
Towards a Prototype Medical System for
Devices Vigilance and Patient Safety

Antonios Deligiannakis
School of Electronic and
Computer Engineering

Technical University of Crete
Chania, Greece

adeli@softnet.tuc.gr

Nikos Giatrakos
School of Electronic and
Computer Engineering

Technical University of Crete
Chania, Greece

ngiatrakos@softnet.tuc.gr

Nicolas Pallikarakis
Biomedical Technology Unit

University of Patras
Patras, Greece

nipa@upatras.gr

Abstract—For all healthcare institutions and organizations,
patient safety is of the utmost importance. A factor that influences
patient safety is the existence (or not) of observed adverse events
associated with medical devices. Upon the detection of adverse
events, all healthcare providers that own the affected medical
devices should be promptly notified. In this paper we present
the core of a prototype system for medical devices vigilance and
patient safety. We present the architecture of this system, the way
that it detects the healthcare providers that need to be notified
through an entity matching algorithm, as well as briefly present
its user interface.

I. INTRODUCTION

For all healthcare institutions and organizations, patient
safety is of the utmost importance. The World Health Orga-
nization (WHO) identifies patient safety as a serious global
public health issue. According to WHO, patient safety is
defined as the prevention of errors and adverse effects to
patients associated with health care. While most patient safety
issues are associated with the acquisition of infections, some
errors correspond to adverse events/incidents related to medical
devices. An event is classified as adverse if it causes, or may
potentially cause, unexpected or unwanted effects involving the
safety of (primarily) patients, users or other persons. Examples
of such adverse events are misconnections in ECG cables that
may result in electrocution, fires during defibrillation (typically
caused by insufficient paddle contact, with subsequent arcing,
in the presence of oxygen-enriched environments), or even
errors that may occur, due to a complex user interface, by
the machine operator. While medical devices are produced and
distributed according to international standards, and have the
necessary certification in compliance with the Medical Devices
Directives and guidelines for the EU, and/or FDA approval for
the US, in clinical practice even the best designed products,
could potentially fail and put patient and/or staff safety at
hazard.

The importance of reporting adverse events is evident from
the large number of organizations that report them. Some
examples include, but are not limited to: (1) FDA [1] - U.S.
Food and Drug Administration, (2) ECRI [2] - Emergency Care
Research Institute, (3) TGA [3] - Australian Department of
Health, (4) IMB [4] - Irish Medicine Board, (5) SwissMedic [5]
- Swiss Agency for therapeutic products, (6) EUDAMED [6]
- European databank for medical devices, (7) MHRA [7] -
Medicines and Healthcare products Regulatory Agency, (8)

MEDSAFE [8] - New Zealand Medicines and Medical Devices
Safety Authority etc.

Once an adverse event occurs, healthcare providers that
possess the medical device related to the adverse event should
be promptly notified, in order to take appropriate measures.
The common practice is that the manufacturer of the relevant
medical device should contact all healthcare providers that
possess the medical device at question. However, this is not
always done, either due to unwillingness of the company,
or due to the large number of involved health providers,
which is difficult to track, especially at a global level. What
instead seems as a more reliable solution would be to establish
a medical devices vigilance system that would assume the
role of collecting information about adverse events and then
notify all appropriate healthcare providers, assuming that they
have registered the medical devices that they possess. To
avoid such adverse events or prevent their repetition, the
European Directives on medical devices include provision for
the establishment and operation of medical device vigilance
systems in the European Union [9], [10]. These systems
must be created under the responsibility of each member
state and should collect reports of adverse events involving
medical devices, perform investigation when appropriate, and
disclose the information to the other member states and the EU
Commission in order that necessary precautions be taken [11],
[12]. However, countries have not yet implemented such a
system and many adverse events remain unknown.

In this paper we present the database component and the
web interface of the MEdical DEvices VIgilance and PAtient
Safety (MEDEVIPAS) that we are currently developing. While
the goal of the system is to be deployed at Greek hospitals and
its current web interface is in English, the design of its database
engine has been performed in a way that allows its operation
even when the registered information is in different languages.
This is achieved through the use of aliases, with which the user
can specify that particular keywords (in different languages)
correspond to the same entity.

The contributions of this paper are summarized as follows:

• We propose MEDEVIPAS, a novel system for medical
devices vigilance and patient safety. The goal of the
system is to automatically inform healthcare providers
for adverse events related to medical devices that they
possess, thus enhancing patient safety.

Adverse Events &

Medical Devices

DATABASE

FDA ECRI MHRA EUDAMED

INTERNATIONAL ORGANIZATIONS

Crawl & Parse Reports of

Adverse Events

Comparison &

Detection Engine

Vigilance

Reports

HOSPITAL

Administration

Web

Interface

Fig. 1. Architecture of MEDEVIPAS

• We present our algorithm for entity matching, which
helps determine, based on newly reported adverse
events, which medical devices may be influenced.

• We present enhancements to our design based on the
notion of aliases. We explain how aliases can help
our entity detection algorithm in the case of alterna-
tive spellings for the same entity (i.e., Siemens and
Ziemens are both valid names of the same company
in different languages). We demonstrate how aliases
can be efficiently maintained based on an alias graph.

• We present a detailed view of the database organiza-
tion, as well as the web interface of MEDEVIPAS.

Roadmap. This paper proceeds as follows. In Section II we
present the overall architecture of MEDEVIPAS. In Section III
we present the data infrastructure of our system, including
basic components of the stored data and the description of our
alias graph. In Section IV we present our matching algorithm.
In Section V we present our web application, while Section VI
presents concluding remarks and future directions.

II. MEDEVIPAS ARCHITECTURE

We now present the overall architecture, depicted in Fig-
ure 1, of the MEDEVIPAS system that we are currently
developing. The system needs to collect information regarding
adverse events. In order to achieve this, crawlers need to be
developed for the international authorities that publish such
information, such as FDA [1], ECRI [2], MHRA [7], TGA [3],
IMB [4], SwissMedic [5], etc.

We need to note that the format of the reported adverse
events in all of these resources, while being fairly well struc-
tured, is not uniform, and all resources do not contain exactly
the same fields of information. On one hand, the variety at
the format of the reported data makes it hard to distinguish
cases when the same adverse event is report in more than one
authority (i.e., by both FDA and ECRI at different times). Our
system will treat these two reports as two different detected
adverse events, thus potentially notifying healthcare authorities
that possess the corresponding medical device more than once.
On the other hand, a decision needs to be made on whether
the data regarding the crawled adverse events will be stored
in multiple database tables (i.e., one per crawled authority), or
at a common format, which contains fields that are mentioned
in many of these sources. We opted for the second option,
as (1) it simplifies the design of the database, and (2) the url

Medical
Devices’
Data

Adverse Event
Reports’
Data

Alias’ Graph
Maintenance

Comparison & Detection Engine
Matching
Engine

FEEDBACK

Latest
Reports

Fig. 2. Vigilance Prototype’s Building Blocks

for each crawled adverse report can be stored in the database,
thus allowing the user to view any fields of information not
stored in the database. In particular, in Section III we present
the fields maintained for each adverse event, with these fields
best matching the format of FDA, which typically reports more
adverse events, compared to the other listed authorities.

Besides data relevant to adverse events, the MEDEVIPAS
database also maintains information about medical devices that
healthcare authorities have registered in the system through
the web interface of the system. Periodically (currently this is
performed every 24 hours), if new tuples have been inserted
in the database, our entity matching algorithm (discussed in
Section IV) is executed. If new matches are obtained, the
healthcare authorities with the matched medical devices are
notified, receiving a vigilance report.

III. DATA INFRASTRUCTURE

We set out the presentation of our prototype by describing
its basic infrastructure. We focus on the corresponding building
blocks of our vigilance system of Figure 1 and present them
in more detail in Figure 2. An overview of the corresponding
infrastructure is depicted in the class diagram of Figure 3 and
will be analyzed in this section.

Medical Devices Data. Hospital medical device inventory
data (on the right of Fig. 2) is created and maintained by
regular data import from existing hospital devices inventories.
In its current version the MEDEVIPAS vigilance system
supports both individual medical device insertion and batch
uploading of them. For the latter case, comma separated
values (CSV) files should be uploaded by a user belonging to
a specific health care institution. Future versions will support
uploading delimited text files or excel files. As depicted in
Figure 3, the information currently stored for each medical
device includes information (institution, department, location)
regarding both the healthcare provider owning the device,
as well as information helping identify the device - its
manufacturer, model name, serial, device type in English, as
well as the Universal Medical Device Nomenclature System
(UMDNS) code specifying the encoding of the device type.

Adverse Event Reports’ Data. The Adverse Events data
(on the left of Fig. 2) can be populated with vigilance data
provided mainly by international sources, such as international
authorities [1-8], International Organizations, manufacturers

Fig. 3. Vigilance System’s Data Infrastructure

and suppliers of medical equipment.1 The data attributes
stored for each adverse event include the manufacturer, model,
serial and group of the involved medical device (as well as
information on where it is distributed), information about the
incident and the quantity of reported devices with defect, the
date of the report etc.

Comparison & Detection Engine. The vigilance system
includes a flexible Comparison and Detection Engine (middle
component in Figure 2) that identifies and reveals potentially
hazardous medical devices. The engine’s operation is sup-
ported by a Matching Engine (sub)component which includes
an efficient algorithm for potentially hazardous device identi-
fication. The second (sub)component involves an Alias Graph
that provides the flexibility of declaring synonyms on the fields
examined by the matching algorithm.

• Matching Engine. To pinpoint potentially hazardous med-
ical devices, we design a matching algorithm (described in
Section IV) that is capable of correlating the data between
the stored adverse events and medical devices. We determined
that the triplet <manufacturer, model, serial> can uniquely
identify a medical device. Thus, our algorithm for correlation
and detection is based on flexible comparison of the triplet
<manufacturer, model, serial> of the fields of the medical
devices and reports’ data. The output that is stored in the
database consists of detected potentially dangerous medical
devices along with corresponding adverse event reports and
their matching score.

• Alias Graph. The declaration of entity aliases is facili-
tated by the construction and maintenance of an Alias Graph
component. To conceive the utility of entity alias, consider
for instance a specific manufacturer entity ManufA. Some
of the reports of adverse events may often use the terms
ManufA International and ManufA interchangeably. This
example expresses the need for synonym declaration for the
same manufacturer entity. As a result, users should have the
opportunity to register such common synonyms in the database
for the matching algorithm to take into consideration, since
string comparison operations under any function may output
low matching score for the above instance when trying to
correlate a specific report towards a particular piece of medical
equipment in one of the registered healthcare institutions.
Synonym declaration also provides us with extra flexibility,
which is required for handling multilingual data, i.e., when

1Currently, data crawled from FDA and TGA are stored, but crawlers for
the other data sources are under development.

inserting into the database data that are extracted from data
sources of different language, regarding reports of adverse
events.

An alias can be declared on either individual components
(i.e., manufacturer name, or model name) of inserted data,
or on combinations of components (i.e., the combination of
<ManufacturerA, ModelA> and <ManufacturerB, ModelB>
are equivalent - note it is likely that the same product be
distributed under two completely different manufacturer and
model names, in the case of companies that have been bought
by the same group). Upon annotating an alias for a particular
entity, our prototype retains the flexibility of automatically
detecting the existence of transitive (closure) dependencies
through the self-maintained Alias Graph Component. The
Alias Graph component is stored as a simple, double columned
database table of correspondences. Whenever a correspondence
(alias) is specified between two entities EntityA and EntityB,
two tuples are inserted in the table of correspondences: tu-
ple <EntityA,EntityB> and tuple <EntityB,EntityA>. The
reverse operation is performed upon the deletion of an entity
correspondence (i.e., due to an error). Then, using a recursive
procedure, one can create/update the alias graph, which stores
all pairs of entities that are connected and are, thus, considered
to be equivalent. Schematically, the aforementioned recursive
procedure can be expressed in the form of the following query
(for database systems allowing WITH RECURSIVE clauses),
issued upon a new entity’s Y in a <X,Y> pair insertion:

WITH RECURSIVE transitive closure
(EntityA, EntityB, distance, path string) AS
(SELECT EntityA, EntityB, 1 AS distance,
EntityA + ’.’ + EntityB + ’.’ AS path string
FROM AliasGraph
WHERE EntityA = ’X’
– set the starting node, existing entity ’X’
UNION ALL
SELECT tc.EntityA, ag.EntityB, tc.distance + 1,
tc.path string + ag.EntityB + ’.’ AS path string
FROM AliasGraph AS ag
JOIN transitive closure AS tc ON ag.EntityA = tc.EntityB
WHERE tc.path string NOT LIKE ’%’ + ag.EntityB + ’.%’
)
INSERT INTO AliasGraph VALUES
SELECT ’Y’,EntityB FROM transitive closure;
–maintain the graph for the new entity ’Y’

Using this Alias Graph Component, every time that a
new alias is declared, the Comparison and Detection Engine
(Section IV) updates its estimated scores of matching certain

adverse events against medical devices. Obviously, entity in-
stances that do not appear to be linked in the aforementioned
graph have their cohesion determined by the Matching Engine
Component.

Feedback. Using the invented algorithm, the Matching En-
gine Component suggests possible matching relations, which
undergo approval by a user which reviews and validates or
not extracted outcomes (feedback). The procedure aims to
provide continuously improving vigilance results. Customized
vigilance reports are generated, and after being further assessed
and verified via the feedback component, are distributed to
the health care institutions concerned, in order to take the
necessary preventive actions.

The data infrastructure presented so far is depicted in the
class diagram of Figure 3. To keep the diagram readable,
the double columned table of Alias Graph maintenance has
been omitted, but its information content and connection to
the medical devices as well as adverse event instances has
already been presented. The scope of classes regarding the
specification (ISA) on the User class as well as the Role class
will be discussed in Section V.

IV. OUR MATCHING ALGORITHM

In the current section we elaborate on the entity matching
algorithm which is the core of the Comparison and Detection
Engine of our prototype. The whole process is sketched in
Algorithms 1, 2.

In Lines 1-7 of Algorithm 1, we examine whether in
previous runs of the matching process, if any, we have already
matched certain tuples in the Medical Devices dataset D with
Adverse Events’ reports in R. To do so, we take advantage of
the timestamp attribute (see Figure 3). In particular, lastT ime
stores the last execution of the matching algorithm. If this is not
the first execution of the algorithm, we only consider the newly
inserted (i.e., inserted after lastT ime) reports and new medical
devices’ inventory data in the R′ ⊂ R and D′ ⊂ D relations,
respectively. On the first execution of the algorithm, R′ ≡ R
and D′ ≡ D. This test at the beginning of the matching process
enables the incremental execution of the algorithm, which can
result in a dramatic reduction in its execution time, since we
expect only small subsets R′, D′ of D, R to be examined for
matching.

In Lines 8-16, the algorithm checks for matching each
new adverse event report with the whole collection of medical
devices inventory data. Each time the matching score extracted
by the MatchScore function (Algorithm 2) exceeds a given
threshold parameter θ, a new matching pair is inserted in M .
The details on computing the matching score are provided
shortly. Note that in the first execution of the algorithm, the
whole collection of medical devices is checked for match-
ing against the available reports. We then need to examine
(Lines 17-25) for matching the latest medical devices inserted
after the last execution of the algorithm, making sure that they
are not matched against reports in R′, since this matching has
already been performed in Lines 8-16. Finally, in Line 26 we
update the timestamp lastT ime.

Algorithm 2 presents the function according to which the
matching score for each candidate pair (ξi, ξj) is computed.

Algorithm 1 Entity Matching Algorithm
Input: (a) Medical Devices’ Data D,

(b) Adverse Events’ Reports Data R,
(c) Matched Data M : (ξi, ξj , Score, t). Stores score

of matching ξi with ξj at time t,
(d) Alias Graph G,
(e) Weights for components of the matched triplet:

0 ≤ wman,wmod,wser ≤ 1
(f) Matching threshold θ

Ensure: Updates M with new matches {ξi ←→ ξj},
ξi =< manuf,model, serial, t >

1: /* Store in R′, D′ tuples that arrived after the last
matched result. lastT ime stores the last execution of this
algorithm. */

2: if Not first execution of matching algorithm then
3: R′ ← {ξi ∈ R : ξi.t > lastT ime}
4: D′ ← {ξi ∈ D : ξi.t > lastT ime}
5: else
6: R′ ≡ R, D′ ≡ D
7: end if
8: // Next, check only new reports against all listed devices
9: for all ξis ∈ R′ do

10: for all ξjs ∈ D do
11: Score ← MatchScore((ξi,ξj), G, wman,wmod,wser)
12: if Score ≥ θ then
13: M ∪ (ξi,ξj , Score, tnow)
14: end if
15: end for
16: end for
17: // Next, check only new devices against unmatched reports
18: for all ξi ∈ D′ do
19: for all ξj ∈ R \R′ do
20: Score ← MatchScore((ξi,ξj), G, wman,wmod,wser)
21: if Score ≥ θ then
22: M ∪ (ξi,ξj , Score, tnow)
23: end if
24: end for
25: end for
26: Update value of lastT ime

In Lines 1-3 of the function, we first examine whether the
two pairs of attributes < manufacturer, model > appear
as aliases in G, in which case both the respective similarity
values are set to 1. If this is not the case, in Lines 4-6, we
check if just the manufacturer attribute of the candidate pair
is declared as a synonym in the Alias Graph G. In that, the
similarity of the corresponding manufacturer attribute is set to
1 (Line 5) and only the similarity of the model attribute is com-
puted (Line 6). If the examined pair (ξi, ξj) does not possess
attributes declared in G, both the model and the manufacturer
similarity values are computed (Lines 7-10). Eventually, the
similarity of the serial attribute is computed (Line 11) and
individual similarity scores are normalized (Lines 12-14),
before the overall Matching Score is calculated (Line 15) as
the weighted average of the (normalized) similarity values
among the triplets of attributes. wman,wmod,wser involve the
weight placed on the manufacturer, model and serial attributes,
respectively, enabling users to adjust/reorder the final matches
by (optionally) emphasizing in one attribute or the other. The
final matching score is returned at Line 16.

Algorithm 2 MatchScore Function
Input: (a) Candidate pair (ξi,ξj),

(b) Alias Graph G,
(c) 0 ≤ wman,wmod,wser ≤ 1

1: if (<ξi.manuf, ξi.model>, <ξj .manuf, ξj .model>) are
connected in G then

2: Simman ← 1
3: Simmod ← 1
4: else if (ξi.manuf, ξj .manuf) are connected in G then
5: Simman ← 1
6: Simmod ← dw(ξi.model, ξj .model)
7: else
8: Simman ← dw(ξi.manuf, ξj .manuf)
9: Simmodel ← dw(ξi.model, ξj .model)

10: end if
11: Simser ← dw(ξi.serial, ξj .serial)

12: Simman ← (Simman − 0.5) ∗ 2
13: Simmod ← (Simmod − 0.5) ∗ 2
14: Simser ← (Simser − 0.5) ∗ 2
15: Score← wman·Simman+wmod·Simmod+wser·Simser

wman+wmod+wser

16: return Score

Algorithm 2 determines the similarity of the strings of
individual attributes, whenever they are not annotated in G,
utilizing the Jaro– Winkler distance dw [13], [14]. Given two
strings s1 and s2, their Jaro–Winkler distance dw is:

dw = dj + (` · p · (1− dJaro))

where

dJaro =

{
0 m = 0

1
3

(
m
|s1| +

m
|s2| +

m−q
m

)
otherwise

}
.

Jaro–Winkler distance uses a prefix scale p which gives
more favorable ratings to strings that match from the beginning
for a set prefix length `. The standard value for this constant is
p = 0.1 which ensures each of Simman, Simmod, Simser for
the manufacturer, model and serial attribute to yield a value
lower than 1. ` is the length of common prefix at the start of
the string up to a maximum of 4 characters.

In Jaro’s distance calculation formula, m is the number of
matching characters and q is half the number of transpositions.
Two characters from s1 and s2 respectively, are considered
matching only if they are the same and not farther than⌊
max(|s1|,|s2|)

2

⌋
− 1. Each character of s1 is compared with all

its matching characters in s2. The number of matching (but
different sequence order) characters divided by 2 defines the
number of transpositions.

In Figure 4 we present instances of matches extracted
by Algorithm 1, utilizing FDA’s adverse event reports and
medical devices inventory data available by the Greek Health
Authorities. Results are exported as an extensible Markup
Language (XML) format file.

V. WEB APPLICATION

A. Managing User Permissions

In the design of our prototype vigilance system special care
has been taken so as to handle and appropriately attribute user
permissions. The permissions provided to a registered user can
be divided in large part to two categories: (a) permissions on
using specific components of the web-based application front-
end (Section V-B) by introducing the notion of user types i.e.,
the type of a user specifies which pages and operations of the
user interface are available to the user and b) restrictions on
accessing certain portions of the data through the assignment
of Roles based on a users’ affiliation with certain hospitals or
other health care institutions.

Regarding the first category, requirement analysis led us
in identifying three classes of user types, namely reader,
reviewer and administrator type (on the left of Figure 3). The
permissions inherited by each type are:
− Reader. As soon as a user is registered into the system, by
default inherits the Reader type. Readers can only view (with
appropriate permissions) medical devices, reports and results
of matches.
− Reviewer. Reviewers retain the permissions of a Reader
user, but can also vote in order to approve/decline correspon-
dences between medical devices and adverse events extracted
by the Matching Engine. This becomes explicit in Figure 3
via the ”provides” relation among the Reviewer and Feedback
classes.
− Administrator. Administrative users possess the permis-
sions of a Reviewer user. Moreover, a variety of system
operations are available though an administrative console.
Those include full manipulation of the information stored
in MEDEVIPAS database, cross-checking the correctness of
adverse event reports that have been automatically inserted in
the database by web crawlers and approval of entity aliases
proposed by reviewers.

As discussed above, the assignment of a specific type
to a user restricts their ability to execute certain system
operations. On the other hand, the adoption of Roles and their
assignment to the users imposes constraints on the portions of
data that are accessible by them. Roles essentially involve the
institution (e.g., hospital or broader health care stakeholders)
to which the user serves. Consequently, a Reader being a
staff member of a certain hospital can only view the medical
devices belonging to the inventory of that particular hospital
and the corresponding adverse event reports. Similarly, a
Reviewer can only provide votes on matching results where
medical equipment attributed to their serving health care
stakeholder is taking part.

B. Web Application Components

We now provide a compact picture of the web interface
of our prototype medical devices vigilance and patient safety
system.

Reader Console. The Reader’s web console provides mere
users of the system with basic operations such as viewing
records of medical devices, reports of adverse events and

<?xml version="1.0"?>
<datalist>
 <item>
 <score>1.0</score>
 <Device>
 <manufacturer>Beckman Coulter</manufacturer>
 <model>CYTOMICS FC 500</model>
 <serial>-</serial>
 </Device>
 <Report>
 <manufacturer>Beckman Coulter </manufacturer>
 <model>Cytomics FC 500 </model>
 <serial>All Software Versions</serial>
 </Report>
 <id>1</id>
 </item>
 <item>
 <score>0.98</score>
 <Device>
 <manufacturer>Advanced Sterilization Prods</manufacturer>
 <model>STERRAD 100S </model>
 <serial>SCZ07200027GA</serial>
 </Device>
 <Report>
 <manufacturer>Adv.Ster. Products</manufacturer>
 <model>STERRAD 100S </model>
 <serial>All serial numbers</serial>
 </Report>
 <id>2</id>
 </item>
 <item>
 <score>0.97</score>
 <Device>
 <manufacturer>Beckman Coulter</manufacturer>
 <model>CYTOMICS FC 500</model>
 <serial>ver. 2.*</serial>
 </Device>
 <Report>
 <manufacturer>Beckman Coulter, Inc</manufacturer>
 <model>Cytomics FC 500 </model>
 <serial>Software version 2.2</serial>
 </Report>
 <id>3</id>
 </item>
 <item>
 <score>0.92</score>
 <Device>
 <manufacturer>St Jude Medical CRMD</manufacturer>
 <model>EPIC II HF</model>
 <serial>111</serial>
 </Device>
 <Report>
 <manufacturer>St Jude Medical CRMD</manufacturer>
 <model>EPIC II+ HF Model</model>
 <serial>100, 106, 107, 111</serial>
 </Report>
 <id>4</id>
 </item>
</datalist>

Fig. 4. XML Export (partial) of Matching Results of
Algorithm 1

(a) Reader Console

(b) Reviewer Console

(c) CRUD Console

Fig. 5. Prototype Medical Devices Vigilance and Patient Safety System’s Web Console

matching results accessible to them based on their role(s).
Flexible searching capabilities have been implemented using
filters on one or more of the corresponding data table fields.
Furthermore, exports of viewed data are currently supported in
CSV and XML formats. Figure 5a provides a screen-shot of the
Reader’s Console when viewing medical devices equipment
that has been filtered on the prefix of the ”Id” attribute. The
menu at the top left side of the figure enables users switching
among medical devices and adverse report data items while the
”View” button at the bottom left corner of the screen enables
users projecting the selected tuple.

Reviewer Console. The Reviewer’s Console implements the
feedback capabilities discussed in Section III. Through the
web interface reviewers/administrators can view the results of
the Matching Engine’s operation which are listed as pairs of
<manufacturer, model, serial> triplets for a piece of medical

equipment and the matched adverse event report. As shown
in Figure 5b, upon reviewing a matched pair, ”Yes” (accept),
”No” (reject) options are provided materializing the feedback
process. In addition, the option ”Unknown” is present as the
default choice for pairs that have not been examined or their
validity remains unclear to judge. Filtering capabilities (not
shown in Fig. 5b) on the matching score are available to project
only a subset of highly similar or most controversial pairs.
Moreover, filters on adverse reports’ publication date can be
applied for disguising matches involving obsolete records.

CRUD Console. The CRUD console is available only to
administrative users and serves as the front-end between an
administrator and database tables. It provides the ability to exe-
cute any of the Create/Read/Update/Delete (CRUD) operations
on a tuple of any database table (corresponding to classes of
Fig. 3). For instance, through this console administrators can

access the feedback information provided by reviewers and
approve/decline their evaluation by updating or deleting their
scores.

The menu at the top left side of Figure 5c enables
administrators to switch among available data. Menu items
have been grouped based on whether they involve (a) user
data (types, roles and their assignment) manipulation (leftmost
menu items), (b) controlling the parameters of the matching
algorithm, administering matching results’ tuples, handling the
Alias Graph and feedback information (central menu items
listing matching results filtered on a specific device) or (c)
applying CRUD operations (e.g. approving a newly inserted
report) on medical devices and adverse event data items.
CRUD operations are applied using the corresponding buttons
at the left bottom corner of the screen (Fig. 5c). Eventually,the
CRUD Console retains the capabilities of browsing and export-
ing data as is the case with the Reader Console.

Note that the above consoles represent a subset of the
operations that are supported by our web interface. Apart from
them, users have also access to (screenshots are omitted):
− Online User Registration. All functionality involving on-
line processing of user requests to get registered in the system
and gain (initially Reader’s) access to the available data.
− Batch Upload. Web interfaces for batch inserting medi-
cal devices inventory information and adverse event reports,
available only to administrative users.
− Ad-hoc Triggering of the Matching Engine. Apart from
periodically executing our matching algorithm (Section IV) via
scheduled system jobs, administrative users have the ability
to access the Matching Engine via the web interface, adjust
algorithmic parameters and manually trigger its operation.
− Email Notifications composed of potentially hazardous de-
vices to stakeholders. The system periodically checks whether
the results of matching have been updated and reviewed
(i.e., marked with a ”Yes” in the Reviewer Console Fig. 5b)
and constructs reports including medical devices along with
adverse event reports, which are sent via email to appropriate
users based on their role(s). This functionality is especially
useful to raise awareness of users neglecting to periodically
log in the web interface to consult confirmed matching results.

VI. CONCLUSIONS

In this paper we presented the core components of our
MEDEVIPAS prototype system for medical devices vigilance
and patient safety. Our system matches data regarding reports
of adverse events against medical devices inserted by the
healthcare providers. We presented an entity matching algo-
rithm that also provides provisions for alternative namings of

entities (i.e., manufacturers) that can also assist the vigilance
process in multilingual systems, as well as briefly described
the capabilities of our web interface.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thalis. Investing in
knowledge society through the European Social Fund.

REFERENCES

[1] “FDA: U.S. Food and Drug Administration Enforcement Reports,”
http://www.fda.gov/Safety/Recalls/EnforcementReports/.

[2] “ECRI Institute Medical Device Safety,” https://www.ecri.org/
Products/PatientSafetyQualityRiskManagement/Pages/ MedicalDevice-
Safety.aspx.

[3] “TGA: Australian Government Department of Health, Therapeutic
Goods Administration, Database of Adverse Event Notifications,”
http://www.tga.gov.au/safety/daen.htm.

[4] “IMB: Irish Medicines Board, Reporting Safety and Quality Concerns,”
http://www.imb.ie/EN/Patients–Public/Reporting-Safety-and-Quality-
Concerns.aspx.

[5] “Swissmedic: Swiss Agency for Therapeutic Products,
Recalls and other field safety corrective actions,”
https://www.swissmedic.ch/rueckrufe medizinprodukte/index.html.

[6] “EUDAMED Vigilance Reports,” http://ec.europa.eu/consumers/sectors/
medicaldevices/documents/vigilancereports/index en.htm.

[7] “MHRA: Medicines and Healthcare Products Regulatory Agency,”
http://www.mhra.gov.uk/#page=DynamicListDevices.

[8] “MEDSAFE: New Zealand Medicines and Medical Devices
Safety Authority, Medical Devices, Adverse Event Reporting,”
http://www.medsafe.govt.nz/regulatory/devicesnew/ 9adverseevent.asp.

[9] M. Samore, R. Evans, A. Lassen, and et al, “Surveillance of Medical
DeviceRelated Hazards and Adverse Events in Hospitalized Patients,”
JAMA, vol. 291, no. 3, pp. 325–334, 2004.

[10] P. Andersen, “A suggestion for guidance to the Medical Devices
Community on the use of software validation and approval,” in Medical
Devices Software Workshop, 2003.

[11] Z. Bliznakov, G. Pappous, K. Bliznakova, and N. Pallikarakis, “Inte-
grated software system for improving medical equipment management,”
Biomed Instrum Technol, vol. 37, pp. 25–33, 2003.

[12] G. Doukidis, N. Pallikarakis, G. Pangalos, G. Vassilacopoulos, and
K. Pramataris, “Edi system definition for a european medical device
vigilance system,” Med Inform (Lond), vol. 21, no. 3, pp. 233–44, 1996.

[13] M. A. Jaro, “Probabilistic linkage of large public health data files,”
Statistics in Medicine, vol. 14, no. 5-7, pp. 491–498, 1995.

[14] W. E. Winkler, “String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage,” in Proceedings of the
Section on Survey Research, 1990, pp. 354–359.

