with a small penalty in recall, which is in the range 83%-87%.

The probabilistic algorithms do not perform as well - in fact we can always
obtain much higher recall with the same cost, using a deterministic algorithm,
especially for small values of k. The differences in performance between the
deterministic version of an algorithm and its probabilistic alternative are more
evident in the threaded algorithms (TRI and PTRI). During a threaded exe-
cution, the probabilistic algorithm, which considers alternative routes through
other neighboring nodes than the one with the most recent observation, often
misses the target (the matching event), since, in most cases, the direction with
the most recent observation is the best one to follow. However, we need to note

27

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Relative Cost (over NAIVE)

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l RI

PRI
TRI
PTRI

Figure 7: Comparison of different algo-
rithms, ratio 3:1 of event frequencies (15
events of type “X”, 5 events of type “Y”).

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Relative Cost (over NAIVE)

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

RI
PRI
TRI
PTRI

Figure 8: Comparison of different algo-
rithms, increasing frequencies by a factor of
10

that for k ≥ 4 the PRI-k algorithm provides results comparable to its deter-
ministic counterpart. We also note that the Random Walk algorithms do not
perform well. In particular, iRW performs worse than PTRI, as their main dif-
ference is that the latter considers the computed weights on the routing indices
when selecting the next hop, while the former looks at the routing indexes sim-
ply for removing neighbors with non-existing entries from consideration. The
even simpler RW algorithm fails to provide competitive performance.

By examining the traces of the algorithms we observe that most of the result
tuples that are missing during the query evaluation are actually discovered dur-
ing subsequent epochs, due to the continuous tuning of the indices. This means
that in fact, these algorithms discover more matching tuples than the above
values of recall indicate, with a delay of a few epochs. An easy workaround is to
slightly increase the effective threshold deff , whose default value, as mentioned
at the beginning of this section, was set equal to the proximity threshold minus
1, by 1 or 2. Increasing the effective threshold results in more nodes updating
their indices when a new event is discovered and has no impact on the precision
of the algorithm, since the proximity threshold defined by the user is used in
Line 7 of the algorithm to inform the base station of matching events. In Fig-
ure 6 we repeat the experiment setting the query effective threshold equal to the
proximity threshold plus 1 (deff=d + 1). From this figure we can see that the
change has a dramatic effect in increasing the recall, especially for the threaded
algorithms For RI-k the minimum recall is now 97.3% when k=2, while is stays
above 98.4% for larger values of k. Comparing these number with the case when
deff = d − 1 we see that we can obtain better recall with fewer messages by
switching to a smaller value of k, when we increase the effective threshold. In
the rest of the experiments we again revert to conservatively using the default

28

0 100 200 300 400 500
Grid Width/Height (n)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

C
os

t

EXTERNAL
NAIVE
RI-8
RI-2
PRI-8
PRI-2
TRI-8
TRI-2
PTRI-8
PTR-2

Figure 9: Cost, varying the size of the monitored area.

value for the effective threshold (i.e., equal to the proximity threshold minus
1) and note that a larger value would have resulted in larger recall values for
all algorithms. Because of the poor performance of RW and iRW , we do not
consider these two algorithms in the remainder of this section.

We now investigate the performance of the algorithms when the ratio of the
observed events changes. In Figure 7 we repeat the experiment of Figure 5,
but now use a different ratio 3:1 of the observed events (15 events of type
”X” and 5 events of type ”Y”). Compared to the case where all event types
are equally frequent, we do not see significant differences in the results. The
threaded algorithms perform slightly worse, as they have a harder time locating
matching Y events that are less frequent. Similar observations hold for different
frequency ratios we tested. However, we omit these results due to lack of space.
In Figure 8 we used event types with the same frequency, but increase their
number to 100, while using the same network area. Again the differences to the
original set up are small.

In Figure 9 we show the effect of scaling the size of the monitored area by
increasing the grid from 10 × 10 up to 500 × 500. We used a single proximity
query Q({X, Y }, 5, 5) and the RandMoves data set with 10 objects of each type.
In the graph we also show performance of the external processing algorithm
(see Section 4.2) that simply transmits the observation of an event to the base
station (using a minimum cost path), which in turn computes the proximity
events. This algorithm is denoted as EXTERNAL in the Figure, indicating
that processing of the events is done outside the network and has the best
performance for the two smaller grid sizes. This is because the cost of the
EXTERNAL algorithm depends on (i) The number of detected events, which
is not altered as the network size increases; and (ii) The average number of
messages required to transmit the events to the base station. Thus, the linear
dependency to the length/width n of our n × n grid that is clearly depicted

29

0 100 200 300 400 500

Grid Width/Height (n)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

RI-8
RI-4
RI-2
PRI-8
PRI-4
PRI-2
TRI-8
TRI-4
TRI-2
PTRI-8
PTRI-4
PTRI-2

Figure 10: Recall, varying the size of the monitored area

in the figure is not surprising. As expected, the cost of NAIVE is bounded
by min(n2, d2). It is interesting that the class of algorithms that use routing
indices (RI,PRI,TRI,PTRI) become more effective in pruning messages as the
size of the network increases. Compared to NAIVE, we see a reduction in cost
of up to 14-1 as the network size increases. This is explained as the increased
sparsity of the space often resulted in routing indices with fewer than k entries,
and thus smaller number of neighboring nodes included in each sensor’s next
hop list NH . In turn, the cost of the query actually drops slightly with larger
grid sizes. For brevity, in the figure we only include numbers for k=2,4,8.

In Figure 10 we show the recall of these algorithms (recall is 100% for NAIVE
and EXTERNAL) in the same run. We notice again that the deterministic
algorithms perform better than their probabilistic counterparts.

In Figure 11 we depict the cost of evaluating multiple concurrent queries
during 10,000 epochs for an 100× 100 grid. The number of event types was 26.
We used 10 event instances of each type and varied the number of queries from
1 up to 100. Each query was randomly chosen to select two of the 26 event
types and the proximity threshold was 5. As expected, the cost of EXTERNAL
and NAIVE are unaffected by the number of queries, as the first depends on the
number of events and the second on the proximity threshold, which are both
constant in this setup. The cost of the other algorithms increases slowly up to
the point where the increased number of queries results in most events pairing
up in a query. At that point, EXTERNAL is a viable alternative.

7.1. Experiments with Non-Grid Topologies

In all previous experiments, the sensor network topology was modeled as a
grid. We also performed experiments using two alternative placements of the
sensor nodes. In the first configuration, denoted as Random in Figure 12, we
placed 6,000 nodes at random locations. In the second configuration, denoted
as DisasterArea in the same Figure, we model a monitoring area with three

30

0 10 20 30 40 50 60 70 80 90 100
Number of Queries

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

T
ot

al
 C

os
t

NAIVE
EXTERNAL
RI-8
PRI-8
TRI-8
PTRI-8

Figure 11: Varying the number of concurrent queries

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

RI

(k=2)

RI

(k=4)

RI

(k=6)

PRI

(k=2)

PRI

(k=4)

PRI

(k=6)

TRI

(k=2)

TRI

(k=4)

TRI

(k=6)

PTRI

(k=2)

PTRI

(k=4)

PTRI

(k=6)

R
e
c
a
ll

Random

Disaster Areas

Figure 12: Utilizing a non-grid topology (Random) and a topology with failures (Disaster
Areas)

disaster zones. Each disaster zone is centered around a disaster point (three
random locations were selected for that purpose) and starting from a uniform
allocation of 10,000 nodes, we randomly removed 4,000 sensor nodes selected
with 80% probability from around a disaster point and with 20% from the rest of
the network. We tested the RandMoves data set, however, in order to provide
a meaningful comparison, we only allowed events in areas where at least one
sensor node was present. The results in Figure 12 once again demonstrate that
the RI-k algorithm provides the higher accuracy, which is increased with higher
values of k.

7.2. Experiments with Real Data Sets

In Figure 13 we compare the various algorithms, varying the parameter k
for the Trucks data set and for d=10. The network consisted of 10,000 nodes
randomly spread over the monitored area. The same run is repeated in Figure 14

31

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Relative Cost (over NAIVE)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

RI
PRI
TRI
PTRI

Figure 13: Trucks data set: Comparison of different algorithms, varying k

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Relative Cost (over NAIVE)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l RI

PRI
TRI
PTRI

Figure 14: SchoolBuses data set: Comparison of different algorithms, varying k

for the SchoolBuses data set. Again, the different points in each line correspond
to different values of parameter k from 2 up to 8, left to right. Again we observe
that the RI and PRI algorithms achieve high recall rates while using only a
fraction of the bandwidth required by a straightforward implementation.

7.3. Energy Drain During Query Evaluation

Up to this point we have not concerned ourselves with the energy drain on
the nodes during the processing of the queries. In all experiments we assumed
that the nodes have enough power supply to process and communicate events
during the course of the query. In practice, battery-powered sensor nodes often
face severe energy restrictions since they have to operate unattended for long
periods. In the next experiment we modeled the energy drain on the nodes
as follows. At network initialization, each node was given a fixed amount of

32

0 2000 4000 6000 8000 10000
Initial Energy Units

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

NAIVE
RI-8
RI-4
RI-2
PRI-2
TRI-8
TRI-2
PTRI-8
PTRI-2

Figure 15: Recall varying the initial energy of nodes

energy units. During processing of the queries we drained the node’s supply
with 1 energy unit for each message received or overheard and 1.4 energy units
for each message transmitted. We also accounted for the energy drain associated
with detecting/processing an event and for managing the routing indices with
one tenth of an energy unit.4

In Figure 15 we repeat the experiment varying the initial amount of energy
allotted per node (x axis) for the trucks data set. The y axis shows the cu-
mulative recall computed for 2,000 epochs. For clarity purposes the PTRI-8
algorithm was omitted because it closely matched the RI-8 algorithm, while the
TRI-4, PRI-4 and PTRI-4 algorithms were omitted because their behavior can
be easily understood based on the behavior of the corresponding algorithms for
k values of 2 and 8. The following observations are made from the graph:

1. Threaded algorithms are less energy demanding and thus work better in
extremely constrained scenarios.

2. In contrast, the NAIVE algorithm requires significant resources. One
needs to allocate 6,000 energy units (or equivalently 3 units/epoch) for
it to exceed the average recall achieved by other algorithms. This amount
of energy is proportional to receiving 3 messages per epoch, or, equiva-
lently making 2 transmissions per epoch.

3. The RI-k algorithms seem to better utilize energy drain in a larger spec-
trum of initial energy values and dominate all other techniques.

4This is probably an overestimate. For the slow-CPU Mica motes, the cost of sending one
bit equals the cost of 1,000 operations [41]. For faster CPUs the ratio is a lot higher.

33

200 400 600 800 1000 1200 1400 1600 1800 2000
Epoch

9700

9720

9740

9760

9780

9800

9820

9840

9860

9880

9900

9920

9940

9960

9980

10000

N
um

be
r

of
 A

liv
e

N
od

es

NAIVE
RI-8
RI-4
RI-2
PRI-8
PRI-4
PRI-2
TRI-8
TRI-4
TRI-2
PTRI-8
PTRI-4
PTRI-2

Figure 16: Number of sensors with non-empty battery cells during execution of the query

In Figure 16 we plot the number of nodes (the initial network has 10,000
sensor nodes) over time that have not yet drained their battery during the
execution of the query. The X axis depicts the time, ranging from epoch 0
(query initialization) up to 2,000 (last epoch). The initial amount of energy
allotted per node was 500 units. As expected the NAIVE flooding algorithm
drains more energy and results in a quick drop in the number of sensors even
from the first few epochs. While its entire behavior is not depicted in the figure
(for clarity reasons - in order to distinguish the differences amongst the other
algorithms), the number of alive nodes using this technique quickly falls to 9471,
for 400 epochs, and then gradually decreases (at a smaller rate) to 8899 nodes,
for 1300 epochs, and 8640 alive nodes for 2000 epochs.

It is interesting to note that the probabilistic algorithms perform better
than their deterministic counterparts. The selection of neighboring nodes using
probabilistic techniques results in a more uniform energy consumption by the
sensor nodes and, thus, in increased lifetime of the network. Thus, we need
to note that since the PRI-k algorithm performs close to the RI-k algorithm,
in terms of recall, for k values equal or larger than 4, it is a more plausible
alternative for energy-constrained environments.

7.4. Probabilistic v.s. Deterministic Algorithms - a Compromise

In the experiments in Figures 15 and 16 we observed that the determinis-
tic algorithms provide higher values of recall, at the cost of increased energy

34

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2 4 8

R
e

c
a

ll

Value of k

RI-k

PRI-(k,1)

PRI-(k,2)

PRI-k

TRI-k

PTRI-(k,1)

PTRI-(k,2)

PTRI-k

Figure 17: Recall - SchoolBuses Data Set

consumption, when compared to their probabilistic alternatives. In order to
provide a compromise between the two approaches, we introduce a restricted
version of the probabilistic techniques, termed as PRI-(k,l) and PTRI-(k,l) (for
the webnet and threaded algorithms, respectively). Parameter l is used to re-
strict the choices that the probabilistic algorithms make among the top-(k+l)
neighbors of a node, where the neighbors are sorted in descending order of their
compound weights. Please note that for l=0, the algorithms behave similarly
to their deterministic counterparts, while for l = ∞ (in practice, for a value
of l greater than the maximum number of neighbors that a node has minus k)
their selections are similar to the ones of their unrestricted versions. For brevity,
we focus our discussion in the threaded algorithms - the results are similar for
PRI-(k,l).

In Figure 17 we depict the recall of the techniques (y-axis), varying k for the
SchoolBuses data set. As expected, for l=0 the recall of PTRI-(k,0) is similar to
the recall of TRI-k and is omitted from the Figure. By increasing the value of
parameter l, the probabilistic algorithm selects the next hop(s) for announcing
an event from a larger pool of neighbors and its recall values drop. This happens
because in this data set, these extra neighbors considered, are less likely to lead
to a matching event since events (trucks) in our data set move along predefined
routes and do not appear/disappear randomly.

Figure 18 plots the number of sensor nodes that are alive at the end of
the experiment when the initial amount of energy allotted to each node was
500. By comparing Figures 17 and 18, the following trend appears: using the l
parameter, we can balance the desired level of accuracy and the energy drain.
In particular, a smaller value of l increases the accuracy at the cost of higher
energy drain, while a larger value of l reduces accuracy but also reduces energy
consumption.

35

9650

9700

9750

9800

9850

9900

9950

10000

2 4 8

N
u

m
b

e
r
 o

f
A

li
v

e
 N

o
d

e
s

Value of k

RI-k

PRI-(k,1)

PRI-(k,2)

PRI-k

TRI-k

PTRI-(k,1)

PTRI-(k,2)

PTRI-k

Figure 18: Number of sensors with non-empty battery cells - SchoolBuses Data Set

8. Conclusions

In this paper we introduced proximity queries as a means of detecting in-
teresting events, which are observed by nodes in the network that are within
certain distance of each other. Proximity queries can be used to set up alerts or
even to reduce the cost of collecting continuous measurements from the nodes,
since they allow us to define which events are interesting based on the obser-
vations at several nodes. We investigated the issues of computing proximity
queries in networks consisting of battery-powered wireless nodes and proposed
efficient distributed algorithms that utilize routing information computed ac-
cordingly at each node in the network. A key point in our framework is that the
routing indexing weights are populated during past observation of the events
and do not require expensive maintenance. Moreover, our algorithms do not as-
sume any specific sensor topology and can also be applied to cases of clustered
organizations.

Our results demonstrate that our techniques are very effective and provide
substantial savings compared to straightforward executions of the queries using
in-network processing or to algorithms that relay the events to a base station
for further processing. Furthermore, by increasing the query effective threshold
we can achieve recall values exceeding 99.9% while still being able to provide
substantial savings in the cost of the query. An important observation from our
experimental evaluation is that our techniques scale better when the size of the
network increases. This means that our algorithms favor large scale surveillance
applications including tens or hundreds of thousands of nodes and can handle
many concurrent parallel investigations.

References

[1] Rtree Pportal.
http://www.rtreeportal.org.

36

[2] D.J. Abadi, S. Madden, and W. Lindenr. REED: Robust, Efficient Filtering
and Event Detection in Sensor Networks. In VLDB, 2005.

[3] M. Aly, P. K. Chrysanthis, and K. Pruhs. Decomposing Data-Centric Stor-
age Query Hot-spots in Sensor Networks. In MOBIQUITOUS, 2006.

[4] P. Andreou, D. Zeinalipour-Yazti, P. K. Chrysanthis, and G. Samaras.
Workload-Aware Query Routing Trees in Wireless Sensor Networks. In
MDM, pages 189–196, 2008.

[5] C. Avin and C. Brito. Efficient and robust query processing in dynamic en-
vironments using random walk techniques. In Proceedings of the 3rd inter-
national symposium on Information processing in sensor networks (IPSN),
pages 277–286, 2004.

[6] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating Ag-
gregates on a Peer-to-Peer Network. Technical report, Stanford, 2003.

[7] D. Braginsky and D. Estrin. Rumor Routing Algorithms for Sensor Net-
works. In First International Workshop on Sensor Networks and Applica-
tions, 2002.

[8] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring sEnsor Net-
work Topologies. In INFOCOM, 2002.

[9] Jae-Hwan Chang and Leandros Tassiulas. Energy Conserving Routing in
Wireless Ad-hoc Networks. In INFOCOM, 2000.

[10] I. Chatzigiannakis, A. Kinalis, and S. E. Nikoletseas. Fault-tolerant and
efficient data propagation in wireless sensor networks using local, additional
network information. J. Parallel Distrib. Comput., 67(4):456–473, 2007.

[11] R. Cheng and S. Prabhakar. Managing Uncertainty in Sensor Databases.
SIGMOD Record, 32(4):41–46, 2003.

[12] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggregation
Techniques for Sensor Databases. In ICDE, 2004.

[13] A. Crespo and H. Garcia-Molina. Routing Indices For Peer-to-Peer Sys-
tems. In ICDCS, 2002.

[14] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed Set-
Expression Cardinality Estimation. In VLDB, 2004.

[15] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing Historical
Information in Sensor Networks. In ACM SIGMOD, 2004.

[16] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical In-
Network Data Aggregation with Quality Guarantees. In EDBT, 2004.

37

[17] A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and A. Delis. An-
other Outlier Bites the Dust: Computing Meaningful Aggregates in Sensor
Networks. In ICDE, pages 988–999, 2009.

[18] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and W. Hong.
Model-Driven Data Acquisition in Sensor Networks. In VLDB, 2004.

[19] C. Doulkeridis, A. Vlachou, Y. Kotidis, and M. Vazirgiannis. Peer-to-Peer
Similarity Search in Metric Spaces. In VLDB, pages 986–997, 2007.

[20] D. Dudkowski, P. J. Marrón, and K. Rothermel. Efficient Algorithms for
Probabilistic Spatial Queries in Mobile Ad Hoc Networks. In COMSWARE,
2006.

[21] D. Dudkowski, P. J. Marrón, and K. Rothermel. An Efficient Resilience
Mechanism for Data Centric Storage in Mobile Ad Hoc Networks. In MDM,
2006.

[22] C. T. Ee, S. Ratnasamy, and S. Shenker. Practical Data-centric Storage.
In NSDI, pages 24–24, 2006.

[23] F. Emekçi, S. E. Tuna, D. Agrawal, and A. E. Abbadi. Using Linear Models
to Monitor the Physical World with Sensors. In SSDBM, 2005.

[24] D. Estrin, R. Govindan, J. Heidermann, and S. Kumar. Next Century
Challenges: Scalable Coordination in Sensor Networks. In MobiCOM, 1999.

[25] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and Y. Theodor-
idis. TACO: Tunable Approximate Computation of Outliers in Wireless
Sensor Networks. In SIGMOD Conference, pages 279–290, 2010.

[26] B. Greenstein, S. Ratnasamy, S. Shenker, R. Govindan, and D. Estrin.
DIFS: A Distributed Index for Features in Sensor Networks. Ad Hoc Net-
works, 1(2-3):333–349, 2003.

[27] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, L. Gu, J. Hui, and B. Krogh. An Energy-Efficient Surveillance
System Using Wireless Sensor Networks. In MobiSys, 2004.

[28] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidermann. Impact
of Network Density on Data Aggregation in Wireless Sensor Networks. In
ICDCS, 2002.

[29] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks. In
MOBICOM, 2000.

[30] S. R. Jeffery, M. Garofalakis, and M. J. Franklin. Adaptive Cleaning for
RFID Data Streams. In Proc. of VLDB, 2006.

38

[31] B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for
Wireless Networks. In MOBICOM, pages 243–254, 2000.

[32] P. Karras and N. Mamoulis. Detecting the Direction of Motion in a Binary
Sensor Network. In SUTC, 2006.

[33] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of Ag-
gregate Information. In FOCS, 2003.

[34] H.M. Khan, S. Olariu, and M. Eltoweissy. Efficient Single-Anchor Lo-
calization in Sensor Networks. In Proc. of the 2nd IEEE Workshop on
Dependability and Security in Sensor Networks and Systems, 2006.

[35] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Networks. In
ICDE, 2005.

[36] Y. Kotidis. Processing proximity queries in sensor networks. In Proceedings
of the 3rd International VLDB Workshop on Data Management for Sensor
Networks (DMSN), September 2006.

[37] L. Lazos and R. Poovendran. Stochastic Coverage in Heterogeneous Sensor
Networks. ACM Trans. Sen. Netw., 2(3):325–358, 2006.

[38] X. Li, Y.-J. Kim, R. Govindan, and W. Hong. Multi-dimensional Range
Queries in Sensor Networks. In SenSys, pages 63–75, 2003.

[39] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in
Unstructured Peer-to-Peer Networks. In ICS, 2002.

[40] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A Tiny
Aggregation Service for ad hoc Sensor Networks. In OSDI Conf., 2002.

[41] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design of
an Acquisitional Query processor for Sensor Networks. In ACM SIGMOD,
2003.

[42] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos. Dis-
tributed Deviation Detection in Sensor Networks. SIGMOD Rec., 32(4),
2003.

[43] K. K. Rachuri and C. S. Ran Murthy. Level biased random walk for informa-
tion discovery in wireless sensor networks. In Proceedings of the 2009 IEEE
international conference on Communications (ICC), pages 5036–5041, Pis-
cataway, NJ, USA, 2009.

[44] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: A Geographic Hash Table for Data-Centric Storage.
In Proceedings of the 1st ACM International Workshop on Wireless Sensor
Networks and Applications, 2002.

[45] Y. Rekhter and T. Li. Border Gateway Protocol 4. RFC 1771, July 1995.

39

[46] A. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. Balancing En-
ergy Efficiency and Quality of Aggregate Data in Sensor Networks. VLDB
Journal, 2004.

[47] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin.
Data-centric Storage in Sensornets. Computer Communication Review,
33(1):137–142, 2003.

[48] A. Silberstein, R. Braynard, and J. Yang. Constraint Chaining: On Ener-
gyEfficient Continuous Monitoring in Sensor Networks. In SIGMOD, 2006.

[49] A. Silberstein, A. Gelfand, K. Munagala, G. Puggioni, and J. Yang. Making
Sense of Suppressions and Failures in Sensor Data: A Bayesian Approach.
In VLDB, pages 842–853, 2007.

[50] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in mo-
bile ad hoc networks. In ACM/IEEE International Conference on Mobile
Computing and Networking, 1998.

[51] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and Indexing of
Moving Objects with Unknown Motion Patterns. In SIGMOD, 2004.

[52] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic Search for
Peer-to-Peer Networks. In Proc. of the 3rd IEEE International Conference
on P2P Computing, 2003.

[53] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the Construction
of Energy-Efficient Broadcast and Multicast Trees in Wireless Networks.
In INFOCOM, pages 585–594, 2000.

[54] P. Xia, P. K. Chrysanthis, and A. Labrinidis. Similarity-aware Query Pro-
cessing in Sensor Networks. In IPDPS, 2006.

[55] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour Map Matching for Event
Detection in Sensor Networks. In SIGMOD, 2006.

[56] T. Yan, Y. Gu, T. He, and J. A. Stankovic. Design and Optimization
of Distributed Sensing Coverage in Wireless Sensor Networks. Trans. on
Embedded Computing Sys., 7(3):1–40, 2008.

[57] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Networks.
In ICDCS, pages 5–14, 2002.

[58] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Pro-
cessing in Sensor Networks. SIGMOD Record, 31(3):9–18, 2002.

[59] W. Ye and J. Heidermann. Medium Access Control in Wireless Sensor
Networks. Technical report, USC/ISI, 2003.

[60] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-Latency Tradeoffs
for Data Gathering in Wireless Sensor Networks. In INFOCOM, 2004.

40

[61] D. Zeinalipour-Yazti, P. Andreou, P. K. Chrysanthis, and G. Samaras.
MINT Views: Materialized In-Network Top-k Views in Sensor Networks.
In Proceedings of the 7th International Conference in Mobile Data Man-
agement, pages 182–189, May 2007.

[62] D. Zeinalipour-Yazti, P. Andreou, P. K. Chrysanthis, G. Samaras, and
A. Pitsillides. The Micropulse Framework for Adaptive Waking Windows
in Sensor Networks. In MDM, pages 351–355, 2007.

41

