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Abstract

Recent advances in microelectronics have made feasible the deployment of sensor networks for a
variety of monitoring and surveillance tasks. The severe energy constraints met in such networks make
imper ative the design of energy efficient protocols for communication, which often constitutes the largest
source of energy drain, of the collected information. In this paper, we describe several techniques that
can be applied for the reduction of the transmitted information in different application scenarios.

1 Introduction

Recent advances in wireless technologies and microelectronics have made feasible, both from a technological
as well as an economical point of view, the deployment of densely distributed sensor networks [11]. Although
today’s sensor nodes have relatively small processing and storage capabilities, driven by the economy of scale,
it is already observed that both are increasing at a rate similar to Moore’s law. In applications where sensors are
powered by small batteries and replacing them is either too expensive or impossible (i.e., sensors thrown over
a hostile environment), designing energy efficient protocols is essential to increase the lifetime of the sensor
network. Since radio operation is by far the biggest factor of energy drain in sensor nodes [4], minimizing the
number of transmissions is vital in data-centric applications. Even in the case when sensor nodes are attached
to larger devices with ample power supply, reducing bandwidth consumption may still be important due to the
wireless, multi-hop nature of communication and the short-range radios usually installed in the nodes.

Data-centric applications thus need to devise novel dissemination processes for minimizing the number
of messages exchanged among the nodes. Nevertheless, in densely distributed sensor networks there is an
abundance of information that can be collected. In order to minimize the volume of the transmitted data, we can
apply two well known ideas: aggregation and approximation.

In-network aggregation is more suitable for exploratory, continuous queries that need to obtain a live estimate
of some (aggregated) quantity. For example, sensors deployed in a metropolitan area can be used to obtain
estimates on the number of observed vehicles. Temperature sensors in a warehouse can be used to keep track of
average and maximum temperature for each floor of the building. Often, aggregated readings over a large number
of sensors nodes show little variance, providing a great opportunity for reducing the number of (re)transmissions
by the nodes when individual measurements change only slightly (as in temperature readings) or changes in
measurements of neighboring nodes effectively cancel out (as in vehicle tracking).
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Approximation techniques, in the form of lossy data compression are more suitable for the collection of
historical data through long-term queries. As an example, consider sensors dispersed in a wild forest, collecting
meteorological measurements (such as pressure, humidity, temperature) for the purpose of obtaining a long term
historical record and building models on the observed eco-system [8]. Each sensor generates a multi-valued data
feed and often substantial compression can be achieved by exploiting natural correlations among these feeds
(such as in case of pressure and humidity measurements). In such cases, sensor nodes are mostly “silent” (thus
preserving energy) and periodically process and transmit large batches of their measurements to the monitoring
station for further processing and archiving.

While the preferred method of data reduction, either by aggregation or by approximation, of the underlying
measurements can be decided based on the application needs, there is a lot of room for optimization at the
network level too. Sensor networks are inherently redundant; a typical employment uses a lot of redundant
sensor nodes to cope with node or link failures [1]. Thus, extracting measurements from all nodes in the network
for the purpose of answering a posed query may be both extremely expensive and unnecessary. In a data-
centric network, nodes can coordinate with their neighbors and elect a small set of representative nodes among
themselves, using a localized, data-driven bidding process [5]. These representative nodes constitute a network
snapshot that can, in turn, answer posed queries while reducing substantially the energy consumption in the
network. These nodes are also used as an alternative means of answering a posed query when nodes and network
links fail, thus providing unambiguous data access to the applications.

2 Characteristics of Sensor Nodes

Depending on the targeted application, sensor nodes with widely different characteristics may be used. Even
though the processing and memory capabilities of sensor nodes are still limited, in recent years they have in-
creased at a rate similar to Moore’s law. On the other hand, the amount of energy stored in the batteries used in
such nodes has exhibited a mere 2-3% annual growth! Since replacing the sensor batteries may be very expen-
sive, and often impossible due to their unattended deployment, unless the sensors are attached to and powered
by a larger unit, designing energy-efficient protocols is essential to increase the lifetime of the sensor network.

The actual energy consumption by each sensor node depends on its current state. In general, each sensor
node can be in one of the following states: 1) low-duty cycle, where the sensor is in sleep mode and a minimal
amount of energy is consumed; 2) idle listening, where the sensor node is listening for possible data intended
for it; 3) processing, where the node performs computation based on its obtained measurements and its received
data; and, 4) receiving/transmitting, where the node either receives or transmits data or control messages.

The cost of processing can be significant but is generally much lower than the cost of transmission. For ex-
ample, in the Berkeley MICA nodes sending one bit of data costs as much energy as 1,000 CPU instructions [7].
For long-distance radios, the transmission cost dominates the receiving and idle listening costs. For short-range
radios, these costs are comparable. For instance, in the Berkeley MICA2 motes the power consumption ratio
of transmitting/receiving at 433MHz with RF signal power of ImW is 1.41:1 [13], while this ratio can become
even larger than 3:1 for the same type of sensor when the radio transmission power is increased [10]. To increase
the lifetime of the network, some common goals of sensor network applications are (in order of importance) to
maximize the time when a node is in a low-duty cycle, to reduce the amount of transmitted and received data,
and to reduce the idle listening time. We note here that reducing the size of the transmitted data results in mul-
tiple benefits, since this also corresponds to a reduction of not only control messages, but also leads to fewer
message collisions and retransmissions. Moreover, nodes that refrain from transmitting messages may switch to
the low-duty cycle mode faster, therefore further reducing their energy drain.

lhttp://nesl.ee .ucla.edu/courses/ee202a/2002f/lectures/L07.ppt.
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Figure 1. Example of two correlated signals Figure 2: XY scatter plot of Industrial (X axis) vs
(Stock Market) Insurance (Y axis)

3 A Lossy Compression Framework for Historical M easurements

Many real signals observed by the sensors, such as temperature, dew-point, pressure etc. are naturally correlated.
The same is often true in other domains. For instance, stock market indexes or foreign currencies often exhibit
strong correlations. In Figure 1 we plot the average Industrial and Insurance indexes from the New York stock
market for 128 consecutive days? Both indexes show similar fluctuations, a clear sign of strong correlation.
Figure 2 depicts a XY scatter plot of the same values. This plot is created by pairing values of the Industrial (X-
coordinate) and Insurance (Y-coordinate) indexes of the same day and plotting these points in a two-dimensional
plane. The strong correlation among these values makes most points lie on a straight line. This observation
suggests the following compression scheme, inspired from regression theory. Assuming that the Industrial index
(call it X) is given to us in a time-series of 128 values, we can approximate the other time-series (Insurance:?)

asY’ = axX +b. The coefficients a and b are determined by the condition that the sum of the square residuals, or
equivalently the Ly error norm Hf/ — Y||2, is minimized. This is nothing more than standard linear regression.
However, unlike previous methods, we will not attempt to approximate each time-series independently using
regression. In Figure 1 we see that the series themselves are not linear, i.e., they would be poorly approximated
with a linear model. Instead, we will use regression to approximate piece-wise correlations of each series to a
base signal X that we will choose accordingly. In the example of Figure 2, the base signal can be the Industrial
index ()?) and the approximation of the Insurance index will be just two values (a, b). In practice the base signal
will be much smaller than the complete time series, since it only needs to capture the “important” trends of the
target signal Y. For instance, in case Y is periodic, a sample of the period would suffice.

The SBR framework. In the general case, each sensor monitors NV distinct quantitiesﬁ, 1 < ¢ < N. Without
loss of generality we assume that measurements are sampled with the same rate. When enough data is collected
(for instance, when the sensor memory buffers become full), the latest NxM values are processed and each row
1 (of length M) is approximated by a much smaller set of B; values, i.e. B; < M. The resulting “compressed”
representation, of total size equal to ZfL B;, is then transmitted to the base station. The base station maintains
the data in this compact representation by appending the latest “chunk” to a log file. A separate file exists for
each sensor that is in contact with the base station. This process is illustrated in Figure 3. Each sensor allocates
a small amount of memory of size M,,,. for what we call the base signal. This is a compact ordered collection
of values of prominent features that we extract from the recorded values and are used as a base reference in the
approximate representation that is transmitted to the base station. The data values that the sensor transmits to the
base station are encoded using the in-memory values of the base signal at the time of the transmission. The base

2Data at http://www.marketdata.nasdaqg.com/mr4b.html.
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signal may be updated at each transmission to ensure that it will be able to capture newly observed data features
and that the obtained approximation will be of good quality. When such updates occur, they are transmitted
along with the data values and appended in a special log file that is unique for each sensor.

The Self-Based Regression algorithm (SBR) breaks the data intervalsY; into smaller data segments [;[k..l] =
(Yi[K], ... Y;[l]) and then pairs each one to an interval of the base signal of equal length. As discussed below,
the base signal is simply the concatenation of several intervals of the same length W extracted from the data.
The data interval I; is shifted over the base signal and at each position s we compute the regression parameters
for the approximation I;[j] = a x X[s +j — k] + b, k < j < [ and retain the shift value s = s* that minimizes
the sum-squared error of the approximation. The algorithm starts with a single data interval for each row of
the collected data (Y;). In each iteration, the interval with the largest error in the approximation is selected and
divided in two halves. The compressed representation of a data interval f[£..l] consists of four values: the shift
position s* that minimizes the error of the approximation, the two regression parameters a,b and the start of the
data interval k in Y;. The base station will sort the intervals based on their start position and, thus, there is no
need to transmit their ending position. Given a target budget B (size of compressed data) we can use at most
B/4 intervals using this representation.

Base Signal Construction. We can think of the base signal as a dictionary of features used to describe the
data values. The richer the pool of features we store in the base signal the better the approximation. On the
other hand, these features have to be (i) kept in the memory of the sensor to be used as a reference by the data-
reduction algorithm and (ii) sent to the base station in order for it to be able to reconstruct the values. Thus, for
a target bandwidth constraint B (number of values that can be transmitted), performing more insert and update
operations on the base signal implies less bandwidth remaining for approximating the data values, and, thus,
fewer data intervals that can be obtained from the recursive process described above.

We can avoid the need of transmitting the base signal by agreeing a-priori on a set of functions that will be
used in the regression process. For instance, a set of cosine functions (as in the Distinct Cosine Transform) can
be used for constructing a “virtual” base signal that does not need to be communicated. Similarly, using the
identity function X [:] = ¢ reduces the compression algorithm to standard linear regression of each data interval.
However, such an approach makes assumptions that may not hold for the data at hand. In [2] we have proposed
a process for generating the base signal from the data values. The key idea is to break the measurements into
intervals of the same length 1//. Each interval (termed candidate base interval) is assigned a score based on the
reduction in the error of the approximation obtained by adding the interval to the base signal. Using a greedy
algorithm we can select the top-few candidate intervals, up to the amount of available memory M,,s.. Then a
binary-search process is used to eventually decide how many of those candidate intervals need to be retained.

The search space is illustrated in Figure 4 for three real data sets, discussed in [2]. The figure plots the error
of only the initial transmission as the size of the base signal is varied, manually, from 1 to 30 intervals. We
further show the selection of the binary-search process. For presentation purposes, the errors for each data set
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have been divided by the error of the approximation when using just one interval. We notice that initially, by
adding more candidate intervals to the base signal the error of the approximation is reduced. However, after
a point, adding more intervals that need to be transmitted to the base station leaves insufficient budget for the
recursive process that splits the data, and thus, the error of the approximation is eventually increased.

For a data set containing n = N x M measurements to approximate the complete SBR algorithm takes
O(n'-5) time and requires linear space, while its running time scales linearly to the size of both the transmitted
data and the base signal. The algorithm is invoked periodically, when enough data has been collected. Moreover,
our work [2] has demonstrated that, after the initial transmissions, the base signal is already of good quality and
few intervals are inserted in it. This provides us with the choice not to update the base signal in many subsequent
invocations, thus reducing the algorithm’s running time, in these cases, to only a linear dependency on n.

4 Approximatein-Network Data Aggregation

In-Network Data Aggregation. The data aggregation process in sensor networks consists of several steps.
First, the posed query is disseminated through the network, in search of nodes collecting data relevant to the
query. Each sensor then selects one the nodes through which it received the announcement as its parent node.
The resulting structure is often referred to as the aggregation tree. Non-leaf nodes of that tree aggregate the
values of their children before transmitting the aggregate result to their parents. In [6], after the aggregation tree
has been created, the nodes carefully schedule the periods when they transmit and receive data. The idea is for
a parent node to be listening for values from its child nodes within specific intervals of each epoch and then
transmit upwards a single partial aggregate for the whole subtree.

Framework Description. In order to limit the number of transmitted messages and, thus, the energy consump-
tion in sensor networks during the computation of continuous aggregate queries, our algorithms install error
filters on the nodes of the aggregation tree2 Each node NNV; transmits the partial aggregate that it computes at
each epoch for its subtree only if this value deviates by more than the maximum error E of the node’s filter
from the last transmitted partial aggregate. This method allows nodes to refrain from transmitting messages
about small changes in the value of their partial aggregate. The F; values determine the maximum deviation
E _Tot; of the reported from the true aggregate value at each node. For example, for the SUM aggregate, this
deviation at the monitoring node is upper bounded (ignoring message losses) by:>"; E;. A sample aggregation
tree is depicted in Figure 5. As our work [3] has demonstrated, allowing a small error in the reported aggregate
can lead to dramatic bandwidth (and thus energy) savings. The challenge is, of course, given the maximum error
tolerated by the monitoring node, to calculate and periodically adjust the node filters in order to minimize the

3The use of error filters in error-tolerate applications in flat, non-hierarchical domains has been investigated in [9].



bandwidth consumption.

Algorithmic Challenges. When designing adaptive algorithms for in-network data aggregation in sensor net-
works, one has to keep in mind several challenges/goals. First, communicating individual node statistics is very
expensive, since this information cannot be aggregated inside the tree, and may outweigh the benefits of approx-
imate data aggregation, namely the reduction in the size of the transmitted data. Thus, our algorithm should not
try to estimate the number of messages generated by each node’s transmissions, since this depends on where this
message is aggregated with messages from other nodes. Second, the error budget should be distributed to the
nodes that are expected to reduce their bandwidth consumption the most by such a process. This benefit depends
on neither the magnitude of the partial aggregate values of the node nor the node’s number of transmissions over
a period, but on the magnitude of the changes on the calculated partial aggregate. Isolating nodes with large
variance on their partial aggregate and redistributing their error to other nodes is crucial for the effectiveness
of our algorithm [3]. Finally, in the case of nodes where the transmitted differences from their children often
result in small changes on the partial aggregate value, our algorithm should be able to identify this fact. We
deal with this latter challenge by applying the error filters on the calculated partial aggregate values and not
on each node’s individual measurements. For the first two challenges, we collect a set of easily computed and
composable statistics at each node. These statistics are used for the periodic adjustment of the error filters.

Algorithm Overview. Every Upd epochs all nodes shrink the widths of their filters by a shrinking factor
shrinkFactor (0 < shrinkFactor < 1). After this process, the monitoring node has an error budget of size
E_Global x (1 — shrinkFactor), where E_Global is the maximum error of the application, that it can redis-
tribute recursively to the nodes of the network. Each node, between two consecutive update periods, calculates
its potential gain as follows: At each epoch the node keeps track of the number of transmissions CGp,i,i that it
would have performed with the default (smaller) filter at the next update period of width shrinkFactor x W,
where W; = 2 x E;. The node also calculates the corresponding number of transmissions C.,qnq With a larger
filter of width W; + dWW and sets its potential gain to Gain; = Csprink — Cezpand- This process is illustrated
in Figure 6. The cumulative gain of a node’s subtree is then calculated as the sum of the cumulative gains of
the node’s children and the node’s potential gain. This requires only the transmission of the cumulative gains (a
single value for each node) at the last epoch before the new update period. The available error budget is then
distributed top-down proportionally, at each node, to each subtree’s cumulative gain. In this process, nodes that
exhibit large variance in their partial aggregate values will exhibit small potential gains and, thus, their error will
gradually shrink and be redistributed to nodes that will benefit from an increase in their error filter.

We note here that the dual problem of minimizing the application maximum error given a bandwidth con-
straint can also be solved in a similar manner, using statistics collected at each node. The problem is more
complicated, though, because the controlled quantity at each node (the width of its error filter) is different from
the monitored quantity (the bandwidth consumption) and the bandwidth needs to be carefully computed, moni-
tored and then disseminated amongst the sensor nodes.

5 Design of Data-Centric Sensor Networks

Sensor networks are inherently dynamic. Such networks must adapt to a wide variety of challenges imposed
by the uncontrolled environment in which they operate. As nodes become cheaper to manufacture and operate,
one way of addressing the challenges imposed on unattended networks is redundancy [1]. Redundant nodes
ensure network coverage in regions with non-uniform communication density due to environmental dynamics.
Redundancy further increases the amount of data that can be mined in large-scale networks.

Writing data-driven applications in such a dynamic environment can be daunting. Again, the major challenge
is to design localized algorithms that will perform most of the processing in the network itself in order to reduce
traffic and, thus, preserve energy. Instead of designing database applications that need to hassle with low-level
networking details, we envision the use of data-centric networks that allow transparent access to the collected



measurements in a unified way. For instance, when queried nodes fail, the network should self-configure to use
redundant stand-by nodes as in [4], under the condition that the new nodes contain fairly similar measurements,
where similarity needs to be quantified in an application-meaningful way [5]. This can be achieved using a local-
ized mode of operation in which nodes can coordinate with their neighbors and elect a small set of representative
nodes among themselves. Such a set of representatives, termed network snapshot [5], has many advantages. The
location and measurements of the representative nodes provide a picture of the value distribution in the network.
Furthermore, the network snapshot can be used for answering user queries in a more energy-efficient way, since
significantly fewer nodes need to be involved in query processing. Finally, an elected representative node can
take over for another node in its vicinity that may have failed or is temporarily out of reach.

6 Conclusions and Future Directions

In this paper we described several techniques for the reduction of the transmitted data in several sensor network
applications, ranging from the communication of historical measurements to answering approximate aggregate
continuous and snapshot queries. While these techniques aim to prolong the lifetime of the network, there are
several issues that need to be additionally addressed. Little work has been done on the optimization of multiple
concurrent continuous queries over sensor networks. The work of Olston et al. in [9] may provide some helpful
solutions in this area. Moreover, in the presence of nodes with different transmission frequencies, as in the case
of approximate aggregate query processing, several communication and synchronization algorithms may need
to be revisited [12]. For example, the selection of the aggregation tree is often performed by assuming equal
frequency of transmissions by all nodes. However, it might be more beneficial to prevent nodes that exhibit
large variance in their measurements from appearing in lower levels of the tree, since such nodes often trigger
transmissions on their ancestors as well. Such optimizations may lead to even larger energy savings.
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