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ABSTRACT
We consider a stream outsourcing setting, where a data owner del-
egates the management of a set of disjoint data streams to an un-
trusted server. The owner authenticates his streams via signatures.
The server processes continuous queries on the union of the streams
for clients trusted by the owner. Along with the results, the server
sends proofs of result correctness derived from the owner’s sig-
natures, which are easily verifiable by the clients. We design novel
constructions for a collection of fundamental problems over streams
represented as linear algebraic queries. In particular, our basic
schemes authenticate dynamic vector sums and dot products, as
well as dynamic matrix products. These techniques can be adapted
for authenticating a wide range of important operations in stream-
ing environments, including group by queries, joins, in-network
aggregation, similarity matching, and event processing. All our
schemes are very lightweight, and offer strong cryptographic guar-
antees derived from formal definitions and proofs. We experimen-
tally confirm the practicality of our schemes in the performance
sensitive streaming setting.

1. INTRODUCTION
Tremendous amounts of data are being generated in a streaming

fashion in a variety of applications, such as web and telephony net-
works, wireless sensor networks, social networks, and more. The
continuous nature of such data has motivated the need for sophis-
ticated data stream management systems (DSMS), which offer ef-
ficient storage and reliable querying services to clients. Follow-
ing research prototypes such as Stream [3] and Aurora [1], ro-
bust DSMS have been deployed for many applications, including
IBM’s InfoSphere Streams [21], Microsoft’s StreamInsight [20]
and AT&T’s Gigascope [8]. Due to the overwhelming volume of
streaming data, companies may not possess, or wish to acquire,
the resources for deploying a DSMS. A practical alternative is to
outsource the stream storage and processing to a specialized third
party with strong DSMS infrastructure. Outsourcing offers signifi-
cant cost savings to companies, especially start-ups.

Despite its merits, outsourcing naturally raises the issue of trust.
Specifically, the third party may act maliciously to increase profit,
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Figure 1: System setting

e.g., it may collude with rival companies and present fraudulent re-
sults to bias the competition; or it may shed some of the workload
and only compute on a sample of the input to save effort. Even
when the server is honest, problems can arise, as it may run buggy
software, or (given the scale of the problems considered) suffer
from equipment failure or read/write errors. It is therefore particu-
larly important to adopt methods for stream authentication. These
enable the clients to verify the correctness of the streaming results
they receive from the server, i.e., that they are untampered with
(integrity) and up-to-date (freshness). The goal is to make stream
authentication a very lightweight operation for all parties involved,
and establish it as a standard tool for error-checking, in a similar
way to the ubiquitous use of checksums for reliable file transfer.

Targeted setting. Figure 1 illustrates our system architecture. An
owner possesses a set of machines M1,M2, . . . ,Mm, each gener-
ating or observing a data stream Xi and outsourcing it to a third
party server. These machines are not required to directly com-
municate with each other, and their streams are disjoint. A client
registers a continuous (i.e., long-running) query Q on the union of
the streams at the server. The latter periodically reports the result
to the client at regular time intervals, demarcated into epochs τ .

Each machine Mi maintains a small summary Si on its stream,
which is updated with every new tuple arrival. At the end of every
epoch τ , Mi computes a signature σi,τ on Si, and sends it to the
server. This signature authenticates Mi’s stream at that particular
epoch, and is created with a secret key sk installed by the owner
at the machine. The server then processes query Q, and transmits
result resτ along with a small proof πτ . The proof is produced in
a query-specific fashion by combining all the signatures with some
public information pub (registered at the server by the owner at
an offline setup stage). We assume that the client is trusted by the
owner and, thus, possesses sk. Using this key and πτ , the client
can verify the correctness of the result received for epoch τ .

Our aim is to provide the above functionality for a wide range of
query types, offering cryptographic security and satisfying certain



performance desiderata. In particular, our goals are to minimize
the memory, communication and computational costs for the owner
and clients. This is particularly crucial in applications such as wire-
less sensor networks, where the owner’s machines are motes with
scarce resources and limited battery. The life-time of these systems
is diminished by intense operations and communication. Secondar-
ily, we further aim to ensure that the server’s costs are also low. We
next explain our contributions in detail.

Our contributions. The existing literature on stream authentica-
tion is limited in its applicability for a variety of reasons. Firstly,
the range of supported queries is somewhat narrow: prior work has
been primarily concerned with authenticating particular computa-
tions such as group by,sum queries which, while fundamental,
do not cover all stream outsourcing scenarios. Secondly, the au-
thentication cost at the owner is non-trivial; it typically entails ex-
pensive cryptographic operations (e.g., modular exponentiations)
for each epoch at the owner. While the cost of one such operation
is minor, the overhead imposed for high speed data streams and
short epochs can become intolerably high, especially when each
machine Mi might be a low-powered embedded device. This fact
also limits the data rates that the owner can process.

In contrast to current literature, we seek for more general solu-
tions that impose a minimal, essentially negligible, cost to the data
owner. We first devise constructions for fundamental problems rep-
resented as linear algebraic queries. We then use these schemes
as building blocks in the design of authentication techniques for
a wide range of important queries in streaming environments. In
more detail, our contributions are summarized as follows:

• We introduce constructions for authenticating (i) sums of dy-
namic vectors produced by one or multiple streams, (ii) dot
products of dynamic vectors produced by different streams,
and (iii) products between dynamic matrices generated by
different streams. Our schemes are extremely lightweight
for the owner, as they mainly involve inexpensive hash oper-
ations and modular additions/multiplications in a very small
finite field. They are also cheap for the client, who verifies
the result without adding substantially to the cost of reading
the output. Moreover, they impose only a small extra over-
head to the computation cost of the server.

• We provide strong cryptographic guarantees for all our con-
structions, derived from formal definitions and proofs.

• We show how to adapt the basic schemes in order to solve a
range of database queries in stream authentication, including
group by queries, joins, in-network aggregation, similarity
matching, and event processing. To our knowledge, we are
the first to address result authentication for such a large range
of complex queries.

Roadmap. Section 2 includes necessary preliminary information
and surveys the related work. Section 3 formulates the frame-
work within which our stream authentication protocols will oper-
ate. Section 4 presents the basic constructions for authenticating
the three fundamental linear algebraic queries. Section 5 adapts
our main schemes to a variety of important database applications
in the stream authentication setting. Section 6 contains our experi-
mental evaluation, whereas Section 7 presents concluding remarks
and future directions.

2. BACKGROUND
Section 2.1 contains preliminary information, and Section 2.2

surveys the related work on the topic.

Table 1: Notation
Symbol Definition
m Number of owner machines
Mi Owner machine i
Xi The stream of tuples generated at Mi

Xi(τ) The tuple sequence of Mi at or before epoch τ
Q The continuous query of the client

Q(
⋃m
i=1{Xi(τ)}) Result of Q on streams X1, . . . ,Xm at epoch τ
resτ Result sent by the server to the client at epoch τ
σi,τ Signature created by machine Mi at epoch τ
πτ Proof transmitted by the server to the client at τ

ra,τ , ρa,τ Key values/vectors computed for machine a at τ
Si The summary maintained at Mi at all times
pub Public information output by the owner during setup
a, b Symbols (in lowercase bold letters) of vectors
A, B Symbols (in uppercase bold letters) of matrices

x
$← S An element x being sampled uniformly from set S

x← A The output x of a probabilistic algorithm A
x := B The output x of a deterministic algorithm B

‘‖’ Symbol denoting string concatenation
‘|’ Symbol denoting logical OR
s The security parameter

poly(s) / negl(s) A positive polynomial in s / A negligible function in s
[n] The set {1, 2, . . . , n}

Fk(x)
def
= F (k, x) Pseudo-random function F of key k and message x
sk The secret key of the owner
p A prime number with bit size Θ(s)

Zp / G The finite field / cyclic group our algorithms operate on

2.1 Preliminaries
Stream model and notation. The time domain is decomposed into
intervals, called epochs. An epoch can be perceived as a discrete
timestamp denoted by τ . We assume that the clocks of the owner’s
machines, the server and the client are (at least loosely) synchro-
nized. This requirement is inherent in most streaming applications
(e.g., sensor networks) and is orthogonal to our work. Table 1 sum-
marizes the most important notation used in this paper.

Adversary. Henceforth, any reference to an adversary implies a
probabilistic adversary that runs in time polynomial in some secu-
rity parameter s.

Negligible functions. We call a function ν : N → N negligible
in s if ν(s) < 1/poly(s) for every poly(·) and sufficiently large s.
We denote a negligible function by negl(s).

Pseudo-random functions. Let F : K× S1 → S2 be an efficient,
keyed function, where K, S1 and S2 are indexed by a security pa-
rameter s. We say that F is a pseudo-random function (PRF) if for
all adversaries A it holds

|Pr[AFk(·)(1s) = 1]− Pr[Af(·)(1s) = 1]| ≤ negl(s) ,

where Fk(x)
def
= F (k, x), k $← K and f $← (S1 → S2). Sim-

ply stated, an adversary distinguishes a PRF from a truly random
function only with negligible probability in s.

Cyclic groups, generators and multiplicative cyclic groups [19].
Let G be a group, let p = |G| denote the order of G and let 1
denote the identity element of G. For any element g ∈ G, the
order of g is the least positive integer n such that gn = 1. Let
〈g〉 = {gi : i ∈ Zn} = {g0, g1, . . . , gn−1} denote the set of
group elements generated by g. The group G is called cyclic if
there exists an element g ∈ G such that 〈g〉 = G. In such a case,
the order of g is equal to p = |G| and g is called a generator of



G. A cyclic group G with the binary operator of multiplication is
called a multiplicative cyclic group.

The Diffie Hellman Exponent (n-DHE) Assumption [5]. Our se-
curity relies on a variant of the well-known discrete logarithm prob-
lem. Let G be a multiplicative cyclic group of order p, g ∈ G a gen-
erator of G, and s the bit size of p. The n-DHE problem is defined
as follows: given set V = {g, gk, gk

2

, . . . , gk
n

, gk
n+2

, . . . , gk
2n

}
where k $← Z∗p, compute gk

n+1

. The n-DHE assumption states
that, for any adversary A, it holds:

Pr[A(g, gk, gk
2

, . . . , gk
n

, gk
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, . . . , gk
2n

) = gk
n+1

] ≤ negl(s)

Simply stated, even given the information in V , the (polynomially
bounded) adversary is unable to solve the problem with any non-
negligible probability.

One-time pad and nonces. One-time pad is a method of encrypt-
ing data which exhibits perfect secrecy [15], if implemented cor-
rectly. In one-time pad encryption, a message M is encrypted us-
ing a random key K which (i) has (at least) the same size as M ,
and (ii) is used exactly once. The encryption is performed via an
XOR operation asM ⊕K. In our work, we use an alternative form
of one-time pad that uses modular arithmetic. In particular, we en-
crypt a number M ∈ Zp by a random (used once) key K ∈ Z∗p
as (M + K) mod p. While slightly less efficient than an XOR
operation, this alternative mode of one-time pad offers the same
security as the original, and it will be particularly helpful in our
proposed techniques. Finally, we refer to any key that is used just
once as a nonce.

2.2 Related Work
The closest schemes to ours are PIRS [31] and SHAC [22], which

both focus on authenticating results for group-by,sum queries.
In these works, the stream consists of unaggregated tuples. The
server’s task is to perform a group-by operation to collate the tu-
ples into predefined groups, and then to compute an aggregate such
as sum on each group. In both PIRS and SHAC the owner main-
tains a small summary on the observed stream, which facilitates
verifying the result correctness. PIRS is a probabilistic protocol,
where the client is the owner itself. Due to its simplified model and
relaxed security guarantees, PIRS is quite lightweight. On the other
hand, SHAC is a cryptographic technique, which assumes that the
clients are parties untrusted by the owner. The clients can directly
communicate though with the owner to receive the summary. In or-
der to address the challenge that clients cannot possess any secret
material from the owner, SHAC employs expensive cryptographic
primitives such as modular exponentiations during authentication
and verification.

Note that PIRS and SHAC do not directly capture our general ar-
chitecture (described in Section 1), where the owner and the clients
are different physical entities that communicate with each other via
the untrusted server. In order to adapt PIRS and SHAC to our
scenario, the owner must rely on some other message authentica-
tion technique for securely forwarding the summary to the clients
via the server, e.g., using HMACs and public-key digital signa-
tures [19], respectively. This inflicts extra overhead to both the
owner (for authentication) and the client (for verification).

Also related to our work is the use of message authentication
codes (MACs) that are homomorphic, since they allow the linear
combination of messages from different sources, along with the
corresponding combination of the MACs of these messages. In our
schemes, we also need to utilize the signatures of multiple sources
(i.e., owner machines), but these signatures must be properly com-
puted and combined in order to authenticate the result of different

operators. Homomorphic MACs were first proposed in [2] for net-
work coding applications and have since been widely used, such
as in [4] for evaluating multivariate polynomials on signed data,
or in [26] for computing simple statistics in sensor networks. We
emphasize that homomorphism is a property that message authen-
tication techniques may exhibit, but not a tool for automatically au-
thenticating general operators/functions (such as the ones examined
in this paper) over distributed data. In particular, we are not aware
of any prior work that has addressed the general linear queries such
as matrix multiplication and dot products that we study here.

Authentication results have also been shown for other problems
and models. In the context of outsourced databases, there are tech-
niques that address snapshot relational queries, such as ranges and
joins [11, 25, 24, 16, 30], as well as continuous range queries [17,
27]. All these methods rely on authenticated data structures (such
as Merkle trees), which are maintained by the owner and signed
with public-key cryptosystems. These data structures are large:
linear in the size of the input data. There has also been a line
of work on verifying simple aggregate computations in distributed
networks, such as sum, min/max and count [12, 26, 23]. In this
setting, the machines are organized into a tree hierarchy. The inter-
nal (potentially untrusted) nodes perform in-network aggregation
as they route information from the leaves to the root (sink).

Some related studies have been conducted within the theory com-
munity. The model of annotated streams allows the server to insert
some “advice” into a stream to help a client compute a function of
interest. This model was applied to problems such as recovering in-
formation about particular items from the stream, functions of the
item frequencies (such as the frequency moments), and some graph
computations [6]. The costs of these protocols are typically sublin-
ear but polynomial in the size of the stream. These costs were sub-
sequently reduced to logarithmic for some key problems, but only
when there are multiple rounds of communication between the data
owner and server [7]. Quite general computations can be authenti-
cated following a streaming pass over the data, but this can require
many thousands of rounds of interaction between the parties [14].

Our work differs from these prior efforts in several important
respects. Firstly, we consider fundamental problems that can be
adapted to solve a wider range of important queries in stream out-
sourcing. Secondly, our constructions impose a very low overhead
to all parties. In particular, they do not entail the costly exponen-
tiation operations involved in SHAC, and do not require the owner
to maintain sophisticated structures, as in the database outsourcing
solutions. Lastly, unlike PIRS, our work comes with strong crypto-
graphic guarantees that formally demonstrate the security and ro-
bustness of our schemes against malicious activity and errors.

3. FORMULATION
Section 3.1 defines the system setting outlined in Section 1 as

a formal stream authentication protocol executed by the involved
parties. Section 3.2 presents the security model.

3.1 Stream Authentication Protocol
The definition below formulates a stream authentication scheme,

assuming a security parameter s.

DEFINITION 1. A stream authentication scheme is a set of five
algorithms (KeyGen, Update, Sign, Combine, Verify) running in
time polynomial in s and described as follows:

(sk, pub)← KeyGen(1s): A probabilistic algorithm that takes as
input a security parameter s, and outputs secret key sk and
public information pub.



Si ← Update(i, sk,Si, t): A (potentially) probabilistic algorithm
that takes as input id i, secret key sk, summary Si, and in-
coming tuple t. It produces an updated summary Si.

σi,τ ← Sign(i, sk,Si, τ): A (potentially) probabilistic algorithm
that takes as input id i, secret key sk, summary Si, and epoch
τ . It produces signature σi,τ .

πτ := Combine(
⋃m
i=1{σi,τ},

⋃m
i=1{Xi(τ)}, pub): A determinis-

tic algorithm that takes as input the union of the signatures
and streams at τ and public info pub. It produces proof πτ .

Yes|No := Verify(sk, πτ , resτ , τ): A deterministic algorithm that
takes as input secret key sk, proof πτ , result resτ and epoch
τ . It outputs a string that is either Yes or No.

The protocol is executed in the following stages:

• Setup: The protocol commences with an offline setup phase.
The owner runs KeyGen and produces a secret key sk and
public info pub. It installs a unique identifier i, key sk and
an initial summary Si in every machineMi and sends pub to
the server. It also securely provides the client with sk, e.g.,
via an SSL channel. Next, it concludes the setup phase and
sets the system into motion.

• Update and signing at Mi: Whenever a new tuple t is gen-
erated by Mi, the machine runs Update before forwarding
t to the server. This algorithm uses key sk and t on current
summary Si and outputs a new summary that substitutes for
the old one. At the end of epoch τ , Mi runs Sign on i, sk, τ
and current summary Si to produce a signature σi,τ , which
is sent to the server.

• Result and proof generation at the server: At the end
of epoch τ the server receives new signatures from the ma-
chines. It computes and sends result resτ to the client in re-
sponse to continuous queryQ. Moreover, it transmits a proof
πτ that is produced by algorithm Combine on

⋃m
i=1{σi,τ},⋃m

i=1{Xi(τ)} and pub.

• Verification at the client: At the end of epoch τ the client
receives from the server a new result resτ , accompanied by a
new proof πτ . It verifies result correctness via Verify, which
combines resτ with πτ and the owner’s secret key sk. The
output is Yes if verification succeeds, and No, otherwise.
Note that the client is stateless, i.e., it verifies w.r.t. the en-
tire history of the data streams, not since the last successful
verification.

The next definition formulates scheme correctness.

DEFINITION 2. A stream authentication scheme is correct if
the following condition holds. For any security parameter s, let
(sk, pub) be any output of algorithm KeyGen(1s). Let Xi(τ) be
any stream observed by Mi up until τ , and Q(

⋃m
i=1{Xi(τ)}) the

result of query Q at τ . Let Si be the summary computed by execut-
ing Update on sk and on every t ∈ Xi(τ). Let σi,τ be the signature
produced by Mi via Sign(i, sk,Si, τ). Finally, let πτ be the proof
that is output by Combine(

⋃m
i=1{σi,τ},

⋃m
i=1{Xi(τ)}, pub). Then,

Verify(sk, πτ , resτ , τ) returns Yes when

resτ = Q

(
m⋃
i=1

{Xi(τ)}

)
Note that scheme correctness does not specify the output of Ver-

ify in case resτ 6= Q(
⋃m
i=1{Xi(τ)}). This is captured by the defi-

nition of security, included in the next subsection.

3.2 Security Definition
The adversaryAmay be the server or any other entity other than

the owner’s machines and the client. A is allowed to access the raw
data streams, i.e., data privacy is orthogonal to our work. Never-
theless, A may tamper with the outputs at any epoch. Our security
goal against A is result correctness, which jointly guarantees (i)
integrity (i.e., that the result is not falsified) and (ii) freshness (i.e.,
that the result is up-to-date).

We rigorously model security via the following experiment, which
is a variation of the standard existential unforgeability under an
adaptive chosen-message attack [15]:

Experiment ExpA(1s)

1. Pair (sk, pub) is output by KeyGen, and pub is given to A.

2. A is given oracle access to Sign as follows: A presents a
triplet (T, i, τ ′), where T is a set of tuples. The oracle keeps
record of all submitted queries, and rejects a query that re-
quests a signature for a certain (i, τ ′) more than once. If
it does not reject, the oracle initializes Si = 0 and runs
Update(i, sk,Si, t) for every t ∈ T , producing summary Si.
It then runs Sign(i, sk,Si, τ ′), and returns the result to A.

3. A outputs a pair (res∗τ , π
∗
τ ), with the restriction that

• res∗τ 6= Q(
⋃m
i=1{Xi(τ)})

• Sign was not queried for any triplet (T, i, τ ′), such that
(τ ′ = τ) ∧ (T 6= Xi(τ))

4. If Verify(sk, π∗τ , res
∗
τ , τ) returns Yes, then output 1; other-

wise output 0.

We say that a stream authentication scheme is secure, if no ad-
versaryA can succeed in the above experiment with non-negligible
probability, i.e., if it holds that

Pr[ExpA(1s) = 1] ≤ negl(s)

where the probability is taken over the random choice of sk and the
random coin tosses of A.

Simply stated, during the attack A is allowed to obtain (through
the oracle) any number of signatures for any machine and stream of
its choice, at any epoch other than the epoch τ for which it launches
the attack. At τ , A is only allowed access to the valid signatures
produced by the machines. A then launches the attack by present-
ing a pair (res∗τ , π

∗
τ ), such that res∗τ is different from the actual

result. Our aim is to provide protocols that are secure against such
attacks and will not accept any such incorrect results.

4. BASIC CONSTRUCTIONS
In this section we present constructions that can be used as build-

ing blocks for designing authentication schemes for a wide range
of query types. In particular, we design techniques for authenticat-
ing dynamic vector sums (Section 4.1), dynamic matrix products
(Section 4.2), and dynamic dot products (Section 4.3). Through-
out, we consider a security parameter s, a prime p whose bit size
is Θ(s), and a PRF F : Z∗p × {0, 1}∗ → Z∗p, which are all known
as globals to all parties. We assume that all the stream values and
aggregate results belong to Zp. This is without loss of general-
ity, since (i) for practical values of s, Zp is large enough for any
application, and (ii) application domains that involve negative inte-



gers work directly for p large enough, while those that involve real
numbers can be converted to Zp via scaling and rounding.

4.1 Dynamic Vector Sum Authentication
We focus on m machines Mi, and consider a vector ai with n

entries, which is dynamically updated as new tuples t are generated
by Mi. Each tuple t ∈ Xi is of the form (j, v), and updates ai by
adding v to ai[j]. The client’s query Q requests the sum of the
vectors produced by all machines at every epoch τ , i.e.,

Q(

m⋃
i=1

{Xi(τ)}) =

m∑
i=1

ai =

[
m∑
i=1

ai[1], . . . ,

m∑
i=1

ai[n]

]
We term such a query a dynamic vector sum query, and present
below a scheme called DVS for authenticating it.

Figure 2 presents the DVS construction, which instantiates the
general stream authentication protocol outlined in Section 3.1. The
intuition behind this construction is straightforward: the summary
Si captures the current state of vector ai, in such a way that the ad-
versary, lacking knowledge of the secret sk, has no way of finding
another vector a∗i that would have the same summary, even given
access to other signatures. The signature σi,τ includes additional
information (the nonce ri,τ ) that prevents the server from re-using
the same signature at different epochs or for different machines.
All operations are performed modulo p (i.e., the results are in Zp).

Every summary is initialized to 0 during the setup phase. Al-
gorithm Update works in a way such that Si is equal to the dot
product k · ai, where k = [k1, . . . , kn]. Sign injects a machine-
and time-dependent key ri,τ used once. Observe that every kj and
ri,τ value is produced with sk via PRF F , where “element”, “ma-
chine” and “epoch” are string labels. Combine simply adds all the
signatures retrieved from the machines. Combine does not need
any public information from the owner and, thus, pub is set to a
null value in KeyGen. The client assumes that all m machines are
involved in the protocol when executing Verify. In general, the
client must know exactly which machines participate in the proto-
col, in order to properly calculate the ri,τ values. As an additional
remark, observe that DVS can be used even when only a single ma-
chine is involved. In this case, DVS essentially supports dynamic
vector authentication. We provide formal correctness and security
guarantees for DVS below.

Correctness and security. The following theorem proves the cor-
rectness of DVS.

THEOREM 1. DVS is correct.

PROOF. Let the actual result of Q at τ be Q(
⋃m
i=1{Xi(τ)}) =∑m

i=1 ai, where ai[j] =
∑
t∈Xi(τ)∧t.j=j t.v. Observe that, after

executing Update for all t ∈ Xi(τ) at any Mi, Si =
∑n
j=1 kj ·

ai[j]. Then, Combine calculates πτ = (
∑n
j=1 kj ·(

∑m
i=1 ai[j]))+∑m

i=1 ri,τ . Now notice that, if resτ passed in Verify is equal to
Q(
⋃m
i=1{Xi(τ)}), then the algorithm computes a π that is equal to

the πτ calculated above and, hence, the output is Yes.

We next state the security of DVS (the proof is in Appendix A.1).

THEOREM 2. If F is a PRF, then DVS is secure.

Performance. Every machine Mi needs to store only the key sk,
and its id i. Therefore, the memory consumption is O(s+ logm),
where s is the security parameter that dictates the size of sk, and
logm is the size of the machine id (where m is the number of
machines). Since the size of p is Θ(s), the communication cost
between any two parties is O(s). For any practical application, s

KeyGen(1s)

1. k
$← Z∗p

2. Output sk = k and pub = ⊥

Update(i, sk,Si, t)
1. Parse t as (j, v), and sk as k
2. kj = Fk(“element”‖j)
3. Si = Si + kj · v
4. Output Si

Sign(i, sk,Si, τ)
1. ri,τ = Fk(“machine”‖i‖“epoch”‖τ)
2. σi,τ = Si + ri,τ
3. Output σi,τ

Combine(
⋃m
i=1{σi,τ},

⋃m
i=1{Xi(τ)}, pub)

1. Output πτ =
∑m
i=1 σi,τ

Verify(sk, πτ , resτ , τ)
1. Parse sk = k and resτ as a n-element vector
2. For i = 1 to m, ri,τ = Fk(“machine”‖i‖“epoch”‖τ)
3. Initialize π =

∑m
i=1 ri,τ

4. For j = 1 to n
5. kj = Fk(“element”‖j)
6. π = π + kj · resτ [j]
7. If π = πτ output Yes, otherwise No

Figure 2: The DVS construction

and logm can be regarded as constants that do not exceed 20 bytes.
Note that we implement Fk as an HMAC [19], which involves two
hash operations. Both Update and Sign entail a constant number
of modular multiplications/additions and hashes. The overhead for
the server is O(m) modular additions. Finally, the burden at the
client is O(m+ n) modular additions/multiplications and hashes.

4.2 Dynamic Matrix Product Authentication
We focus on two machines, Ma and Mb. We consider a na ×

n matrix A and a n × nb matrix B. Matrix A (respectively B)
is dynamically updated as new tuples are generated by Ma (Mb).
Each tuple t ∈ Xa (respectively t ∈ Xb) is of the form (i, j, v)
and updates A (B) by adding v to A[i][j] (B[i][j]). The client’s
query Q requests the matrix product, denoted by AB, between A
and B at every epoch τ . We term such a query as a dynamic matrix
product query. We next present a scheme, termed as DMP, for
dynamic matrix product query authentication.

Figure 3 presents the DMP construction. The technique takes
advantage of the following property of matrix multiplication. Let
A = [a1a2 . . .an], where aj denotes the j th column of A. Also let
B = [b1b2 . . .bn]T, where bj is the j th row of B. Then it holds:

Q(Xa(τ) ∪ Xb(τ)) = AB =

n∑
j=1

aj ⊗ bj

where aj ⊗ bj is the outer product of vectors aj ,bj , such that:

aj ⊗ bj =


aj [1]bj [1] aj [1]bj [2] . . . aj [1]bj [nb]
aj [2]bj [1] aj [2]bj [2] . . . aj [2]bj [nb]

. . . . . . . . . . . .
aj [na]bj [1] aj [na]bj [2] . . . aj [na]bj [nb]


Ma (respectively Mb) can create a summary Sa[j] (Sb[j]) for

vector aj (bj) in a similar manner to DVS. We can then compute a
summary of aj ⊗ bj from the product Sa[j] · Sb[j]: for each entry
of this outer product, there is a corresponding term in Sa[j] · Sb[j],
scaled by a secret value (i.e., the product of the two corresponding
keys). In other words, we obtain a summary of the outer product



result matrix with similar properties to the DVS summary for a sin-
gle vector. Since matrix multiplication can be expressed as a sum
of outer products, we can use n different summaries Sa[j],Sb[j]
(i.e., one for each column of A, and one for each row of B), and
build a summary for product AB by summing them up.

We assume that Ma knows that Mb participates in the query and
vice-versa (this information is part of the query description). The
summaries Sa,Sb are both initialized to zero n-element vectors
during the setup phase. Algorithms Update and Sign are presented
in the context of Ma. Sa now contains n entries, one for each col-
umn. The case of Mb is symmetric: Sb also includes n entries,
but one for each row. This can be achieved by instead parsing t as
(j, i, v) in Line 1 of Update, and proceeding accordingly.

To provide security for these summaries, the Sign function pro-
duces composite signatures σa,τ [j], σb,τ [j], each consisting of two
elements/signatures. In particular, their first elements (σa,τ [j][1]
and σb,τ [j][1]) integrate machine-, time-, and column-/row- depen-
dent values r to mask the summaries as in DVS. In order to pro-
duce a proof for summaries of the form Sa[j] · Sb[j], the server
needs to multiply σa,τ [j][1] with σb,τ [j][1]. However, observe that
terms ra,τ [j] · Sb[j] and rb,τ [j] · Sa[j] will appear in the result-
ing proof, which are hard to verify by the client without Sa[j] and
Sb[j]. Therefore, the machines provide additional info (namely sig-
natures σa,τ [j][2], σb,τ [j][2]) that enable the server to remove these
values from the proof. To ensure security, these signatures incor-
porate new one-time keys (denoted as ρ).

Based on the above, Combine now takes a combination of 2n
elements together to build a compact proof that includes the sum-
mary of the whole product matrix. Note that πτ is just a single
value modulo p. Similar to DVS, Combine does not need any pub-
lic information from the owner and, thus, pub is set to a null value
in KeyGen. Finally, algorithm Verify needs to include the various
masking values created by Ma and Mb for each of their n paral-
lel summaries and outputs Yes only if the proof computed for the
claimed result matches the provided proof πτ .

Correctness and security. The following two theorems state the
correctness and security of DMP:

THEOREM 3. DMP is correct.

PROOF. Let the actual result ofQ at τ beQ({Xa(τ)∪Xb(τ)}) =
AB, where A[i][j] =

∑
t∈Xa(τ)∧(t.i=i)∧(t.j=j) t.v and B[i][j] =∑

t∈Xb(τ)∧(t.i=i)∧(t.j=j)
t.v. Observe that, after executing Update

for all t ∈ Xa(τ) and t ∈ Xb(τ) at Ma and Mb, respectively,
Sa[j] =

∑na
i=1 ka,i · aj [i] and Sb[j] =

∑nb
i=1 kb,i · bj [i]. More-

over, notice that

πτ =

n∑
j=1

(Sa[j] · Sb[j] + ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

However, it holds that
n∑
j=1

(Sa[j] · Sb[j]) =
n∑
j=1

(
na∑
i=1

ka,i · aj [i] ·
nb∑
i=1

kb,i · bj [i]

)

=
∑

i∈[na],j∈[nb]

ka,i · kb,j ·
n∑
z=1

az[i] · bz[j]

=
∑

i∈[na],j∈[nb]

ka,i · kb,j ·AB[i][j]

If resτ is equal to AB, then it is easy to see that the π computed
in Verify is equal to πτ and, thus, the algorithm outputs Yes. This
concludes our proof.

KeyGen(1s)

1. k
$← Z∗p

2. Output sk = k and pub = ⊥

Update(a, sk,Sa, t)
1. Parse t as (i, j, v), and sk as k
2. ka,i = Fk(“machine”‖a‖“element”‖i)
3. Sa[j] = Sa[j] + ka,i · v
4. Output Sa

Sign(a, sk,Sa, τ)
1. For j = 1 to n
2. ra,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“r”‖j)
3. ρa,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”‖j)
4. rb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“r”‖j)
5. σa,τ [j] = [(Sa[j] + ra,τ [j]), (Sa[j] · rb,τ [j] + ρa,τ [j])]
6. Output σa,τ

Combine({σa,τ , σb,τ}, {Xa(τ),Xb(τ)}, pub)
1. πτ =

∑n
j=1(σa,τ [j][1] · σb,τ [j][1]− σa,τ [j][2]− σb,τ [j][2])

2. Output πτ

Verify(sk, πτ , resτ , τ)
1. Parse sk as k and resτ as a na × nb matrix
2. For j = 1 to n
3. ra,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“r”‖j)
4. ρa,τ [j] = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”‖j)
5. rb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“r”‖j)
6. ρb,τ [j] = Fk(“machine”‖b‖“epoch”‖τ‖“ρ”‖j)
7. Initialize π =

∑n
j=1 ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j]

8. For i = 1 to na, ka,i = Fk(“machine”‖a‖“element”‖i)
9. For j = 1 to nb, kb,j = Fk(“machine”‖b‖“element”‖j)
10. π = π +

∑
i∈[na],j∈[nb] ka,i · kb,j · resτ [i][j]

11. If π = πτ output Yes, otherwise No

Figure 3: The DMP construction

THEOREM 4. If F is a PRF, then DMP is secure.

For the proof, see Appendix A.2.

Performance. The memory consumption and computational cost
of Update at each machine is the same as in DVS. Due to the n
masked summaries, algorithm Sign involves O(n) modular addi-
tions/multiplications and hashes, whereas the communication cost
between a machine and the server becomes O(n). The server com-
putesO(n) modular additions/multiplications in Combine. Finally,
the client receives a constant sized proof, but Verify entailsO(na+
nb + n) hashes, and O(nanb) modular additions/multiplications,
proportional to the cost of reading the result. This is reduced if the
result matrix is sparse: then, the time taken is proportional to the
number of non-zero entries, which can be much lower.

Note that this protocol substantially reduces the burden on the
data owner, compared to the cost it would pay to perform the matrix
multiplication itself. Without outsourcing, the data owner would
have to store the O(n2) entries of the matrices, and perform the
super-quadratic amount of work to carry out the multiplication.
Here, the data owner’s requirements are reduced to O(n) storage
per machine, and constant work per update.

4.3 Dynamic Dot Product Authentication
We focus on two machines,Ma andMb, and consider n-element

vectors a,b. Vector a (respectively b) is dynamically updated as
new tuples are generated by Ma (Mb). Each tuple t ∈ Xa (respec-
tively t ∈ Xb) is of the form (j, v), and updates a (b) by adding v to
a[j] (b[j]). The client’s query Q requests the dot product between



a and b at every epoch τ , i.e.,

Q(Xa(τ) ∪ Xb(τ)) = a · b =

n∑
i=1

a[i] · b[i]

We refer to such a query as a dynamic dot product query, and
present a scheme called DDP for authenticating it.

Figure 4 presents the DDP construction. Similar to DMP, we
assume that Ma knows that Mb participates in the query and vice-
versa. Algorithms Update and Sign are described in the context of
Ma. The case ofMb is symmetric, with the vital difference that the
summary is updated as Sb = Sb +kn−j+1 · v in Line 2 of Update.
The summaries Sa,Sb are initialized to 0 during the setup phase.
We make use of a (multiplicative) cyclic group G of order p with
generator g, whose specifications are public and where the n-DHE
problem is hard (see Section 2.1).

Note that the dot product of two vectors is the trace of their outer
product. We use this fact to construct the protocol. We derive a sig-
nature of the outer product a ⊗ b in a similar manner to DMP,
where each element of the resulting matrix is scaled with a secret
key. Furthermore, certain machine- and time-dependent masking
is performed via the r and ρ values. The server is then respon-
sible for removing certain elements a[i] · b[j], which are scaled
by ki+(n−j+1), from the signature in Combine. Specifically, the
server does this for every i 6= j (i.e., all the elements but those in
the diagonal).

In order to facilitate this task, the owner provides some public
info pub to the server concerning the scalar values ki+(n−j+1),
with the exception of kn+1. These keys are given as exponents of
generator g ∈ G. This is necessary because, otherwise, the server
could trivially retrieve kn+1 as kn+i+1 · (ki)−1 mod p for some
i, where (ki)−1 is the multiplicative inverse of ki modulo p. This
cannot happen if the keys are in the exponent of g due to the n-DHE
assumption (we will use this fact later in our rigorous proof). All
computations in Verify are performed in the exponent of g. Follow-
ing this, the output πτ should contain solely the contribution from
elements on the diagonal of the outer product, all scaled by kn+1,
plus the masking values.

Correctness and security. The following theorems state the cor-
rectness and security of DDP, respectively.

THEOREM 5. DDP is correct.

PROOF. Let the actual result ofQ at τ beQ({Xa(τ)∪Xb(τ)}) =
a · b =

∑n
i=1 a[i] · b[i], where a[j] =

∑
t∈Xa(τ)∧t.j=j t.v, and

b[j] =
∑
t∈Xb(τ)∧t.j=j

t.v. Observe that, after executing Update

for all t ∈ Xa(τ) and t ∈ Xb(τ) at Ma and Mb, respectively,
Sa =

∑n
j=1 k

j · a[j] and Sb =
∑n
j=1 k

n−j+1 · b[j]. Moreover,
the proof output by Combine is

πτ = g(
∑n
j=1 k

j ·kn−j+1·a[j]·b[j])+ra,τ ·rb,τ−ρa,τ−ρb,τ

= gk
n+1·(a·b)+ra,τ ·rb,τ−ρa,τ−ρb,τ

If resτ is equal to a · b, then the π computed in Verify is equal to
πτ and, thus, Verify outputs Yes. This concludes our proof.

THEOREM 6. If F is a PRF, then DDP is secure under the n-
DHE assumption.

For the formal proof, see Appendix A.3.

Performance. In this scheme, the owner has to invest in some one-
time preprocessing effort to create pub. This accounts for O(n)
exponentiations in Zp (for ki), and another O(n) exponentiations

KeyGen(1s)

1. k
$← Z∗p

2. pub = {gkj }j∈[2n]\{n+1}
3. Output sk = k and pub

Update(a, sk,Sa, t)
1. Parse t as (j, v), and sk as k
2. Sa = Sa + kj · v
3. Output Sa

Sign(a, sk,Sa, τ)
1. ra,τ = Fk(“machine”‖a‖“epoch”‖τ‖“r”)
2. ρa,τ = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”)
3. rb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“r”)
4. σa,τ = [(Sa + ra,τ ), (Sa · rb,τ + ρa,τ )]
5. Output σa,τ

Combine({σa,τ , σb,τ}, {Xa(τ),Xb(τ)}, pub)
1. Parse pub as {gki}i∈[2n]\{n+1}
2. Compute a and b from Xa(τ) and Xb(τ), respectively
3. Compute c = a⊗ b

4. πτ = g(σa,τ [1]·σb,τ [1]−σa,τ [2]−σb,τ [2])

5. πτ = πτ ·
[∏

i,j∈[n]∧i 6=j

(
gk
i+(n−j+1)

)c[i][j]]−1

6. Output πτ

Verify(sk, πτ , resτ , τ)
1. Parse sk as k and resτ as a value in Zp
2. ra,τ = Fk(“machine”‖a‖“epoch”‖τ‖“r”)
3. ρa,τ = Fk(“machine”‖a‖“epoch”‖τ‖“ρ”)
4. rb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“r”)
5. ρb,τ = Fk(“machine”‖b‖“epoch”‖τ‖“ρ”)
6. Initialize π = g(ra,τ ·rb,τ−ρa,τ−ρb,τ )

7. π = π · g(kn+1·resτ )
8. If π = πτ output Yes, otherwise No

Figure 4: The DDP construction

in G (for gk
i

). Nevertheless, this cost is amortized over the entire
lifetime of the system. The memory consumption and the compu-
tational cost of Sign at each machine are (asymptotically) the same
as in DVS. The cost in Update now involves a modular exponen-
tiation. Note though that the latter is performed in the small finite
field Zp and, hence, it is extremely lightweight.

To analyze the server’s computation cost in Combine, first ob-
serve that, setting i+ (n− j + 1) = z, the server can calculate∏
i,j∈[n]∧i 6=j

(
gk
i+(n−j+1)

)c[i][j]
=

∏
z∈[2n]\{n+1}

(gk
z

)
∑
z c[i][j]

assuming that it has access to the set of outer product values c.
However, the server does not need to explicitly generate c. Rather,
it only needs the vector of n different

∑
i+(n−j+1)=z c[i][j] values,

for 2 ≤ z ≤ 2n. We can compute these values from the (discrete)
convolution of the vectors a,b, in time O(n logn) via the Fast
Fourier Transform. Assuming we have these, then the cost at the
server is dominated byO(n) exponentiations in G. For storage, the
server has to store the O(n) values in pub, which is comparable to
the cost of storing the inputs Xa and Xb.

Finally, Verify at the client simply involves a constant number of
evaluations of Fk, and a (single) exponentiation in G.

5. APPLICATIONS
In this section, we discuss some common queries in stream out-

sourcing, and explain how the constructions that we have provided



can address them. We stress, though, that the applicability of our
schemes is not limited to these cases; we are confident that our
fundamental tools can capture a much wider set of applications.
For brevity, we omit detailed discussion of correctness and secu-
rity, which follow the pattern established by the main protocols in
Section 4.

Group by queries. The class of group-by,sum aggregation
queries are at the heart of many outsourced computation scenarios
and have been the sole motivation for much of the prior work on
stream authentication. The setting is that a large number of tuples
is observed as a stream. These tuples may correspond, for exam-
ple, to activity on a network, updates to a large database table, or
events in an event-processing system. The requirement is for the
server to collate the stream tuples into groups and report the sum
for each group. We typically consider cases where the number of
active groups (those with a non-zero sum) is substantially large, so
that the data owner benefits from enlisting the server to perform the
aggregation.

This problem is solved directly by the dynamic vector sum au-
thentication protocol, DVS, applied to a single vector. Each stream
tuple is translated into an update to the vector. The entries of
the vector give the aggregate associated with each corresponding
group. The approach naturally holds for the distributed setting,
where updates might be spread across multiple streams. In this
case, the object of the authentication is the vector given by the sum
of the vectors derived from each of the streams. DVS captures this
scenario due to its homomorphic property, which allows the client
to verify a sum of vectors by checking a single proof (produced by
the server) that combines all individual vector signatures together.

Join Queries. Beyond simple grouping and aggregation, many
important outsourced queries involve the computation of a join
query on relations. In traditional data stream management systems,
join queries are regarded particularly challenging, with prior work
focusing on approximate results [9, 29]. Hence, join queries are a
prime candidate for outsourcing.

We explain how to authenticate join results in our setting, focus-
ing on the common case of equi-join, for queries such as SELECT
* FROM R, S WHERE R.x = S.x. Assume without loss of
generality that the join result is given by the multiset of tuples
(tR, tR.x, tS), where tR is a tuple from R, tS is a tuple from S,
and tR.x = tS .x is their common value on the join attribute x.
Also suppose that the domain of the join values is [n]. We reduce
this problem to an instance of a dot-product query, making use of
a cryptographic hash function H , e.g., SHA-1 [19]. The inputs to
our schemes are streams of (tR.x, tR) and (tS .x, tS) pairs originat-
ing from dynamic relationsR and S, respectively. We transform an
update toR of (tR.x, tR) into a tuple inXa as (tR.x,HR(tR)), ap-
plying the hash function H to tR. Similarly, we transform updates
to S of (tS .x, tS) into a tuple in Xb as (tS .x,HS(tS)). We then
run the DDP protocol over updates (j, v) = (tR.x,HR(tR)) ∈ Xa
at Ma, and (j, v) = (tS .x,HS(tS)) ∈ Xb at Mb.

The server presents the claimed output multiset of (tR, tR.x, tS)
tuples, along with the accompanying proof πτ from the DDP pro-
tocol. The client computes resτ =

∑
tR.x=tS .x

HR(tR) ·HS(tS)
within the Verify routine. The protocol is correct, since the dot
product between the two vectors generated by the above transfor-
mation is exactly this resτ value. In addition to the security of
DDP, here we need to show that the adversary cannot present a
result that produces the same resτ as the actual result. In order
to achieve this, we must follow the so-called random oracle model
[15, 13]. Briefly stated, this is a proof methodology that allows us
to first prove the security of the scheme considering thatH is a truly

random function. We can do this along the lines of our proof for
DDP in Appendix A.3. Then, we substitute H with a hash func-
tion like SHA-1, and claim security due to the assumption about
its cryptographic properties. We omit further details due to space
constraints.

In the aforementioned problem, the goal was to authenticate the
tuples produced by a join query on relations R, S on attribute x.
Assume that R.y and S.z are attributes of relations R and S, re-
spectively. If, instead of the actual tuples, we are interested in au-
thenticating the joint frequency distribution of each (R.y, S.z) pair
in the join result, then this authentication can be achieved by a di-
rect application of our DMP protocol. In this case, the machine
containing relation R (S) builds a two-dimensional matrix, where
each element of the matrix corresponds to the joint frequency of oc-
currences of each (R.y,R.x) ((S.x, S.z)) pair of values in R (S).
It is easy to see that the product of these two matrices provides the
desired result in this application.

Another interesting query is computing the size of the equi-join
result. This is given by a direct application of DDP: if we treat
every tuple t with join value t.x as an update of the form (t.x, 1),
then vectors a,b will hold the frequencies of the relations on each
join value. Therefore, the equi-join size is exactly a · b.

In-network Aggregation. This is a popular paradigm employed
typically in sensor networks, which reduces the energy expenditure
in routing raw data from the motes to a remote client [18]. Con-
sider a set of sensors organized (without loss of generality) into a
tree-structured network. Also assume that a client communicates
only with the root sensor (sink), and wishes to perform some ag-
gregation task (e.g., sum or count) on the readings of the sensors.
Transmitting the raw data to the client inflicts considerable burden
on the nodes positioned close to the sink, as they have to forward
a considerable number of messages from nodes lower in the tree.
In-network aggregation mandates that internal nodes perform the
aggregation task on the data received from their children and for-
ward only a small result, thus achieving significant battery savings.

In our setting, only the leaf sensors belong to the owner, whereas
the internal tree infrastructure is outsourced to an untrusted third
party [12, 26, 23]. The goal is to allow the client to authenticate the
aggregation result on the union of the leaf readings received from
the sink. Our DVS construction applies to this scenario as well. Its
KeyGen,Update, Sign and Verify routines remain the same in this
case. The main changes occur to the Combine algorithm executed
by the server. Here, each server in the network executes Combine
on the inputs received from its children, and forwards the output
to its parent in the routing tree. Notice that the client eventually
receives a proof from the sink that is equal to the summation of
the leaf sensor signatures. This is exactly what Combine would
output in case a single server collected all the sensor signatures.
Our scheme is extremely lightweight for all parties involved and,
hence, it is ideal for the resource constrained sensor networks.

Similarity measures. It is increasingly common to deal with ob-
jects represented by a (potentially) very large number of features in
a high-dimensional vector space. In machine learning and other
modeling applications, a single object (such as a user of a web
search engine) may be represented by a vector which has millions
or billions of components. Similarity measures are vital in such
settings. For instance, clustering of objects often entails distance
(i.e., dissimilarity) computation between feature vectors. Another
example involves determining the correlation of items (i.e., market
stocks, retail products, etc) whose information (i.e., shares values,
sales volume) is dispersed across different server machines. Corre-
lation is also based on similarity.



Similarity between vectors is typically measured by an appro-
priate similarity or dissimilarity measure, such as the cosine simi-
larity and Euclidean distance, respectively. The cosine similarity
between vectors a,b is computed as a·b

‖a‖·‖b‖ , where ‖a‖ =
√
a · a

is the L2 norm of a. The Euclidean distance between a and b is
equal to ‖a− b‖ =

√
‖a‖2 + ‖b‖2 − 2a · b.

We can authenticate such measures by engaging the DDP con-
struction, since both cosine similarity and Euclidean distance de-
pend on inner product computation. The case of a · b is carried
out by direct application of DDP. For a · a and b · b, Ma and
Mb must apply two separate instances (i.e., with different keys) of
DDP on the same vector a and b, respectively. The modifications
in Combine and Verify are straightforward and, thus, omitted.

Event co-occurrence. Event monitoring applications operate on
massive streams in order to find patterns or correlations between
certain events [10]. These include supply chain management of
RFID tagged products, stock trading, monitoring of machines for
malfunctions, environmental sensing for surveillance of establish-
ments, and more. An important class of queries in this scenario
is finding co-occurrence of events. We provide a simple example.
Let A (respectively B) be an n × 1 (1 × n) matrix representing a
set of n events occurring at machine Ma (Mb). A cell value is 1
if the event occurs during the latest (or at a specific) epoch, and 0
otherwise. Then, AB is a n× n matrix where cell AB[i][j] is 1 if
event i co-occurs with event j at the latest (or at a specific) epoch.
The result matrix can help in determining event correlations. The
above can be generalized to matrices with arbitrary dimensions. It
is apparent that our DMP construction is directly applicable for au-
thenticating such queries.

6. EXPERIMENTS
In this section we experimentally evaluate our basic protocols,

namely DVS, DMP and DDP. We compare DVS with PIRS (specif-
ically PIRS-1) [31], which is the only scheme that addresses our
trusted-client setting, in the context of group by,sum queries.
However, we stress that PIRS is not a direct competitor, as it as-
sumes that the client is the owner itself and has a weaker security
model. We slightly adapt PIRS so that the machines send to the
client their summaries via the server, after authenticating them us-
ing another authentication scheme. On the other hand, as we are
the first to address authentication of dot and matrix products, DMP
and DDP have no competitors.

Implementation. We implemented all protocols in C on a 2.66GHz
Intel Core i7 with 4GB of RAM, running MAC OS X. We used the
GMP1 and OpenSSL2 libraries for implementing the cryptographic
operations involved. We utilized HMAC with SHA-1 [19] for the
F function, which produces 20-byte outputs. We employed HMAC
with SHA-1 also as the message authentication scheme in PIRS for
authenticating the summaries to the clients.

An important discussion concerns the selection of the size of the
prime p that defines the Zp domain (i.e., the value for security pa-
rameter s). In DVS, DMP and PIRS, this can be as small as 10
bytes for safeguarding against guessing attacks on the keys. On
the other hand, in DDP this must be at least 20 bytes. The reason
is that DDP relies on the discrete logarithm problem. The well-
known Pollard rho algorithm takesO(

√
p) steps to find a logarithm

in Zp [19], suggesting that the size of p should be twice as long as
the one that protects against simple guessing.

1
http://gmplib.org/

2
http://www.openssl.com/

Table 2: Primitive Costs
Description Cost
Modular addition in Zp (|p| = 10 / 20 bytes) 0.15 µs / 0.18 µs
Modular multiplication in Zp (|p| = 10 / 20 bytes) 0.19 µs / 0.28 µs
Modular exponentiation in Zp (|p| = 10 / 20 bytes) 4.8 µs / 7.4 µs
Time to derive the generator of Zq (|q| = 64 bytes) 2.7 sec
Modular multiplication in Zq (|q| = 64 bytes) 0.56 µs
Modular exponentiation in Zq (|q| = 64 bytes) 55.6 µs
HMAC computation (with SHA-1) 3.53 µs
RSA signing (1024-bit) 1.55 ms
RSA verification (1024-bit) 82.18 µs

Table 3: Comparison of DVS with PIRS (single machine)
Evaluated Cost DVS PIRS

CPU time for Update 5.3 µs 2.3 µs
CPU time for Sign 4.8 µs 4.7 µs
CPU time for Verify 48.9 ms 19.1 ms
Summary size 10 bytes 10 bytes
Proof size 10 bytes 30 bytes

Furthermore, we computed the generator of the group used in
DDP employing the implementation techniques included in [19].
Specifically, the element of order p that generates our group of con-
cern G is selected from Zq , where q is a 64-byte prime of the form
q = 2`p + 1 [19]. All computations in G are modulo q. Table
2 includes the average cost (over 10,000 runs) of each primitive
operation entailed in the implemented protocols.

Evaluation of DVS vs. PIRS. We compared DVS with PIRS using
the World Cup Dataset3. The latter contains Web server logs from
the 1998 Soccer World Cup. Each log entry consists of a client ID,
the ID of the requested URL, the size of the response, etc. We used
the first 2 million tuples from the log of day 50. From each tuple
in this set, we produced a tuple (j, v), where j is a client ID, and v
is the size of the response. We then focused on a group by,sum
query that returns a vector, where the j th element corresponds to
a unique client j, and the value of the j th element is the sum of
response sizes of all requests issued by client j.

Table 3 illustrates the various costs we evaluated during our ex-
periment, assuming a single stream generated by a single machine.
We decomposed PIRS into algorithms of the form Update, Sign,
and Verify (Combine has no cost in the single machine setting in
both schemes and, thus, is omitted). The average number of non-
zero elements in the result vector (which affects the CPU time in
Verify) was around 12,000. PIRS and DVS have comparable CPU
overheads for Sign. However, PIRS outperforms DVS for Update
and Verify because, contrary to DVS, it does not involve HMAC in-
vocations. Recall though that this performance advantage of PIRS
comes at the expense of a weaker security model. Moreover, ob-
serve that the CPU times for DVS are in the order of a few mi-
croseconds at the owner (5.3 µs for Update and 4.8 µs for Sign),
and a few milliseconds at the client (48.9 µs for Verify). The sum-
mary and proof size is negligible in DVS (10 bytes). The summary
size in PIRS is the same, but its proof size is 20 bytes longer due to
the additional HMAC that authenticates the summary.

Table 4 depicts the costs in the scenario where we repeat the pre-
vious experiment, but now the tuples are generated by m = 100
machines. The Update and Sign costs are unaffected by m and,
hence, are omitted. In PIRS, there is no Combine cost, since the

3
http://ita.ee.lbl.gov/html/contrib/WorldCup.html



Table 4: Comparison of DVS with PIRS (m = 100 machines)
Evaluated Cost DVS PIRS

CPU time for Combine 10.1 µs -
CPU time for Verify 50.16 ms 19.69 ms
Proof size 10 bytes 3000 bytes

Table 5: Scalability of DMP with n (na = nb = n)
Evaluated Cost n = 5 n = 50 n = 500

CPU time for Update 5.5 µs 5.4 µs 6.0 µs
CPU time for Sign 58.4 µs 567 µs 5.7 ms
CPU time for Combine 3.0 µs 24.3 µs 263 µs
CPU time for Verify 0.13 ms 2.13 ms 78.3 ms

server simply forwards m summaries and HMACs to the client.
This considerably increases the total proof size to 3000 bytes. On
the other hand, in DVS, the server combines the signatures of all the
machines into a single one, always maintaining the communication
cost of 10 bytes. This comes with a very small overhead for the
server due to Combine (10.1 µs). The cost of Verify increases by
the m extra hash computations in both DVS and PIRS. However,
note that the overall cost is rather dominated by the operations im-
posed by the n vector elements and, therefore, the overhead is very
similar to the case of a single machine in both DVS and PIRS.

Evaluation of DMP. We consider the costs for matrix multiplica-
tion between two n×n matrices. Here, we generate synthetic data
by randomly filling entries—note that the data itself does not af-
fect the performance of the DMP construction, as the steps taken
are largely data independent. Table 5 shows the time costs of each
of the operations as n varies. The Update step is similar in all
cases (∼ 6 µs), as it does not depend on n. The Sign operation
scales linearly with n (proportionally to the square root of the input
size), exactly as predicted by our analysis. Even for large matrices
with hundred thousands of entries, this cost is in the order of a few
milliseconds; extrapolating to billion entry matrices, the cost will
remain below a second. Combine scales similarly, proportional to
the size of the summary. Only Verify is more expensive, due to the
cost of reading the full n× n result, performing modular multipli-
cations for each entry, and invoking O(n) HMAC calls. Yet this
too is way below a second even for our largest example.

Evaluation of DDP. We give our results for DDP in Table 6. Here,
we also generate synthetic vectors of differing sizes. Observe that
there is a non-trivial setup cost for this protocol, which stems from
determining a generator for G and computing the exponentiated
values in pub. However, most of the work is in finding a suitable
generator, although this truly is a one-time operation. The cost
varies little with the vector size n. As before, Update does not
depend on n, and in this case neither does Sign. Therefore, the two
overheads are relatively unaffected by n. Our cost for Combine
grows linearly with n, as predicted by our performance analysis,
and remains below one second even in our worst-case experiment
(n = 10000). The cost for Verify is quite low, since it requires only
a constant amount of light work for checking the proof.

Summary. Our experimental study confirms our claims that the
constructions presented are lightweight and practical. The over-
heads of all protocols have very low streaming cost: the central
Update operation is always measured in single-digit microsecond
costs, corresponding to very high stream rates. The cost for Sign
operations is comparable, except in the case of DMP, which scales

Table 6: Scalability of DDP with n
Evaluated Cost n=100 n=1000 n=10000

CPU time for KeyGen 2.8 sec 2.9 sec 3.9 sec
CPU time for Update 2.58 µs 3.38 µs 4.3 µs
CPU time for Sign 14.5 µs 13.95 µs 14.6 µs
CPU time for Combine 2.43 ms 30.75 ms 538 ms
CPU time for Verify 129 µs 143 µs 160 µs

proportionally to the square root of the input size. The computa-
tion in Verify scales linearly with the size of the input. The server’s
overhead (Combine) is also small, and remains smaller than a sec-
ond even in the computationally intensive case of DDP. Moreover,
our DVS scheme is superior to PIRS in terms of client communica-
tion cost in the case of multiple machines. Finally, DMP and DDP
are the first secure, efficient, and scalable protocols for the prob-
lems of dynamic matrix multiplication and dynamic dot product,
respectively.

7. CONCLUSIONS AND FUTURE WORK
In this paper we addressed the problem of result authentication

in stream outsourcing settings. While prior work has focused on
simple group by and sum queries in such scenarios, our protocols
allow the authentication of several linear algebraic operators, such
as sums or dot products over dynamic vectors and dynamic ma-
trix multiplication, which are used in numerous applications over
distributed data. Our experimental evaluation demonstrated that
our protocols are extremely lightweight especially for the owner in
terms of running time, storage requirements and bandwidth con-
sumption. Moreover, our schemes offer strong cryptographic guar-
antees for their security. In our future work, we plan to extend
our lightweight techniques to the challenging setting where clients
may collude with the server to attack other clients. In this case, the
owner only grants a public key to the clients, hiding his secret key.
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APPENDIX
A. SECURITY PROOFS

We will prove all our constructions under the following gen-
eral methodology [13]. We will construct an ideal version of each
scheme, where function F is substituted by a truly random function
f . The adversary will be able to obtain outputs of f for inputs of its
choice, but it will not be given direct access to f itself. We will next
prove that the scheme is secure under this ideal model. Finally, we
will conclude that the real implementation of the scheme (i.e., the
one that uses the PRF F instead of f ) is secure, since otherwise the
adversary would distinguish the PRF from a truly random function.

A.1 Proof of Theorem 2 (DVS)
Let k = [k1, k2, . . . , kn], where kj is generated as in Update,

but now via truly random function f instead of PRF F . The adver-
saryA interacts with the oracle as outlined in ExpA in Section 3.2,
and obtains a single signature for every (i, τ ′) pair for any stream
of its choice, such that τ ′ 6= τ . Let a∗i,τ ′ be the dynamic vector pro-
duced by machine Mi at τ ′ for an arbitrary stream selected by the
adversary. Note that A can query the oracle for poly(s) different
epochs τ ′. Then, A obtains the following set:

V = {a∗i,τ ′ , (k · a∗i,τ ′ + ri,τ ′)}(i∈[m])∧(τ ′ 6=τ)

∪ {ai,τ , (k · ai,τ + ri,τ )}i∈[m]

where ai,τ is the real dynamic vector produced by machine Mi at
epoch τ when the stream is the actual Xi(τ). All the r values are
constructed as in Sign, but again via function f instead of F . Set
V is the view of the adversary in the attack.
A succeeds in the attack if it presents (res∗τ , π

∗
τ ), such that res∗τ

is different from the actual result resτ =
∑m
i=1 ai,τ , and

π∗τ = k · res∗τ +

m∑
i=1

ri,τ

so that Verify outputs Yes. Observe that this is equivalent to finding
a pair (v∗,k · v∗) from V , and then computing res∗τ = resτ + v∗

and π∗τ = πτ + k · v∗ (note that v∗ must be non-zero).
Nevertheless, every ri,τ ′ , ri,τ used in the components of V are

random (due to f ) and used only once. As such, every (k · a∗i,τ ′ +
ri,τ ′) and (k ·ai,τ +ri,τ ) in V can be considered as the encryption
of k ·a∗i,τ ′ , k ·ai,τ with keys ri,τ ′ and ri,τ , respectively, where the
encryption scheme is a straightforward variant of the one-time pad
(see Section 2.1). Due to this scheme and since k is random and
secret, the adversary computes k ·v∗ for any given v∗ from V only
with probability negl(s).

Based on the above discussion,A can only guess a pair (res∗τ , π
∗
τ ).

Consider the following multivariate polynomial in finite field Zp

P (X1, X2, . . . , Xn+1) = k1X1 + . . .+knXn−Xn+1 +

m∑
i=1

ri,τ

Notice that A guesses (res∗τ , π
∗
τ ) correctly if and only if res∗τ =

[v∗1 , v
∗
2 , . . . , v

∗
n] such that P (v∗1 , v

∗
2 , . . . , v

∗
n, π

∗
τ ) = 0. However,

due to Lemma 1 in [28], for any (non-zero) multivariate polynomial
P in Zp of degree d (in our case d = 1) and randomly chosen
v∗1 , v

∗
2 , . . . , v

∗
n, π

∗
τ , the probability that P (v∗1 , v

∗
2 , . . . , v

∗
n, π

∗
τ ) = 0

is d/p d=1
= 1/p = negl(s).

We derive that DVS is secure w.r.t. ExpA in the ideal model.
Therefore, we also conclude that DVS is secure in the real model,
under the assumption that F is a PRF.



A.2 Proof of Theorem 4 (DMP)
Let ka = [ka,1, . . . , ka,na ] and kb = [kb,1, . . . , kb,nb ], where

ka,i, kb,i are created as in Update, but now via truly random func-
tion f instead of PRF F . Also define na×nb matrix K = ka⊗kb,
such that K[i][j] = ka,i · kb,j . The adversary A interacts with the
oracle as outlined in ExpA in Section 3.2, and obtains a single sig-
nature per every (i, τ ′) pair for any stream of its choice, such that
τ ′ 6= τ . Let A∗τ ′ (respectively B∗τ ′ ) be the dynamic matrix pro-
duced by machine Ma (Mb) at τ ′ for an arbitrary stream selected
by the adversary. Note that A can query the oracle for poly(s)
different epochs τ ′. Then, A obtains the set:

V = {a∗j,τ ′ , (ka · a∗j,τ ′ + ra,τ ′ [j])}(j∈[n])∧(τ ′ 6=τ)
∪ {b∗j,τ ′ , (kb · b∗j,τ ′ + rb,τ ′ [j])}(j∈[n])∧(τ ′ 6=τ)
∪ {ka · a∗j,τ ′ · rb,τ ′ [j] + ρa,τ ′ [j]}(j∈[n])∧(τ ′ 6=τ)
∪ {kb · b∗j,τ ′ · ra,τ ′ [j] + ρb,τ ′ [j]}(j∈[n])∧(τ ′ 6=τ)
∪ {aj,τ , (ka · aj,τ + ra,τ [j])}j∈[n]
∪ {bj,τ , (kb · bj,τ + rb,τ [j])}j∈[n]
∪ {(ka · aj,τ · rb,τ [j] + ρa,τ [j])}j∈[n]
∪ {kb · bj,τ · ra,τ [j] + ρb,τ [j]}j∈[n]

where a∗j,τ ′ (respectively b∗j,τ ′ ) is the j th column (row) of A∗τ ′

(B∗τ ′ ) at τ ′, and aj,τ (bj,τ ) is the j th column (row) of the real
Aτ (Bτ ) produced by Ma (Mb) at τ . All the r and ρ values are
constructed as in Sign, but again via function f instead of F . Set
V is the view of the adversary in the attack.

Suppose that the adversary presents (res∗τ , π
∗
τ ) in the end of the

attack, such that res∗τ is different from the actual result resτ =
AτBτ . Let K : res∗τ ′ =

∑
i∈[na],j∈[nb]

K[i][j]·res∗τ ′ [i][j] denote
the Frobenius product between K and res∗τ ′ . Then, notice that A
succeeds in the attack if

π∗τ = K : res∗τ +
∑n
j=1(ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

so that Verify outputs Yes. Observe that this is equivalent to finding
a pair (V∗,K : V∗) from V , and then computing res∗τ = resτ +
V∗ and π∗τ = πτ + K : V∗ (note that V∗ must be non-zero).

We divide V into two subsets: V1 that includes the components
incorporating ρ values; and V2 = V \V1. The first key observation
is that every ρa,τ ′ [j], ρa,τ [j], ρb,τ ′ [j], ρb,τ [j] used in the compo-
nents of V1 are random (due to f ) and used only once. Similar to
the discussion in Appendix A.1 for DVS, these serve as keys for
one-time pad encryption and, thus, no function can be computed
by A on ka, kb, ra,τ ′ [j], ra,τ [j], rb,τ ′ [j], rb,τ [j] from V1 with
non-negligible probability.

The second observation is that, based on the above discussion,
values ra,τ ′ [j], ra,τ [j], rb,τ ′ [j], rb,τ ′ [j] appear random in view V1
of A. Moreover, observe that they are used only once in the com-
ponents of V2. Hence, they can also be regarded as one-time pad
keys for the components in V2. This means that no function can be
computed byA on ka, kb (and, hence, also on K = ka⊗kb) from
V2 with non-negligible probability. We conclude that A computes
K : V∗ for any given V∗ from V with probability negl(s).

Similar to the case of DVS, A can only guess pair (res∗τ , π
∗
τ ).

Consider the following multivariate polynomial in finite field Zp

P (X1, . . . , Xna·nb+1) = ka,1 · kb,1 ·X1 + . . .

+ ka,na · kb,nb ·Xna·nb −Xna·nb+1

+

n∑
j=1

(ra,τ [j] · rb,τ [j]− ρa,τ [j]− ρb,τ [j])

Notice that A guesses (res∗τ , π
∗
τ ) correctly if and only if res∗τ =

[v∗1 , v
∗
2 , . . . , v

∗
na·nb ] such thatP (v∗1 , v

∗
2 , . . . , v

∗
na·nb , π

∗
τ ) = 0. Nev-

ertheless, due to Lemma 1 in [28], for any (non-zero) multivari-
ate polynomial P in Zp of degree d (again, in our case d = 1)
and randomly chosen v∗1 , v∗2 , . . ., v∗na·nb , π∗τ , the probability that

P (v∗1 , v
∗
2 , . . . , v

∗
na·nb , π

∗
τ ) = 0 is d/p d=1

= 1/p = negl(s).
We derive that DMP is secure w.r.t. ExpA in the ideal model.

Therefore, we also conclude that DMP is secure in the real model,
under the assumption that F is a PRF.

A.3 Proof of Theorem 6 (DDP)
Let ka = [k, k2, . . . , kn] and kb = [kn, kn−1, . . . , k], where

k is a random value in Z∗p. The adversary A interacts with the
oracle as outlined in ExpA in Section 3.2, and obtains a single sig-
nature per every (i, τ ′) pair for any stream of its choice, such that
τ ′ 6= τ . Let a∗τ ′ (respectively b∗τ ′ ) be the dynamic vector produced
by machine Ma (Mb) at τ ′ for an arbitrary stream selected by the
adversary. Note that A can query the oracle for poly(s) different
epochs τ ′. Taking into account also pub generated in KeyGen, A
obtains the set:

V = {a∗τ ′ , (ka · a∗τ ′ + ra,τ ′), (ka · a∗τ ′ · rb,τ ′ + ρa,τ ′)}τ ′ 6=τ
∪ {b∗τ ′ , (kb · b∗τ ′ + rb,τ ′), (kb · b∗τ ′ · ra,τ ′ + ρb,τ ′)}τ ′ 6=τ
∪ {(aτ ,ka · aτ + ra,τ ), (ka · aτ · rb,τ + ρa,τ )}
∪ {bτ , (kb · bτ + rb,τ ), (kb · bτ · ra,τ + ρb,τ )}

∪ {gk
j

}j∈[2n]\{n+1}

where aτ (respectively bτ ) is the real dynamic vector produced
by machine Ma (Mb) at epoch τ . All the r and ρ values are con-
structed as in Sign, but again via function f instead of F . The set
V is the view of the adversary in the attack.

Suppose that the adversary presents (res∗τ , π
∗
τ ) in the end of the

attack, such that res∗τ is different from the actual result resτ =
aτ · bτ . Then, notice that A succeeds in the attack if

π∗τ = gk
n+1·res∗

τ′+(ra,τ ·rb,τ−ρa,τ−ρb,τ )

so that Verify outputs Yes. Observe that this is equivalent to finding
a pair (v∗, kn+1·v∗) from V , and then computing res∗τ = resτ+v∗

and π∗τ = πτ · gk
n+1·v∗ (note that v∗ must be non-zero).

We divide V into two subsets: V1 that includes {gk
j

}j∈[2n]\{n+1},
and subset V2 = V \ V1. Following a similar argumentation as
in the case of DMP in Appendix A.2, due to its equivalence to a
one-time pad, the adversary cannot extract any information about
ka and kb (and, hence, also for kn+1) from V2 with non-negligible
probability. Moreover, due to the n-DHE assumption (Section 2.1),
A can compute gk

n+1

from V1 only with negl(s) probability. We
conclude thatA finds a pair (v∗, kn+1 · v∗) from the entire V with
probability negl(s).

Thus, similar to the case of DVS and DMP, A can only guess a
pair (res∗τ , π

∗
τ ). Consider the following multivariate polynomial in

the finite field Zp
P (X1, X2) = kn+1 ·X1 −X2 + (ra,τ · rb,τ − ρa,τ − ρb,τ )

Let π∗τ = gx
∗
τ . For random π∗τ , x∗τ is also random. A guesses

(res∗τ , π
∗
τ ) correctly if and only ifP (res∗τ , x

∗
τ ) = 0. Due to Lemma

1 in [28], for any (non-zero) multivariate polynomial P in Zp of
degree d (in our case d = 1) and randomly chosen res∗τ , x∗τ , the
probability that P (res∗τ , x

∗
τ ) = 0 is d/p d=1

= 1/p = negl(s).
We derive that DDP is secure w.r.t. ExpA in the ideal model,

under the n-DHE assumption. Therefore, we also conclude that
DDP is secure in the real model, under the n-DHE assumption and
the assumption that F is a PRF.


