
TACO: Tunable Approximate Computation of Outliers in
Wireless Sensor Networks

Nikos Giatrakos∗
Dept. of Informatics
University of Piraeus

Piraeus,Greece
ngiatrak@unipi.gr

Yannis Kotidis†
Dept. of Informatics
Athens University of

Economics and Business
Athens,Greece

kotidis@aueb.gr

Antonios Deligiannakis
Dept. of Electronic and
Computer Engineering

Technical University of Crete
Crete,Greece

adeli@softnet.tuc.gr
Vasilis Vassalos
Dept. of Informatics
Athens University of

Economics and Business
Athens,Greece

vassalos@aueb.gr

Yannis Theodoridis∗
Dept. of Informatics
University of Piraeus

Piraeus,Greece
ytheod@unipi.gr

ABSTRACT
Wireless sensor networks are becoming increasingly popular for a
variety of applications. Users are frequently faced with the sur-
prising discovery that readings produced by the sensing elements
of their motes are often contaminated with outliers. Outlier read-
ings can severely affect applications that rely on timely and reliable
sensory data in order to provide the desired functionality. As a con-
sequence, there is a recent trend to explore how techniques that
identify outlier values can be applied to sensory data cleaning. Un-
fortunately, most of these approaches incur an overwhelming com-
munication overhead, which limits their practicality. In this paper
we introduce an in-network outlier detection framework, based on
locality sensitive hashing, extended with a novel boosting process
as well as efficient load balancing and comparison pruning mecha-
nisms. Our method trades off bandwidth for accuracy in a straight-
forward manner and supports many intuitive similarity metrics.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Design, Management, Measurement

Keywords
sensor networks, outliers
∗Nikos Giatrakos and Yannis Theodoridis were partially supported
by the EU FP7/ICT/FET Project MODAP.
†Yannis Kotidis was partially supported by the Basic Research
Funding Program, Athens University of Economics and Business.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
Pervasive applications are increasingly supported by networked

sensory devices that interact with people and themselves in order to
provide the desired services and functionality. Because of the unat-
tended nature of many applications and the inexpensive hardware
used in the construction of the sensors, sensor nodes often generate
imprecise individual readings due to interference or failures [14].
Sensors are also often exposed to severe conditions that adversely
affect their sensing elements, thus yielding readings of low qual-
ity. For example, the humidity sensor on the popular MICA mote
is very sensitive to rain drops [9].

The development of a flexible layer that will be able to detect
and flag outlier readings, so that proper actions can be taken, con-
stitutes a challenging task. Conventional outlier detection algo-
rithms [2] are not suited for our distributed, resource-constrained
environment of study. First, due to the limited memory capabili-
ties of sensor nodes, in most sensor network applications, data is
continuously collected by motes and maintained in memory for a
limited amount of time. Moreover, due to the frequent change of
the data distribution, results need to be generated continuously and
computed based on recently collected measurements. Furthermore,
a central collection of sensor data is not feasible nor desired, since
it results in high energy drain, due to the large amounts of trans-
mitted data. Hence, what is required are continuous, distributed
and in-network approaches that reduce the communication cost and
manage to prolong the network lifetime.

One can provide several definitions of what constitutes an out-
lier, depending on the application. For example in [27], an out-
lier is defined as an observation that is sufficiently far from most
other observations in the data set. However, such a definition is in-
appropriate for physical measurements (like noise or temperature)
whose absolute values depend on the distance of the sensor from
the source of the event that triggers the measurements. Moreover,
in many applications, one cannot reliably infer whether a reading
should be classified as an outlier without considering the recent his-
tory of values obtained by the nodes. Thus, in our framework we
propose a more general method that detects outlier readings taking
into account the recent measurements of a node, as well as spatial
correlations with measurements of other nodes.

Similar to recent proposals for processing declarative queries
in wireless sensor networks, our techniques employ an in-network

bits. The node transmits the compressed d−bit representation to the clusterhead.

Clusterhead

Regular Sensor

Each sensor node uses LSH to encode its latest W measurements using just d

Nodes that do not gain enough support are considered as potential outliers.

Tests

Similarity
Tests

Similarity
Tests

Similarity
Tests

Similarity
Tests

Similarity
Tests

Clusterhead

Regular Sensor

Each clusterhead performs similarity tests on the received meaurements.

Similarity

An approximate TSP problem is solved. Lists of potential outliers are exchanged

Clusterhead

Regular Sensor

(along with their compressed representations and current support).

The final list is transmitted to the base station.

(a) (b) (c)

Figure 1: Main Stages of the TACO Framework

processing paradigm that fuses individual sensor readings as they
are transmitted towards a base station. This fusion, dramatically
reduces the communication cost, often by orders of magnitude, re-
sulting in prolonged network lifetime. While such an in-network
paradigm is also used in proposed methods that address the issue
of data cleaning of sensor readings by identifying and, possibly,
removing outliers [6, 9, 14, 28], none of these existing techniques
provides a straightforward mechanism for controlling the burden of
the nodes that are assigned to the task of outlier detection.

An important observation that we make in this paper is that ex-
isting in-network processing techniques cannot reduce the volume
of data transmitted in the network to a satisfactory level and lack
the ability of tuning the resulting overhead according to the appli-
cation needs and the accuracy levels required for outlier detection.
Please note that it is desirable to reduce the amount of transmit-
ted data in order to also significantly reduce the energy drain of
sensor nodes. This occurs not only because radio operation is by
far the biggest culprit in energy drain [21], but also because fewer
data transmissions also result in fewer collisions and, thus, fewer
re-transmissions by the sensor nodes.

In this paper we propose a novel outlier detection scheme termed
TACO (TACO stands for Tunable Approximate Computation of
Outliers). TACO adopts two levels of hashing mechanisms. The
first is based on locality sensitive hashing (LSH) [5] which is a
powerful method for dimensionality reduction [5, 12]. We first uti-
lize LSH in order to encode the latest W measurements collected
by each sensor node as a bitmap of d � W bits. This encoding is
performed locally at each node. The encoding that we utilize trades
accuracy (i.e., probability of correctly determining whether a node
is an outlier or not) for bandwidth, by simply varying the desired
level of dimensionality reduction and provides tunable accuracy
guarantees based on the d parameter mentioned above. Assum-
ing a clustered network organization [22, 31], motes communicate
their bitmaps to their clusterhead, which can estimate the similarity
amongst the latest values of any pair of sensors within its cluster
by comparing their bitmaps, and for a variety of similarity metrics
that are useful for the applications we consider. Based on the per-
formed similarity tests, and a desired minimum support specified
by the posed query, each clusterhead generates a list of potential
outlier nodes within its cluster. At a second (inter-cluster) phase
of the algorithm, this list is then communicated among the clus-
terheads, in order to allow potential outliers to gain support from
measurements of nodes that lie within other clusters. This process
is sketched in Figure 1.

The second level of hashing (omitted in Figure 1) adopted in
TACO’s framework comes during the intra-cluster communication
phase. It is based on the hamming weight of sensor bitmaps and
provides a pruning technique (regarding the number of performed
bitmap comparisons) and a load balancing mechanism alleviating
clusterheads from communication and processing overload. We
choose to discuss this load balancing and comparison pruning mech-
anism separately for ease of exposition as well as to better exhibit
its benefits.
The contributions of this paper can be summarized as follows:

1. We introduce TACO, an outlier detection framework which trades
bandwidth for accuracy in a straightforward manner. TACO sup-
ports various popular similarity measures used in different applica-
tion areas. Examples of such measures include, but are not limited
to, the cosine similarity, the correlation coefficient, or the Jaccard
coefficient.
2. We subsequently devise a boosting process that provably im-
proves TACO’s accuracy.
3. We devise novel load balancing and comparison pruning mech-
anisms, which alleviate clusterheads from excessive processing and
communication load. These mechanisms result in a more uniform,
intra-cluster power consumption and prolonged network unhindered
operation, since the more evenly spread power consumption results
in an infrequent need for network reorganization.
4. We present a detailed experimental analysis of our techniques
for a variety of data sets and parameter settings. Our results demon-
strate that our methods can reliably compute outliers, while at the
same time significantly reducing the amount of transmitted data,
with average recall and precision values exceeding 80% and often
reaching 100%. It is important to emphasize that the above results
often correspond to bandwidth consumptions that are lower than
what is required by a simple continuous query, using a method like
TAG [21]. We also demonstrate that TACO may result in prolonged
network lifetime, up to a factor of 3 in our experiments. We further
provide comparative results with the recently proposed technique
of [9] that uses an equivalent outlier definition and supports com-
mon similarity measures. Overall, TACO appears to be more ac-
curate up to 10% in terms of the F-Measure metric while ensuring
less bandwidth consumption reaching the ratio of 1/8 in our study.

This paper proceeds as follows. In Section 2 we present re-
lated work. Section 3 presents our basic framework, while in Sec-
tions 4, 5 we analyze TACO’s operation in detail. Section 6 presents

our load balancing and comparison pruning mechanisms. Section 7
presents our experimental evaluation, while Section 8 includes con-
cluding remarks.

2. RELATED WORK
The emergence of sensor networks as a viable and economically

practical solution for monitoring and intelligent applications has
prompted the research community to devote substantial effort to de-
fine and design the necessary primitives for data acquisition based
on sensor networks [21, 30]. Different network organizations have
been considered such as using hierarchical routes (i.e., the aggre-
gation tree [8, 26, 32]), cluster formations [22, 31], or even com-
pletely ad-hoc formations [1, 17]. Our framework assumes a clus-
tered network organization. Such networks have been shown to be
efficient in terms of energy dissipation, thus resulting in prolonged
network lifetime [22, 31].

Sensor networks can be rather unreliable, as the commodity hard-
ware used in the development of the motes is prone to environ-
mental interference and failures. The authors of [14] introduce a
declarative data cleaning mechanism over data streams produced
by the sensors. The work of [19] exploits localized data models
that capture correlations among neighboring nodes, however the
emphasis is on exploiting these models in order to reduce energy
drain during query evaluation and not on outlier detection. The data
cleaning technique presented in [33] makes use of a weighted mov-
ing average which takes into account both recent local samples and
corresponding values by neighboring motes to estimate actual mea-
surements. In other related work, [13] proposes a fuzzy approach
to infer the correlation among readings from different sensors, as-
signs a confidence value to each of them, and then performs a fused
weighted average scheme. A histogram-based method to detect
outliers with reduced communication costs is presented in [24].

In [18], the authors discuss a framework for cleaning input data
errors using integrity constraints. Of particular interest is the tech-
nique of [3] which proposes an unsupervised outlier detection tech-
nique so as to report the top-k values that exhibit the highest devi-
ation in a network’s global sample. The framework is flexible with
respect to the outlier definition. However, in contrast to our frame-
work, it provides no means of directly controlling the bandwidth
consumption, thus often requiring comparable bandwidth to cen-
tralized approaches for outlier detection [3].

In [15], a probabilistic technique for cleaning RFID data streams
is presented. The framework of [9] is used to identify and remove
outliers during the computation of aggregate and group-by queries.
Its definition of what constitutes an outlier, based on the notion of
minimum support and the use of recent history, is adopted in this
paper by our framework. It further demonstrates that common sim-
ilarity metrics such as the correlation coefficient and the Jaccard
coefficient can capture the types of dirty data encountered by sen-
sor network applications. In [27] the authors introduce a novel def-
inition of an outlier, as an observation that is sufficiently far from
most other observations in the data set. However, in cases where
the motes observe physical quantities (such as noise levels, tem-
perature) the absolute values of the readings acquired depend, for
example, on the distance of the mote from the cause of the moni-
tored event (i.e., a passing car or a fire respectively). Thus, corre-
lations among readings in space and time are more important than
the absolute values, used in [27].

The algorithms in [9, 14] provide no easily tunable parameters
in order to limit the bandwidth consumed while detecting and pro-
cessing outliers. On the contrary our framework has a direct way
of controlling the number of bits used for encoding the values ob-
served by the motes. While [9] takes a best effort approach for

detecting possible outliers and [14] requires transferring all data to
the base station in order to accurately report them, controlling the
size of the encoding allows our framework to control the accuracy
of the outlier detection process.

The works in [6, 28] address the problem of identifying faulty
sensors using localized voting protocols. However, localized vot-
ing schemes are prone to errors when motes that observe interest-
ing events generating outlier readings are not in direct communi-
cation [9]. Furthermore, the framework of [28] requires a correla-
tion network to be maintained, while our algorithms can be imple-
mented on top of commonly used clustered network organizations.

The Locality Sensitive Hashing (LSH) scheme used in this work
was initially introduced in the rounding scheme of [11] to provide
solutions to the MAX-CUT problem. Since then, LSH has been
adopted in similarity estimation [5], clustering [23], approximate
nearest neighbor queries [12] or indexing techniques for set value
attributes [10].

3. BASIC FRAMEWORK

3.1 Target Application
As in [9], we do not aim to compute outliers based on a mote’s

latest readings but, instead, take into consideration its most recent
measurements. In particular let ui denote the latest W readings
obtained by node Si. Then, given a similarity metric sim:RW →
[0, 1] and a similarity threshold Φ we consider the readings by
motes Si and Sj similar if

sim(ui, uj) > Φ. (1)

In our framework, we classify a mote as an outlier if its latest
W measurements are not found to be similar with the correspond-
ing measurements of at least minSup other motes in the network.
The parameter minSup, thus, dictates the minimum support (either
in the form of an absolute, uniform value or as a percentage of
motes, i.e per cluster) that the readings of the mote need to obtain
by other motes in the network, using Equation 1. By allowing the
user/application to control the value of minSup, our techniques are
resilient to environments where spurious readings originate from
multiple nodes at the same epoch, due to a multitude of different,
and hence unpredictable, reasons. Our framework can also incor-
porate additional witness criteria based on non-dynamic grouping
characteristics (such as the node identifier or its location), in order
to limit, for each sensor, the set of nodes that are tested for similar-
ity with it. For example, one may not want sensor nodes located in
different floors to be able to witness each other’s measurements.

3.2 Supported Similarity Metrics
The definition of an outlier, as presented in Section 3.1, is quite

general to accommodate a number of intuitive similarity tests be-
tween the latest W readings of a pair of sensor nodes Si and Sj .
Examples of such similarity metrics include the cosine similarity,
the correlation coefficient and the Jaccard coefficient [5, 9]. Ta-
ble 1 demonstrates the formulas for computing three of the afore-
mentioned metrics over the two vectors ui, uj containing the latest
W readings of sensors Si and Sj , respectively1.

It is important to emphasize that our framework is not limited to
using just one of the metrics presented in Table 1. On the contrary,
as it will be explained in Section 4.1, any similarity metric satisfy-
ing a set of common criteria may be incorporated in our framework.

1E(.), σ and cov(.) in the table stand for mean, standard deviation
and covariance, respectively.

Similarity Metric Calculation of Similarity

Cosine Similarity cos(θ(ui, uj)) =
ui·uj

||ui||·||uj ||
⇒ θ(ui, uj) = arccos

ui·uj
||ui||·||uj ||

Correlation Coefficient rui,uj =
cov(ui,uj)

σuiσuj
=

=
E(uiuj)−E(ui)E(uj)√

E(u2
i)−E2(ui)

√
E(u2

j)−E2(uj)

Jaccard Coefficient J(ui, uj) =
|ui∩uj |
|ui∪uj |

Table 1: Computation of some supported similarity metrics be-
tween the vectors ui, uj containing the latest W measurements
of nodes Si and Sj .

3.3 Network Organization
We adopt an underlying network structure where motes are or-

ganized into clusters (shown as dotted circles in Figure 1). Queries
are propagated by the base station to the clusterheads, which, in
turn, disseminate these queries to sensors within their cluster.

Various algorithms [22, 31] have been proposed to clarify the
details of cluster formation, as well as the clusterhead election and
substitution (rotation) during the lifetime of the network. All these
approaches have been shown to be efficient in terms of energy dis-
sipation, thus resulting in prolonged network lifetime. The afore-
mentioned algorithms differ in the way clusters and corresponding
clusterheads are determined, though they all share common char-
acteristics since they primarily base their decisions on the residual
energy of the sensor nodes and their communication links.

An important aspect of our framework is that the choice of the
clustering algorithm is orthogonal to our approach. Thus, any of
the aforementioned algorithms can be incorporated in our frame-
work. An additional advantage of our techniques is that it requires
no prior state at clusterhead nodes, thus simplifying the processes
of clusterhead rotation and re-election.

3.4 Operation of the Algorithm
We now outline the various steps involved in our TACO frame-

work. These steps are depicted in Figure 1.
Step 1: Data Encoding and Reduction. At a first step, the sensor
nodes encode their latestW measurements using a bitmap of d bits.
In order to understand the operation of our framework, the actual
details of this encoding are not important (they are presented in
Section 4). What is important is that:

• As we will demonstrate, the similarity function between the
measurements of any pair of sensor nodes can be evaluated using
their encoded values, rather than using their uncompressed read-
ings.

• The used encoding trades accuracy (i.e., probability of correctly
determining whether a node is an outlier or not) for bandwidth, by
simply varying the desired level of dimensionality reduction (i.e.,
parameter d mentioned above). Larger values of d result in in-
creased probability that similarity tests performed on the encoded
representation will reach the same decision as an alternative tech-
nique that would have used the uncompressed measurements in-
stead.

After encoding its measurements, each sensor node transmits its
encoded measurements to its clusterhead.
Step 2: Outlier Detection at the Cluster Level. Each clusterhead
receives the encoded measurements of the sensors within its cluster.
It then performs similarity tests amongst any pair of sensor nodes
that may witness each other (please note that the posed query may
have imposed restrictions on this issue), in order to determine nodes

Symbol Description
Si the i− th sensor node
ui the value vector of node Si
W tumble size (length of ui)

θ(ui, uj) the angle between vectors ui, uj
Xi the bitmap encoding produced after applying LSH to ui
d bitmap length

Dh(Xi, Xj) the hamming distance between bitmaps Xi, Xj
Φ,Φθ , ΦDh similarity threshold used, depending on representation

minSup the minimum support parameter

Table 2: Notation used in this paper

that cannot reach the desired support level and are, thus, considered
to be outliers at a cluster level.
Step 3: Intercluster Communication. After processing the en-
coded measurements within its cluster, each clusterhead has deter-
mined a set of potential outliers, along with the support that it has
computed for each of them. Some of these potential outliers may
be able to receive support from sensor nodes belonging to other
clusters. Thus, a communication phase is initiated where the po-
tential outliers of each clusterhead are communicated (along with
their current support) to other clusterheads in which their support
may increase. Please note that depending on the restrictions of the
posed queries, only a subset of the clusterheads may need to be
reached. The communication problem is essentially modeled as
a TSP problem, where the origin is the clusterhead itself, and the
destination is the base station.

The extensible definition of an outlier in our framework enables
the easy application of semantic constraints on the definition of
outliers. For example, we may want to specify that only move-
ment sensors trained on the same location are allowed to witness
each other, or similarly that only readings from vibration sensors
attached to identical engines in a machine room are comparable.
Such static restrictions can be easily incorporated in our framework
(i.e., by having clusterheads maintain the corresponding informa-
tion, such as location and type, for each sensor id) and their evalu-
ation is orthogonal to the techniques that we present in this paper.

4. DATA ENCODING AND REDUCTION
We now present the locality sensitive hashing scheme and ex-

plain how it can be utilized by TACO. Table 2 summarizes the
notation used in this section. The corresponding definitions are
presented in appropriate areas of the text.

4.1 Definition and Properties of LSH
A Locality Sensitive Hashing scheme is defined in [5] as a dis-

tribution on a family F of hash functions that operate on a set of
objects, such that for two objects ui, uj :

PhεF [h(ui) = h(uj)] = sim(ui, uj)

where sim(ui, uj)ε[0, 1] is some similarity measure. In [5] the fol-
lowing necessary properties for existence of an LSH family func-
tion for given similarity measures are proved:

LEMMA 1. For any similarity function sim(ui, uj) that admits
an LSH function family, the distance function 1− sim(ui, uj) sat-
isfies the triangle inequality.

LEMMA 2. Given an LSH function family F corresponding to
a similarity function sim(ui, uj), we can obtain an LSH function
family F ′ that maps objects to {0, 1} and corresponds to the simi-
larity function 1+sim(ui,uj)

2
.

LEMMA 3. For any similarity function sim(ui, uj) that admits
an LSH function family, the distance function 1 − sim(ui, uj) is
isometrically embeddable in the hamming cube.

4.2 TACO at the Sensor Level
In our setting, TACO applies LSH to the value vectors of phys-

ical quantities sampled by motes. It can be easily deduced that
LSH schemes have the property of dimensionality reduction while
preserving similarity between these vectors. Dimensionality reduc-
tion can be achieved by introducing a hash function family such
that (Lemmas 2,3) for any vector uiεRW consisting of W sampled
quantities, h(ui) : RW → [0, 1]d with d�W .

In what follows we first describe an LSH scheme for estimating
the cosine similarity between motes (please refer to Table 1 for the
definition of the cosine similarity metric).

THEOREM 1 (RANDOM HYPERPLANE PROJECTION [5, 11]).
Assume we are given a collection of vectors defined on the W di-
mensional space. We choose a family of hash functions as follows:
We produce a spherically symmetric random vector r of unit length
from this W dimensional space. We define a hash function hr as:

hr(ui) =

{
1 ,if r · ui ≥ 0
0 ,if r · ui < 0

For any two vectors ui, ujεRW :

P = P [hr(ui) = hr(uj)] = 1− θ(ui, uj)

π
2 (2)

Equation 2 can be rewritten as:

θ(ui, uj) = π · (1− P) (3)

Note that Equation 3 expresses theta similarity as the product of
the potential range of the angle between the two vectors (π), with
the probability of equality in the result of the hash function appli-
cation (P). Thus, after repeating a stochastic procedure using d
random vectors r, the final embodiment in the hamming cube re-
sults in [29]:

Dh(Xi, Xj) = d · (1− P) (4)

where Xi, Xjε[0, 1]d are the bitmaps (of length d) produced and

Dh(Xi, Xj) =

d∑
`=1

|Xi`−Xj`| is their hamming distance. Hence,

we finally derive:

θ(ui, uj)

π
=
Dh(Xi, Xj)

d
(5)

This equation provides the means to compute the angle (and thus
the cosine similarity) between the initial value vectors based on the
hamming distance of their corresponding bitmaps. We will revisit
this issue in the next section.

Let E(ui) denote the mean value of vector ui. Simple calcula-
tions show that for u∗i = ui − E(ui) and u∗j = uj − E(uj) the
equality corr(ui, uj) = corr(u∗i , u

∗
j) = cos(θ(u∗i , u

∗
j)) holds,

where corr denotes the correlation coefficient (see Table 1). As a
result, the correlation coefficient can also be used as a similarity
measure in a random hyperplain projection LSH scheme (i.e., by
using the same family of hashing functions as with the cosine simi-
larity). In [10] the authors also introduce an LSH scheme based on
the Jaccard Index: J(ui, uj) =

|ui∩uj |
|ui∪uj |

using minwise indepen-
dent permutations and simplex codes.

We further note [5] that there exist popular similarity metrics
that do not accept an LSH scheme. For instance, Lemma 1 implies

Figure 2: LSH application to mote’s value vector

that there is no LSH scheme for the Dice(ui, uj) =
2|ui∩uj |
|ui|+|uj |

and

Overlap(ui, uj) =
|ui∩uj |

min(|ui|,|uj |)
coefficients since they do not

satisfy the triangle inequality.
In what follows, we will use as a running example the case where

the cosine similarity between two vectors ui and uj is chosen,
and where the vectors are considered similar when sim(ui, uj) >
Φ⇔ θ(ui, uj) ≤ Φθ , where the Φ (or Φθ) threshold is defined by
the query.

5. DETECTING OUTLIERS WITH TACO

5.1 Intra-Cluster Processing
As discussed in the introductory section, often outlying values

cannot be reliably deduced without considering the correlation of
a sensor’s recent measurements with those of other sensor nodes.
Hereafter, we propose a generic technique that takes into account
the aforementioned parameters providing an energy efficient way to
detect outlying values. To achieve that, we will take advantage of
the underlying network structure and the random hyperplane pro-
jection LSH scheme.

Recalling Section 4.2, we consider a sampling procedure where
motes keep W recent measurements in a tumble [4]. Sending a
W -dimensional value vector as is, exacerbates the communication
cost, which is an important factor that impacts the network life-
time. TACO thus applies LSH in order to reduce the amount of
transmitted data. In particular, after having collected W values,
each mote applies d hr functions on it so as to derive a bitmap of
length d (Figure 2), where the ratio of d to the size of the W mea-
surements determines the achieved reduction. The derived bitmap
is then transmitted to the corresponding clusterhead.

In the next phase, each clusterhead is expected to report out-
lying values. To do so, it would need to compare pairs of re-
ceived vectors determining their similarity based on Equation 1 and
the Φθ similarity threshold. On the contrary, the information that
reaches the clusterhead is in the form of compact bitmap represen-
tations. Note that Equation 5 provides a way to express theta simi-
larity in terms of the hamming distance and the similarity threshold

ΦDh = d · Φθ
π

. Thus, clusterheads can obtain an approximation of
the initial similarity by examining the hamming distance between
pairs of bitmaps. If the hamming distance between the two bitmaps
is lower or equal to ΦDh , then the two initial vectors will be con-
sidered similar, and each sensor in the tested pair will be able to
witness the measurements of the other sensor, thus being able to
increase its support by 1. At the end of the procedure, each clus-
terhead determines a set of potential outliers within its cluster, and
extracts a list of triplets in the form 〈Si, Xi, support〉 containing
for each outlier Si its bitmap Xi and the current support that Xi
has achieved so far.

Recall that given two vectors ui, uj , the probability P that the
corresponding bits in their bitmap encoding are equal is given by
Equation 2. Thus, the probability of satisfying the similarity test,
via LSH manipulation is given by the cumulative function of a bi-
nomial distribution:

0 10 20 30 40 50 60

θ

0

0.2

0.4

0.6

0.8

1

P
s
im

il
a
r Φ

θ
 = 10

Φ
θ
 = 30

FN1 FN2

FP2
FP1

Figure 3: Probability Psimilar of judging two bitmaps as simi-
lar, depending on the angle (θ) of the initial vectors and for two
different thresholds Φθ (W=16, reduction ratio=1/4).

Psimilar =

ΦDh∑
i=0

(
d

i

)
P d−i · (1− P)i (6)

Depending on whether the initial vectors are similar (θ(ui, uj) ≤
Φθ) or not, we can, therefore, estimate the expected false positive
and false negative rate of the similarity test. As an example, Fig-
ure 3 plots the value of Psimilar as a function of θ(ui, uj) (recall
that P is a function of the angle between the vectors) for two differ-
ent values of Φθ . The area FP1 above the line on the left denotes
the probability of classifying the two vectors as dissimilar, even
though their theta angle is less than the threshold (false positive,
when outlier detection is considered). Similarly, the area FN1 de-
notes the probability of classifying the encodings as similar, when
the corresponding initial vectors are not (false negative). The areas
denoted as FP2 and FN2 correspond to the same probabilities for
an increased value of Φθ . We can observe that the method is more
accurate (i.e., leads to smaller areas for false positive and nega-
tive detections) for more strict definitions of an outlier implied by
smaller Φθ thresholds.

In Figure 4 we depict the probability that TACO correctly iden-
tifies two similar vectors as similar, varying the length d of the
bitmap. Using more LSH hashing functions (i.e choosing a higher
d), increases the probability of resulting in a successful test.

5.2 Inter-Cluster Processing
Local outlier lists extracted by clusterheads take into account

both the recent history of values and the neighborhood similarity
(i.e., motes with similar measurements in the same cluster). How-
ever, this list of outliers is not final, as the posed query may have
specified that a mote may also be witnessed by motes assigned to
different clusterheads. Thus, an inter-cluster communication phase
must take place, in which each clusterhead communicates informa-
tion (i.e., its produced triplets) regarding its local, potential outlier
motes that do not satisfy the minSup parameter. In addition, if the
required support is different for each sensor (i.e., minSup is ex-
pressed as a percentage of nodes in the cluster), then the minSup
parameter for each potential outlier also needs to be transmitted.
Please note that the number of potential outliers is expected to only
be a small portion of the total motes participating in a cluster.

During the inter-cluster communication phase each clusterhead
transmits its potential outliers to those clusterheads where its lo-
cally determined outliers may increase their support (based on the
restrictions of the query). This requires computing a circular net-
work path by solving a TSP problem that has as origin the cluster-
head, as endpoint the base station, and as intermediate nodes those
sensors that may help increase the support of this clusterhead’s po-
tential outliers. The TSP can be computed either by the basestation
after clusterhead election, or in an approximate way by imposing
GPSR [16] to aid clusterheads make locally optimal routing de-

32 64 96 128 160 192 224 256

d

0.8

0.85

0.9

0.95

1

P
s
im

il
a
r

Figure 4: Probability Psimilar of judging two bitmaps (of vec-
tors that pass the similarity test) as similar, depending on the
number of bits d used in the LSH encoding (W=16, θ=5, Φθ=10)

cisions. However, note that such a greedy algorithm for TSP may
result in the worst route for certain point - clusterhead distributions.

Any set PotOut of potential outliers received by a clusterhead
C is compared to local sensor bitmaps and the support parameter of
nodes within PotOut is increased appropriately upon a similarity
occurrence. In this phase, upon a successful similarity test, we do
not increase the support of motes within the current cluster (i.e., the
cluster of C), since at the same time the potential outliers produced
by C have been correspondingly forwarded to neighboring clusters
in search of additional support. Any potential outlier that reaches
the desired minSup support is excluded from the list of potential
outliers that will be forwarded to the next clusterhead.

5.3 Boosting TACO Encodings
We note that the process described in Section 5.2 can accurately

compute the support of a mote in the network (assuming a reliable
communication protocol that resolves conflicts and lost messages).
Thus, if the whole process was executed using the initial measure-
ments (and not the LSH vectors) the resulting list of outliers would
be exactly the same with the one that would be computed by the
base station, after receiving all measurements and performing the
calculations locally. The application of LSH however results in im-
precision during pair-wise similarity tests. We now show how this
imprecision can be bounded in a controllable manner in order to
satisfy the needs of the monitoring application.

Assume that a clusterhead has received a pair of bitmapsXi, Xj ,
each consisting of d bits. We split the initial bitmaps Xi, Xj in
µ groups (Xi1 , Xj1), (Xi2 , Xj2), . . . , (Xiµ , Xjµ), such that Xi
is the concatenation of Xi1 ,. . . ,Xiµ , and similarly for Xj . Each
of Xiκ and Xjκ is a bitmap of n bits such that d = µ · n. For
each group gκ we obtain an estimation θκ of angle similarity using
Equation 5 and, subsequently, an answer to the similarity test based
on the pair of bitmaps in the group. We then provide as an answer
to the similarity test, the answer provided by the majority of the µ
similarity tests.2

Two questions that naturally arise are: (i) Does the aforemen-
tioned partitioning of the hash space help improve the accuracy of
successful classification?; and (ii) Which value of µ should one
use? Let us consider the probability of correctly classifying two
similar vectors in TACO (the case of dissimilar vectors is sym-
metric). In our original (unpartitioned) framework, the probability
of correctly determining the two vectors as similar is Psimilar(d),
given by Equation 6. Thus, the failure probability of incorrectly
classifying two similar vectors as dissimilar is Pwrong(d) = 1 −
Psimilar(d).

By separating the initial bitmaps to µ groups, each containing
d
µ

bits, one can view the above classification as using µ indepen-
dent Bernoulli trials, which each return 1 (similarity) with a suc-
cess probability of Psimilar(dµ), and 0 (dissimilarity), otherwise.
Let X denote the random variable that computes the sum of these
2Ties are resolved by taking the median estimate of θks.

µ trials. In order for our classification to incorrectly classify the
two vectors as dissimilar, more than half of the µ similarity tests
must fail. The average number of successes in these µ tests is X =
µ×Psimilar(dµ). A direct application of the Chernoff bounds gives
that more than half of the Bernoulli trials can fail with a probability
Pwrong(d, µ) at most: Pwrong(d, µ) ≤ e

−2µ(Psimilar(d
µ

)− 1
2

)2 .
Given that the number of bits d and, thus, the number of poten-
tial values for µ is small, we may compare Pwrong(d, µ) with
Pwrong(d) for a small set of µ values and determine whether it is
more beneficial to use this boosting approach or not. We also need
to make two important observations regarding the possible values
of µ: (i) The number of possible µ values is further restricted by the
fact that our above analysis holds for µ values that provide a (per
group) success probability > 0.5 and (ii) Increasing the value of
µ may provide worse results, as the number of used bits per group
decreases. We explore this issue further in our experiments.

6. LOAD BALANCING AND COMPARISON
PRUNING

6.1 Leveraging Additional Motes for Outlier
Detection

In our initial framework, clusterhead nodes are required to per-
form data collection and reporting, as well as bitmap comparisons.
As a result, clusterheads are overloaded with extra communication
and processing costs, thus resulting in larger energy drain, when
compared to other nodes. In order to avoid draining the energy of
clusterhead nodes, the network structure will need to be frequently
reorganized (by electing new clusterheads). While protocols such
as HEED limit the number of messages required during the cluster-
head election process, this election process still requires bandwidth.
In order to limit the overhead of clusterhead nodes, we thus extend
our framework, by incorporating the notion of bucket nodes.

Bucket nodes (or simply buckets) are motes within a cluster the
presence of which aims at distributing communication and process-
ing tasks and their associated costs. Besides selecting the cluster-
head nodes, within each cluster the election process continues to
elect additional B bucket nodes. This election process is easier to
carry out by using the same algorithm (i.e., HEED) that we used
for the clusterhead election.

After electing the bucket nodes within each cluster, our frame-
work determines a mechanism that distributes the outlier detection
duties amongst them. Our goal is to group similar bitmaps in the
same bucket so that the comparisons that will take place within
each bucket produce just a few local outliers. To achieve this, we
introduce a second level of hashing. More precisely:

• Recall that the encoding consists of d bits. Let Wh(Xi) denote
the Hamming weight (that is, the number of set bits) of a bitmap
Xi containing the encoded measurements of node Si. Obviously
0 ≤Wh(Xi) ≤ d.

• Consider a partitioning of the hash key space to the elected
buckets, such that each hash key is assigned to the bWh(Xi)

d
B

c-th
bucket. Motes with similar bitmaps will have nearby Hamming
weights, thus hashing to the same bucket with high probability.

• Please recall that encodings that can support each other in our
framework have a Hamming distance lower or equal to ΦDh . In or-
der to guarantee that a node’s encoding can be used to witness any
possible encoding within its cluster, this encoding needs to be sent
to all buckets that cover the hash key range bmax{Wh(Xi)−ΦDh

,0}
d
B

c

to bmin{Wh(Xi)+ΦDh
,d}

d
B

c. Thus, the value of B determines the

number of buckets to which an encoding must be sent. Larger val-
ues ofB reduce the range of each bucket, but result in more encod-
ings being transmitted to multiple buckets. In our framework, we
select the valueB (whenever at least B nodes exist in the cluster) by
setting d

B
> ΦDh =⇒ B < d

ΦDh
. As we will shortly show, this

guarantees that each encoding will need to be transmitted to at most
one additional bucket, thus avoiding hashing the measurements of
each node to multiple buckets.

• The transmission of an encoding to multiple bucket nodes en-
sures that it may be tested for similarity with any value that may
potentially witness it. Therefore, the support that a node’s mea-
surements have reached is distributed in multiple buckets needing
to be combined.

• Moreover, we must also make sure that the similarity test be-
tween two encodings is not performed more than once. Thus, we
impose the following rules:(a) For encodings mapping to the same
bucket node, the similarity test between them is performed only
in that bucket node; and (b) For encodings mapping to different
bucket nodes, their similarity test is performed only in the bucket
node with the lowest id amongst these two. Given these two re-
quirements, we can thus limit the number of bucket nodes to which
we transmit an encoding to the range bmax{Wh(Xi)−ΦDh

,0}
d
B

c to

bWh(Xi)
d
B

c. The above range for B < d
ΦDh

is guaranteed to con-

tain at most 2 buckets.

Thus, each bucket reports the set of outliers that it has detected,
along with their support, to the clusterhead. The clusterhead per-
forms the following tests:

• Any encoding reported to the clusterhead by at least one, but
not all bucket nodes to which it was transmitted, is guaranteed not
to be an outlier, since it must have reached the required support at
those bucket nodes that did not report the encoding.

• For the remaining encodings, the received support is added, and
only those encodings that did not receive the required overall sup-
port are considered to be outliers.

6.2 Load Balancing Among Buckets
Despite the fact that the introduction of bucket nodes does alle-

viate clusterheads from comparison and message reception load, it
does not guarantee by itself that the portion of load taken away from
the clusterheads will be equally distributed between buckets. In
particular, we expect that motes sampling ordinary values of mea-
sured attributes will produce similar bitmaps, thus directing these
bitmaps to a limited subset of buckets, instead of equally utilizing
the whole arrangement. In such a situation, an equi-width parti-
tioning of the hash key space to the bucket nodes is obviously not
a good strategy. On the other hand, if we wish to determine a more
suitable hash key space allocation, we require information about the
data distribution of the monitored attributes and, more precisely,
about the distribution of the hamming weight of the bitmaps that
original value vectors yield. Based on the above observations, we
can devise a load balancing mechanism that can be used after the
initial, equal-width partitioning in order to repartition the hash key
space between bucket nodes. Our load balancing mechanism fos-
ters simple equi-width histograms and consists of three phases:
a) histogram calculation per bucket, b) histogram communication
between buckets and c) hash key space reassignment.

During the histogram calculation phase, each bucket locally con-
structs equi-width histograms by countingWh(Xi) frequencies be-

longing to bitmaps that were hashed to them. The range of his-
togram’s domain value is restricted to the hash key space portion
assigned to each bucket. Obviously, this phase takes place side
by side with the normal operation of the motes. We note that this
phase adds minimum computation overhead since it only involves
increasing by one the corresponding histogram bucket counter for
each received bitmap.

In the histogram communication phase, each bucket communi-
cates to its clusterhead (a) its estimated frequency counts attached,
and (b) the width parameter c that it used in its histogram calcu-
lation. From the previous partitioning of the hash key space, the
clusterhead knows the hash key space of each bucket node. Thus,
the transmission of the width c is enough to determine (a) the num-
ber of received bars/values, and (b) the range of each bar of the
received histogram. Thus, the clusterhead can easily reconstruct
the histograms that it received.

The final step involves the adjustment of the hash key space allo-
cation that will provide the desired load balance based on the trans-
mitted histograms. Based on the received histograms, the cluster-
head determines a new space partitioning and broadcasts it to all
nodes in its cluster. The aforementioned phases can be periodically
(but not frequently) repeated to adjust the bounds allocated to each
bucket, adapting the arrangement to changing data distributions.

The mechanisms described in this section better balance the load
among buckets and also refrain from performing unnecessary sim-
ilarity checks between dissimilar pairs of bitmaps, which would
otherwise have arrived at the clusterhead. This stems from the fact
that hashing bitmaps based on their hamming weight ensures that
dissimilar bitmaps are hashed to different buckets. We experimen-
tally validate the ability of this second level hashing technique to
prune the number of comparisons in Section 7.5.

7. EXPERIMENTS

7.1 Experimental Setup
In order to evaluate the performance of our techniques we im-

plemented our framework on top of the TOSSIM network simula-
tor [20]. Since TOSSIM imposes restrictions on the network size
and is rather slow in simulating experiments lasting for thousands
of epochs, we further developed an additional lightweight simulator
in Java and used it for our sensitivity analysis, where we vary the
values of several parameters and assess the accuracy of our outlier
detection scheme. The TOSSIM simulator was used in smaller-
scale experiments, in order to evaluate the energy and bandwidth
consumption of our techniques and of alternative methods for com-
puting outliers. Through these experiments we examine the perfor-
mance of all methods, while taking into account message loss and
collisions, which in turn result in additional retransmissions and
affect the energy consumption and the network lifetime.

In our experiments we utilized two real world data sets. The first,
termed Intel Lab Data includes temperature and humidity measure-
ments collected by 48 motes for a period of 633 and 487 epochs,
respectively, in the Intel Research, Berkeley lab [9]. The second,
termed Weather Data includes air temperature, relative humidity
and solar irradiance measurements from the station in the Univer-
sity of Washington and for the year 2002 [7]. We used these mea-
surements to generate readings for 100 motes for a period of 2000
epochs. In both data sets we increased the complexity of the tem-
perature and humidity data by specifying for each mote a 6% prob-
ability that it will fail dirty at some point. We simulated failures
using a known deficiency [9] of the MICA2 temperature sensor:
each mote that fails-dirty increases its measurement (in our exper-
iment this increase occurs at an average rate of about 1 degree per

(a) Intel.Temperature Precision, Recall vs Similarity Angle

(b) Intel.Humidity Precision,Recall vs Similarity Angle

Figure 5: Average Precision, Recall in Intel Data Set

epoch), until it reaches a MAX_VAL parameter. This parameter
was set to 100 degrees for the Intel lab data set and 200 degrees for
the Weather data (due to the fact that the Weather data set contains
higher average values). To prevent the measurements from lying on
a straight line, we also impose a noise up to 15% at the values of a
node that fails dirty. Additionally, each node with probability 0.4%
at each epoch obtains a spurious measurement which is modeled as
a random reading between 0 and MAX_VAL degrees. Finally, for
solar irradiance measurements, we randomly injected values ob-
tained at various time periods to the sequence of readings, in order
to generate outliers.

We need to emphasize that increasing the complexity of the real
data sets actually represents a worst-case scenario for our tech-
niques. It is easy to understand that the amount of transmitted data
during the intracluster communication phase is independent of the
data sets’ complexity, since it only depends on the specified pa-
rameter d that controls the dimensionality reduction. On the other
hand, the amount of data exchanged during the intercluster phase of
our framework depends on the number of generated outlier values.
Thus, the added data set complexity only increases the transmitted
data (and, thus, the energy consumption) of our framework. De-
spite this fact, we demonstrate that our techniques can still manage
to drastically reduce the amount of transmitted data, in some cases
even below what a simple aggregate query (i.e., MIN, MAX or
SUM) would require under TAG [21].

In the Intel Lab and Weather data sets we organized the sensor
nodes in four and ten clusters, correspondingly. Please note that we
selected a larger number of clusters for the Weather data set, due to
the larger number of sensor nodes that appear in it.

7.2 Sensitivity Analysis
We first present a series of sensitivity analysis experiments using

our Java simulator in order to explore a reasonably rich subset of the
parameter space. To evaluate the accuracy of TACO in the available
data sets we initially focus on the precision and recall metrics. In a
nutshell, the precision specifies the percentage of reported outliers

(a) Weather Precision: Temperature, Humidity and Solar Irradiance vs Similarity Angle

(b) Weather Recall: Temperature, Humidity and Solar Irradiance vs Similarity Angle

Figure 6: Average Precision, Recall in Weather Data Set

that are true outliers, while the recall specifies the percentage of
outliers that are reported by our framework. The set of true outliers
was computed offline (i.e. assuming all data was locally available),
based on the selected similarity metric and threshold, specified in
each experiment. The goal of these experiments is to measure the
accuracy of the TACO scheme and of the boosting process, and to
assess their resilience to different compression ratios.

We used different tumble sizes ranging between 16 and 32 mea-
surements and Φθ thresholds between 10 and 30 degrees. More-
over, we experimented with a reduction ratio up to 1/16 for each
(W,Φθ) combination. In the Intel Lab data sets we found little
fluctuations by changing the minSup parameter from 3-5 motes, so
henceforth we consider a fixed minSup=4 (please recall that there
are 48 motes in this data set). Due to a similar observation in the
Weather data set, minSup is set to 6 motes. All the experiments
were repeated 10 times. Figures 5 and 6 depict the accuracy of our
methods presenting the average precision and recall for the used
data sets, for different similarity angles and reduction ratios. To ac-
quire these, we obtained precision and recall values per tumble and
calculated the average precision, recall over all tumbles in the run.
Finally, we proceeded by estimating averages over 10 repetitions,
using a different random set of hash functions in each iteration.

As it can be easily observed, in most of the cases, motes produc-
ing outlying values can be successfully pinpointed by our frame-
work with average precision and recall > 80%, even when im-
posing a 1/8 or 1/16 reduction ratio, for similarity angles up to 20
degrees. The TACO scheme is much more accurate when asked to
capture strict, sensitive definitions of outlying values, implied by a
low Φθ value. This behavior is expected based on our formal anal-
ysis (see Figure 3 and Equation 2). We also note that the model
may slightly swerve from its expected behavior depending on the
number of near-to-threshold outliers (those falling in the areas FP ,
FN in Figure 3) that exist in the data set. That is, for instance, the
case when switching from 25 to 30 degrees in the humidity data
sets of Figures 5 and 6.

Obviously, an improvement in the final results may arise by in-
creasing the length d of each bitmap (i.e., consider more moderate
reduction ratios, Figure 4). Another way to improve performance
is to utilize the boosting process discussed in Section 5.3. All pre-
vious experiments were ran using a single boosting group during

the comparison procedure. Figure 7 depicts the improvement in the
values of precision and recall for the Intel humidity data set as more
groups are considered and for a variety of tumble sizes (the trends
are similar for the other data sets, which are omitted due to space
constraints, as well). Points in Figure 7 corresponding to the same
tumble sizeW use bitmaps of the same length, so that the reduction
ratio is 1/8, but differ in the number of groups utilized during the
similarity estimation. It can easily be deduced that using 4 boosting
groups is the optimal solution for all the cited tumble sizes, while
both the 4 group and 8 group lines tend to ascend by increasing
the W parameter. This comes as no surprise since the selection of
higher W values results in larger (but still 1/8 reduced) bitmaps,
which in turn equip the overall comparison model with more accu-
rate submodels. Moreover, notice that using 8 groups may provide
worse results (i.e., for W=16) since the number of bits per group
is in that case small, thus resulting in submodels that are prone to
produce low quality similarity estimations. For example using 8
groups for W=16, results in just 8 bits for each theta-estimator.
Thus, for these data sets the optimal number of groups (µ) is 4.

Taking one step further we extracted 95% confidence intervals
for each tumble across multiple data sets. Due to space limitations
we omit the corresponding graphs, however, we note TACO ex-
hibits little deviations (±0.04) from its average behavior in a tum-
ble in all of the data sets.

7.3 Performance Evaluation Using TOSSIM
Due to limitations in the simulation environment of TOSSIM,

we restricted our experimental evaluation to the Intel Lab data set.
We used the default TOSH_ DATA_ LENGTH value set to 29 bytes
and applied 1/4, 1/8 and 1/16 reduction ratios to the original binary
representation of tumbles containing W=16 values each.

We measured the performance of our TACO framework against
two alternative approaches. The first approach, termed as Non-
TACO, performed the whole intra and inter-cluster communication
procedure using the initial value vectors of motes "as is". In the
TACO and NonTACO approaches, motes producing outlying val-
ues were identified in-network, following precalculated TSP paths,
and were subsequently sent to the base station by the last cluster-
head in each path. In the third approach, termed as SelectStar,
motes transmitted original value vectors to their clusterheads and,

(a) Intel.Humidity Precision vs Tumble size (b) Intel.Humidity Recall vs Tumble size

Figure 7: Intel.Humidity Precision,Recall adjustment by boosting fixed 1/8 compressed bitmaps

Figure 8: Total Bits Transmitted per approach Figure 9: Transmitted bits categorization Figure 10: Average Lifetime

omitting the intercluster communication phase, clusterheads for-
warded these values as well as their own vector to the base station.

Besides simply presenting results involving these three approach-
es (TACO, NonTACO and SelectStar), we also seek to analyze their
bandwidth consumption during the different phases of our frame-
work. This analysis yields some interesting comparisons. For ex-
ample, the number of bits transmitted during the intracluster phase
of NonTACO provides a lower bound for the bandwidth consump-
tion that a simple continuous aggregate query (such as MAX or
SUM query) requires under TAG for all epochs, as this quantity: (a)
Simply corresponds to transmitting the data observations of each
sensor to one-hop neighbors (i.e., the clusterheads), and (b) Does
not contain bandwidth required for the transmission of data from
the clusterheads to the base station. Thus, if TACO requires fewer
transmitted bits than the intracluster phase of NonTACO, then it
also requires less bandwidth than a continuous aggregate query.

In our setup for TACO, during the first tumble, the base station
broadcasts a message encapsulating three values: (1) the tumble
size parameterW ; (2) the bitmap length d; and (3) a common seed,
which enables the motes to produce the same d*W matrix of uni-
formly distributed values composing d LSH vectors. The overhead
of transmitting these values is included in the presented graphs.

Figure 8 depicts the average, maximum and minimum number of
total bits transmitted in the network in a tumble for the TACO (with
different reduction ratios), NonTACO and SelectStar approaches.
Comparing, for instance, the performance of the middle case of 1/8
Reduction and the NonTACO executions, we observe that, in terms
of total transmitted bits the reduction achieved by TACO is on the
average 1/9 per tumble, thus exceeding the imposed 1/8 reduction
ratio. The same observation holds for the other two reduction ra-
tios. This comes as no surprise, since message collisions entail-
ing retransmissions are more frequent with increased message sizes

used in NonTACO, augmenting the total number of bits transmit-
ted. Furthermore, comparing these results with the SelectStar ap-
proach exhibits the efficiency of the proposed inter-cluster commu-
nication phase for in-network outlier identification. The achieved
reduction ratio of TACO 1/8 Reduction, when compared to the Se-
lectStar approach is, on average 1/12, with a maximum value of
1/15. This validates the expected benefit derived by TACO.

Figure 9 presents a categorization of the average number of bits
transmitted in a tumble. For each of the approaches, we catego-
rize the transmitted bits as: (1) ToClusterhead: bits transmitted to
clusterheads during the intra-cluster communication phase; (2) In-
tercluster: bits transmitted in the network during the inter-cluster
communication phase (applicable only for TACO and NonTACO);
(3) ToBasestation: bits transmitted from clusterheads towards the
base station; (4) Retransmissions: additional bits resulting from
message retransmission due to lossy communication channels or
collisions. In Figure 9, please notice that the bits classified as
Intercluster are always less than those in the ToClusterhead cate-
gory. Moreover, the total bits of TACO (shown in Figure 8), are
actually less than what NonTACO requires in its intracluster phase
(Figure 9), even without including the corresponding bits involving
retransmissions during this phase (73% of its total retransmission
bits). Based on our earlier discussion, this implies that TACO under
collisions and retransmissions is able to identify outlier readings at
a fraction than what even a simple aggregate query would require.

As a final exhibition of the energy savings provided by our frame-
work, we used PowerTOSSIM [25] to acquire power measurements
yielded during simulation execution. In Figure 10 we used the pre-
viously extracted power measurements to plot the average network
lifetime for motes initialized with 5000 mJ residual energy. Net-
work lifetime is defined as the epoch on which the first mote in the
network totally drains its energy. Overall, the TACO application

Figure 11: Intel.Temperature TACO vs Robust Accuracy vary-
ing minSup

Figure 12: Intel.Temp. TACO vs Robust transmitted bits

reduces the power consumption up to a factor of 1/2.7 compared
to the NonTACO approach. The difference between the selected
reduction ratio (1/4) and the corresponding power consumption ra-
tio (1/2.7) stems from the fact that motes need to periodically turn
on/off their radio to check whether they are recipients of any trans-
mission attempts. This fact mainly affects the TACO implemen-
tation since in the other two approaches, where more bits are de-
livered in the network, the amount of time that the radio remains
turned on is indeed devoted to message reception. We leave the
development of a more efficient transmission/reception schedule,
tailored for our TACO scheme as future work.

7.4 TACO vs Hierarchical Outlier Detection
Techniques

In the previous sections we experimentally validated the ability
of our framework to tune the amount of transmitted data while si-
multaneously accurately predicting outliers. On the contrary, ex-
isting in-network outlier detection techniques, such as the algo-
rithm of [9, 27] cannot tune the amount of transmitted information.
Moreover, these algorithms lack the ability to provide guarantees
since they both base their decisions on partial knowledge of recent
measurements received by intermediate nodes in the hierarchy from
their descendant nodes. In this subsection, we perform a compari-
son to the recently proposed algorithm of [9], which we will term
as Robust. We use Robust as the most representative example to
extract comparative results related to accuracy and bandwidth con-
sumption since it uses an equivalent outlier definition and bases its
decisions on common similarity measures. As in the previous sub-
section, we utilized the Intel Lab data set in our study, keeping the
TACO framework configuration unchanged.

In order to achieve a fair comparison, the Robust algorithm was
simulated using a tree network organization of three levels (includ-
ing the base station) with a CacheSize = 24 measurements. Note
that such a configuration is a good scenario for Robust since most
of the motes that can witness each other often share common parent
nodes. Thus, the loss of witnesses as data ascend the tree organiza-
tion is reduced. Please refer to [9] for further details.

In the evaluation, we employed the correlation coefficient-corr
(see Table 1) as a common similarity measure equivalent to the
cosine similarity as mentioned in Section 4.2. We chose to demon-
strate results regarding the temperature measurements in the data
set. However, we note that the outcome was similar for the hu-
midity data and proportional for different Φcorr thresholds. Fig-
ure 11 depicts the accuracy of Robust compared to TACO with dif-
ferent reduction ratios varying the minSup parameter. To acquire
a holistic performance view of the approaches, we computed the F-
Measure metric as F-measure=2/(1/Precision+1/Recall). Notably,
TACO behaves better even for the extreme case of 1/16 reduction,
while Robust falls short up to 10%. To complete the picture, Fig-

Φθ
10 20

Cluster Buckets Cmps Multihash Bitmaps Cmps Multihash Bitmaps
Size Messages Per Bucket Messages Per Bucket

1 66.00 0 12 66 0 12
12 2 38.08 0.90 6.45 40.92 1.36 6.68

4 24.55 7.71 3.65 30.95 8.88 4.08
1 276.00 0 24 276 0 24

24 2 158.06 1.62 12.81 171.80 2.76 13.38
4 101.10 14.97 7.27 128.63 17.61 8.15
1 630 0 36 630 0 36

36 2 363.64 2.66 19.33 394.97 4.30 20.15
4 230.73 22.88 10.88 291.14 26.28 12.19
1 1128 0 48 1128 0 48

48 2 640.10 3.14 25.57 710.95 5.85 26.93
4 412.76 30.17 14.49 518.57 34.64 16.21

Table 3: The effect of bucket node introduction (W=16, d=128)

ure 12 shows the average bits transmitted by motes in the two
different settings. Notice that the stacked bars in the TACO ap-
proach form the total number of transmitted bits which comprises
the bits devoted to intercluster communication (TACO-Intercluster)
and those termed as TACO-remaining for the remainder. The in-
crement of the minSup parameter in the graph correspondingly
causes an increment in the TACO-Intercluster bits as more motes
do not manage to find adequate support in their cluster and subse-
quently participate in the intercluster communication phase. TACO
ensures less bandwidth consumption with a ratio varying from 1/2.6
for a reduction ratio of 1/4, and up to 1/7.8 for 1/16 reduction.

7.5 Bucket Node Exploitation
In order to better perceive the benefits derived from bucket node

introduction, Table 3 summarizes the basic features ascribed to net-
work clusters for different numbers B of bucket nodes. The table
provides measurements regarding the average number of compar-
isons along with the average number of messages resulting from
multi-hashed bitmaps. Moreover, it presents the average number
of bitmaps received per bucket for different cluster sizes and Φθ
thresholds. Focusing on the average number of comparisons per
tumble (Cmps in the Table), this significantly decreases as new
bucket nodes are introduced in the cluster. From this point of view,
we have achieved our goal since, as mentioned in Section 6.1, not
only bucket nodes do alleviate the clusterhead from comparison
load, but also the hash key space distribution amongst them pre-
serves the redundant comparisons.

Studying the number of multi-hash messages (MultihashMsgs in
the Table) and the number of bitmaps received per bucket (Bitmaps-
PerBucket) a trade-off seems to appear. The first column regards
a message transmission cost mainly charged to the regular motes
in a cluster, while the second involves load distribution between
buckets. As new bucket nodes are adopted in the cluster, the Multi-
hashMsgs increases with a simultaneous decrease in BitmapsPer-
Bucket. In other words, the introduction of more bucket nodes

causes a shift in the energy consumption from clusterhead and buc-
ket nodes to regular cluster motes. Achieving appropriate balance,
aids in maintaining uniform energy consumption in the whole clus-
ter, which in turn leads to infrequent network reorganization.

8. CONCLUSIONS
In this paper we presented TACO, a framework for detecting out-

liers in wireless sensor networks. Our techniques exploit locality
sensitive hashing as a means to compress individual sensor readings
and use a novel second level hashing mechanism to achieve intra-
cluster comparison pruning and load balancing. TACO is largely
parameterizable, as it bases its operation on a small set of intuitive
application defined parameters: (i) the length of the LSH bitmaps
(d), which controls the level of desired reduction; (ii) the number of
recent measurements that should be taken into account when per-
forming the similarity test (W), which can be fine-tuned depend-
ing on the application’s desire to put more or less emphasis to past
values; (iii) the desired similarity threshold (Φ); and (iv) the re-
quired level of support for non-outliers. TACO is not restricted to a
monolithic definition of an outlier but, instead, supports a number
of intuitive similarity tests. Thus, the application can specialize and
fine-tune the outlier detection process by choosing appropriate val-
ues for these parameters. We also presented novel extensions to the
basic TACO scheme that boost the accuracy of computing outliers.
Our framework processes outliers in-network, using a novel inter-
cluster communication phase. Our experiments demonstrated that
our framework can reliably identify outlier readings using a frac-
tion of the bandwidth and energy that would otherwise be required,
resulting in significantly prolonged network lifetime.

9. REFERENCES
[1] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.

Estimating Aggregates on a Peer-to-Peer Network. Technical
report, Stanford, 2003.

[2] S. D. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a simple
pruning rule. In KDD, 2003.

[3] J. Branch, B. Szymanski, C. Giannella, R. Wolff, and
H. Kargupta. In-network outlier detection in wireless sensor
networks. In ICDCS, 2006.

[4] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams: a new class of data management
applications. In VLDB, 2002.

[5] M. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, 2002.

[6] J. Chen, S. Kher, and A. Somani. Distributed Fault Detection
of Wireless Sensor Networks. In DIWANS, 2006.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Compressing Historical Information in Sensor Networks. In
ACM SIGMOD, 2004.

[8] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Hierarchical In-Network Data Aggregation with Quality
Guarantees. In EDBT, 2004.

[9] A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and
A. Delis. Another Outlier Bites the Dust: Computing
Meaningful Aggregates in Sensor Networks. In ICDE, 2009.

[10] A. Gionis, D. Gunopulos, and N. Koudas. Efficient and
tunable similar set retrieval. In SIGMOD, 2001.

[11] M. Goemans and D. Williamson. Improved Approximation
Algorithms for Maximum Cut and Satisfiability Problems
Using Semidefinite Programming. J. ACM, 42(6), 1995.

[12] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC,
1998.

[13] Y. j. Wen, A. M. Agogino, and K.Goebel. Fuzzy Validation
and Fusion for Wireless Sensor Networks. In ASME, 2004.

[14] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and
J. Widom. Declarative Support for Sensor Data Cleaning. In
Pervasive, 2006.

[15] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive
Cleaning for RFID Data Streams. In VLDB, 2006.

[16] B. Karp and H. Kung. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. In MOBICOM, 2000.

[17] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based
Computation of Aggregate Information. In FOCS, 2003.

[18] N. Khoussainova, M. Balazinska, and D. Suciu. Towards
Correcting Input Data Errors Probabilistically using Integrity
Constraints. In MobiDE, 2006.

[19] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor
Networks. In ICDE, 2005.

[20] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Accurate and scalable simulation of entire TinyOS
applications. In SenSys, 2004.

[21] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny Aggregation Service for ad hoc Sensor
Networks. In OSDI Conf., 2002.

[22] M. Qin and R. Zimmermann. VCA: An Energy-Efficient
Voting-Based Clustering Algorithm for Sensor Networks.
J.UCS, 13(1), 2007.

[23] D. Ravichandran, P. Pantel, and E. Hovy. Randomized
algorithms and NLP: using locality sensitive hash function
for high speed noun clustering. In ACL, 2005.

[24] B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in
sensor networks. In MobiHoc, 2007.

[25] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and
M. Welsh. Simulating the Power Consumption of
Large-Scale Sensor Network Applications. In Sensys, 2004.

[26] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware
Routing in Mobile Ad Hoc Networks. In MobiCom, 1998.

[27] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online Outlier Detection
in Sensor Data Using Non-Parametric Models. In VLDB,
2006.

[28] X. Xiao, W. Peng, C. Hung, and W. Lee. Using SensorRanks
for In-Network Detection of Faulty Readings in Wireless
Sensor Networks. In MobiDE, 2007.

[29] G. Xue, Y. Jiang, Y. You, and M. Li. A topology-aware
hierarchical structured overlay network based on locality
sensitive hashing scheme. In UPGRADE, 2007.

[30] Y. Yao and J. Gehrke. The Cougar Approach to In-Network
Query Processing in Sensor Networks. SIGMOD Record,
31(3), 2002.

[31] O. Younis and S. Fahmy. Distributed Clustering in Ad-hoc
Sensor Networks: A Hybrid, Energy-Efficient Approach. In
INFOCOM, 2004.

[32] D. Zeinalipour, P. Andreou, P. Chrysanthis, G. Samaras, and
A. Pitsillides. The Micropulse Framework for Adaptive
Waking Windows in Sensor Networks. In MDM, 2007.

[33] Y. Zhuang, L. Chen, S. Wang, and J. Lian. A Weighted
Moving Average-based Approach for Cleaning Sensor Data.
In ICDCS, 2007.

