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ABSTRACT 
Dwarf is a highly compressed structure for computing, storing, and 
querying data cubes. Dwarf identifies prefix and suffix structural 
redundancies and factors them out by coalescing their store. Pre- 
fix redundancy is high on dense areas of cubes but suffix redun- 
dancy is significantly higher for sparse areas. Putting the two to- 
gether fuses the exponential sizes of high dimensional full cubes 
into a dramatically condensed data structure. The elimination of 
suffix redundancy has an equally dramatic reduction in the com- 
putation of the cube because recomputation of the redundant suf- 
fixes is avoided. This effect is multiplied in the presence of corre- 
lation amongst attributes in the cube. A Petabyte 25-dimensional 
cube was shrunk this way to a 2.3GB Dwarf Cube, in less than 20 
minutes, a 1:400000 storage reduction ratio. Still, Dwarf provides 
100% precision on cube queries and is a self-sufficient structure 
which requires no access to the fact table. What makes Dwarf prac- 
tical is the automatic discovery, in a single pass over the fact table, 
of  the prefix and suffix redundancies without user involvement or 
knowledge of the value distributions. 

This paper describes the Dwarf structure and the Dwarf cube 
construction algorithm. Further optimizations are then introduced 
for improving clustering and query performance. Experiments with 
the current implementation include comparisons on detailed mea- 
surements with real and synthetic datasets against previously pub- 
lished techniques. The comparisons show that Dwarfs by far out- 
perform these techniques on all counts: storage space, creation 
time, query response time, and updates of cubes. 

1. INTRODUCTION 
The data cube operator [GBLP] performs the computation of one 

or more aggregate functions for all possible combinations of group- 
ing attributes. The inherent difficulty with the cube operator is its 
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size, both for computing and storing it. The number of all possible 
group-bys increases exponentially with the number of the cube's 
dimensions and a naive store of the cube behaves in a similar way. 
The authors of [GBLP] provided some useful hints for cube com- 
putation including the use of parallelism, and mapping string di- 
mension types to integers for reducing the storage. The problem is 
exacerbated by the fact that new applications include an increasing 
number of dimensions and, thus, the explosion on the size of  the 
cube is a real problem. All methods proposed in the literature try to 
deal with the space problem, either by precomputing a subset of the 
possible group-bys [HRU, GHRU, Gup, BPT, SDN], by estimating 
the values of the group-bys using approximation [GM, VWI, SFB, 
AGP] or by using online aggregation [HHW] techniques. 

This paper defines Dwarf, a highly compressed structure z for 
computing, storing, and querying data cubes. Dwarf solves the stor- 
age space problem, by identifying prefix and suffix redundancies in 
the structure of the cube and factoring them out of the store. 

Prefix redundancy can be easily understood by considering a 
sample cube with dimensions a, b and e. Each value of dimen- 
sion a appears in 4 group-bys (a, ab, ae, abe), and possibly many 
times in each group-by. For example, for the fact table shown in 
Table 1 (to which we will keep referring throughout the paper) the 
value S1 will appear a total of  7 times in the corresponding cube, 
and more specifically in the group-bys: (SI, C2, P2), (SI, C3, P1), 
(S1,C2), (S1,C3), (S1,P2), (S1,P1) and (S1). The same also hap- 
pens with prefixes of size greater than one -note that each pair of  
a, b values will appear not only in the ab group-by, but also in the 
abe group-by. Dwarf recognizes this kind of redundancy, and stores 
every unique prefixjustonce. 

Store Customer Product Price 
S1 C2 P2 $70 
S1 C3 P1 $40 
$2 C1 P1 $90 
$2 C1 P2 $50 

Table 1: Fact Table for cube Sales 

Suffix redundancy occurs when two or more group-bys share a 
common suffix (like abe and be). For example, consider a value bj 
of dimension b that appears in the fact table with a single value ai of 

1 The name comes after Dwarf stars that have a very large condensed mass, 
but occupy very small space. They are so dense, that their mass is about 
one ton/cm 3 
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dimension a (such an example exists in Table 1, where the value C1 
appears with only the value $2). Then, the group-bys (ai, bj,x) and 
(bj,x) always have the same value, for any value x of dimension 
c. This happens because the second group-by aggregates all the 
tuples of the fact table that contain the combinations of any value 
of the a dimension (which here is just the value ai) with bj and x. 
Since x is generally a set of values, this suffix redundancy has a 
multiplicative effect. Suffix redundancies are even more apparent 
in cases of correlated dimension values. Such correlations are often 
in real datasets, like the Weather dataset used in one of our exper- 
iments. Suffix redundancy is identified during the construction of 
the Dwarf cube and eliminated by coalescing their space. 

What makes Dwarf practical is the automatic discovery of the 
prefix and suffix redundancies without requiring knowledge of the 
value distributions and without having to use sophisticated sam- 
piing techniques to figure them out. The Dwarf storage savings are 
spectacular for both dense and sparse cubes. We show that in most 
cases of very dense cubes, the size of the Dwarf cube is much less 
than the size of the fact table. However, while for dense cubes the 
savings are almost entirely from prefix redundancies, as the cubes 
get sparser, the savings from the suffix redundancy elimination in- 
creases, and quickly becomes the dominant factor of the total sav- 
ings. 

Equally, or even more, significant is the reduction of the com- 
putation cost. Each redundant suffix is identified prior to its com- 
putation, which results in substantial computational savings during 
creation. Furthermore, because of the condensed size of the Dwarf 
cube, the time needed to query and update is also reduced. Inher- 
ently, the Dwarf structure provides an index mechanism and needs 
no additional indexing for querying it. It is also self-sufficient in 
the sense that it does not need to access or reference the fact table 
in answering any of the views stored in it. 

An additional optimization that we have implemented is to avoid 
precomputation of certain group-bys that can be calculated on-the- 
fly by using fewer than a given constant amount oftuples. The in- 
formation needed to calculate these group-bys is stored inside the 
Dwarf structure in a very compact and clustered way. By modify- 
ing the value of the above constant, the user is able to trade query 
performance for storage space and creation time. This optimization 
was motivated from iceberg cubes [BR] and may be enabled by the 
user if a very limited amount of disk space and/or limited time for 
computing the Dwarf is available. 

To demonstrate the storage savings provided by Dwarf(and what 
fraction of the savings can be attributed to prefix and suffix redun- 
dancies), we first compare the Dwarf cube sizes against a binary 
storage footprint (BSF), i.e. as if all the views of the cube were 
stored in unindexed binary summary tables. Although this is not 
an efficient (or sometimes feasible) store for a cube or sub-cubes, it 
provides a well understood point of reference and it is useful when 
comparing different stores. 

We also compared the Dwarf cubes with Cubetrees which were 
shown in [RKR, KR] to exhibit at least a 10:1 better query response 
time, a 100:1 better update performance and 1:2 the storage of in- 
dexed relations. Our experiments show that Dwarfs consistently 
outperform the Cubetrees on all counts: storage space, creation 
time, query response time, and updates of full cubes. Dwarf cubes 
achieve comparable update performance on partial cubes stored on 
Cubetrees having the same size with Dwarf cubes. However, byte 
per byte, Dwarf stores many more materialized views than the cor- 
responding Cubetree smactures and, therefore, can answer a much 
wider class of queries for the same footprint. 

We used several data sets to compute Dwarf cubes. One of them 
was a cube of 20 dimensions, each having a cardinality of 1000, 

and a fact table containing 100000 tuples. The BSF for its cube 
is 4.4TB. 2 Eliminating the prefix redundancy, resulted in a Dwarf 
cube of 1.4 TB (31.8% of the original size). Eliminating the suffix 
redundancy reduced the size of the Dwarf cube to just 300 MB 3, a 
1:14666 reduction over BSF. Following Jim Gray's spirit of push- 
ing every idea to its limits, we decided to create a Petacube of 25- 
dimensions with BSF equal to one Petabyte. The Dwarf cube for 
the Petacube is just 2.3 GB and took less than 20 minutes to create. 
This is a 1:400000 storage reduction ratio. 

The rest of this paper is organized as follows: Section 2 presents 
the Dwarf structure and its formal properties. Sections 3 and 4 ex- 
plain how Dwarf cubes are constructed, queried and updated. Sec- 
tion 5 contains the performance analysis. The related work is pre- 
sented in Section 6 and the conclusions are reported in Section 7. 

2. THE DWARF STRUCTURE 
We first describe the Dwarf structure with an example. Then we 

define the properties of Dwarf formally. 

2.1 A Dwarf example 
Figure 1 shows the Dwarf Cube for the fact table shown in Ta- 

ble 1. It is a full cube using the aggregate function sum. The nodes 
are numbered according to the order of their creation. The height 
of the Dwarf is equal to the number of dimensions, each of which 
is mapped onto one of the levels shown in the figure. The root node 
contains cells of the form [key, pointer], one for each distinct value 
of the first dimension. The pointer of each cell points to the node 
below containing all the distinct values of the next dimension that 
are associated with the cell's key. The node pointed by a cell and 
all the cells inside it are dominated by the cell. For example the 
cell S1 of the root dominates the node containing the keys C2, C3. 
Each non-leaf node has a special ALL cell, shown as a small gray 
area to the right of the node, holding a pointer and corresponding 
to all the values of the node. 

A path from the root to a leaf such as (S1,C3,P1) corresponds 
to an instance of the group-by Store, Customer, Product and leads 
to a cell [P1 $40] which stores the aggregate of that instance. Some 
of the path cells can be open using the ALL cell. For example, 
(S2,ALL,P2) leads to the cell [P2 $50], and corresponds to the 
sum of the Prices paid by any Customer for Product P2 at Store 
$2. At the leaf level, each cell is of the form [key, aggregate] and 
holds the aggregate of all tuples that match a path from the root to 
it. Each leaf node also has an ALL cell that stores the aggregates 
for all the cells in the entire node. (ALL,ALL,ALL) leads to the to- 
tal Prices (group-by NONE). The reader can observe that the three 
paths ($2,C1,P2), (S2,ALL,P2), and (ALL,C1,P2), whose values 
are extracted from processing just the last tuple of the fact-table, all 
lead to the same cell [P2 $50], which, if stored in different nodes, 
would introduce suffix redundancies. By coalescing these nodes, 
we avoid such redundancies. In Figure 1 all nodes pointed by more 
than one pointer are coalesced nodes. 

2.2 Properties of Dwarf 
In Dwarf, like previous algorithms proposed for cube computa- 

tion, we require the dimension attributes to be of integer type (thus 
mapping other types, like strings, to integers in required) but, un- 
like other methods, we do not require packing the domain of values 
between zero and the cardinality of the dimension. Any group-by 

2The BSF sizes, and the size of Dwarf cubes without enabling suffix coa- 
lescing were accurately measured by first constructing the Dwarf cube, and 
then traversing it appropriately. 
3All the sizes of Dwarf cubes, unless stated otherwise, correspond to the 
~11 Dwarf cubes 
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Figure 1: The Dwarf Cube for Table 1 

of a D-dimensional cube can be expressed by a sequence of D val- 
ues (one for each dimension), to which we will refer as the coordi- 
nates of the group-by in a multidimensional space. In SQL queries, 
the coordinates are typically specified in the WHERE clause. The 
group-by's j - th coordinate can either be a value of the cube's j - th 
dimension, or left open to correspond to the ALL pseudo-value. 

The Dwarf data structure has the following properties: 

1. It is a directed acyclic graph (DAG) with just one root node 
and has exactly D levels, where D is the number of cube's 
dimensions. 

2. Nodes at the D-th level (leaf nodes) contain cells of the form: 
[key, aggregateValues]. 

3. Nodes in levels other that the D-th level (non-leaf nodes) con- 
tain cells of  the form: [key, pointer]. A cell C in a non-leaf 
node of level i points to a node at level i + 1, which it dom- 
inates. The dominated node then has the node of C as its 
parent node. 

4. Each node also contains a special cell, which corresponds 
to the cell with the pseudo-value ALL as its key. This cell 
contains either a pointer to a non-leaf node or to the aggre- 
gateValues of a leaf node. 

5. Cells belonging to nodes at level i of the structure contain 
keys that are values of the cube's i-th dimension. No two 
cells within the same node contain the same key value. 

6. Each cell Ci at the i-th level of the structure, corresponds 
to the sequence Si of i keys found in a path from the root 
to the cell's key. This sequence corresponds to a group-by 
with (D - i) dimensions unspecified. All group-bys having 
sequence Si as their prefix, will correspond to cells that are 
descendants of Ci in the Dwarf structure. For all these group- 
bys, their common prefix will be stored exactly once in the 
structure. 

7. When two or more nodes (either leaf or non-lea 0 generate 
identical nodes and cells to the structure, their storage is co- 
alesced, and only one copy of them is stored. In such a case, 
the coalesced node will be reachable through more than one 
paths from the root, all of which will share a common suf- 
fix. For example, in the node at the bottom of the Product 
level of Figure 1, the first cell of the node corresponds to the 
sequences (S1,C2,P2) and (ALL, C2, P2), which share the 

common suffix (C2,P2). If a node N is a coalesced node, 
then any node X which is a descendant of N will also be a 
coalesced node, since it can be reached from multiple paths 
from the root. 

A traversal in the Dwarf structure always follows a path of length 
D, starting from the root to a leaf node. It has the form ([Nl .vallALL], 
[N2.valIALL] ..... [ND.valIALL]), meaning that the i-th key found in 
the path will either be a value Ni.val of the i-th dimension, or the 
pseudo-value ALL. The Dwarf structure itself constitutes an effi- 
cient interlevel indexing method and requires no additional external 
indexing. 

We now define some terms which will help in the description of 
the algorithms. The dwarfofa node N is defined to be the node 
itself and all the dwarfs of the nodes dominated by the cells of  N. 
The dwarf of a node X that is dominated by some cell of  N is called 
a sub-dwarf of N. Since leaf node cells dominate no other nodes, 
the dwarf of a leaf node is the node itself. The number of cells 
in the node Nj, which a cell Ci dominates, is called the branching 
factor of Ci. 

A sequence of i keys, followed in any path from the root to a 
node N at level i + 1 of the Dwarf structure, is called the leading 
prefix of N. A leading prefix of N, which contains no coordinate 
with ALL, is called the primary leading prefix of N. 

The content of a cell Ci, belonging to a node N, is either the 
aggregateValues ofCi i f N  is a leaf node, or the sub-dwarf of Ci if 
N is a non-leaf node. 

2.3 Evidence of Structural Redundancy 

2.3.1 Prefix Redundancy on dense areas 
A path from the root of the Dwarf structure to a leaf, corresponds 

to an instance of some group-by. Dwarf creates the minimum num- 
ber of cells to accommodate all paths. In the cube presented in 
Figure 1, for the first level of the structure (Store), the maximum 
number of cells required is equal to the cardinality of the Store di- 
mension Cardstore plus 1 (for the ALL cell). 

For the second level (Customer), if the cube was completely 
dense, we would need a number of cells equal to the product: 

( Cardstore W 1) × ( Cardcustomer + 1) 

Since most cubes are sparse, there is no need to create so many 
cells. 

However, even in the case of dense cubes, the storage required 
to hold all cells of the structure (including the ALL cells) is com- 
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parable to that required to hold the fact table. A Dwarf for a sat- 
urated cube of D dimensions and the same cardinality N for each 
dimension, is actually a tree with a constant branching factor equal 
to: bf  = N + 1. Therefore, the number of leaf nodes and non-leaf 
nodes required to represent this tree is: 

nonLeafNodes = ( N +  1) D-I - 1 N , LeafNodes = ( N +  1) 9-1 

Each non-leaf node contains N non-leaf cells and one pointer and 
each leaf node contains N leaf cells and the aggregates. The size of 
a non-leaf cell is two units (one for the key and one for the pointer), 
while the size of a leaf-cell is A + 1 (A units for the aggregates and 
one for the key). The fact table of the saturated cube has N D tuples. 
The size for each tuple is D+A. The ratio of the size of the Dwarf 
over the fact table is then approximated 4 by: 

ratio ~ A(N + 1) o + N(N + 1) D-I 
(D+A)N D 

For example for a full dense cube with D = l0 dimension, a 
cardinality of N = 1000 for each dimension, and one aggregate 
(A = 1), we have a ratio of: 0.18, i.e. the Dwarf representation 
needs less than 20% of the storage that the fact table requires. This 
proves that the fact table itself (and, therefore, certainly the cube) 
contains redundancy in its structure. 

The above discussion serves to demonstrate that Dwarf provides 
space savings even in the case of very sparse cubes. Of course, for 
such a case a MOLAP representation of the cube would provide a 
larger cube compression. However, MOLAP methods for storing 
the cube require knowledge (or the discovery) of the dense areas 
of the cube, and do not perform well for sparse, high-dimensional 
cubes. On the other hand, Dwarf provides an automatic method for 
highly compressing the cube independently of the characteristics 
(distribution, density, dimensionality...) of  the data. 

2.3.2 Suffix Redundancy on sparse areas 
Since Dwarf does not store cells that correspond to empty re- 

gions of the cube, each node contains at least one cell with a key 
value, plus the pointer of the ALL cell. Therefore, the minimum 
branching factor is 2, while the maximum value of the branching 
factor of a cell at level j is 1 +Cardj+l , where Cardj+l is the 
cardinality of dimension j + 1. The branching factor decreases as 
we descend to lower levels of the structure. An approximation of 
the branching factor at level j of the structure, assuming uniform 
distribution for the values of each dimension for the tuples in the 
fact table, is: 

( branch(j) = 1 +ra in  Cardj+l, max 1, T~ Cardi 

where T is the number of tuples in the fact table. If the cube is 
not very dense, the branching factor will become equal to 2 at the 

k 
k-th level, where k is the lowest number such that T~ H Cardi _< 1. 

i=1 
For example, for a sparse cube with the same cardinality N = 1000 
for all dimensions, D = 10 dimensions and T = 10000000(<< N D) 
tuples, the branching factor will reach the value 2 at level k = 
[log N T] = 3. This means that in very sparse cubes, the branch- 
ing factor close to the root levels deteriorates to 2. A branching 
factor of 2 guarantees (as we will see in Section 3.2) that suffix re- 
dundancy exists at this level. Therefore, the smaller the value of 
k, the larger the benefits from eliminating suffix redundancy, since 

4The size of all the leaf nodes is much larger than the size of all the non-leaf 
nodes 

the storage of larger dwarfs is avoided. 
Correlated areas of the fact table can also be coalesced. Assume 

for example, that a set of  certain customers Cs shop only at a spe- 
cific store S. The views (Store, Customer,...) and (ALL, Customer,...) 
share the suffix that corresponds to the set Cs. In Table 1, cus- 
tomers C2 and C3 shop only at store S1 and in Figure 1 we see that 
the nodes 3 and 4 of the dwarf of node 2 are also coalesced from 
node 8. 

3. CONSTRUCTING DWARF CUBES 
The Dwarf construction is governed by two processes: theprefix 

expansion, and the suJfix coalescing. A non-interleaved two-pass 
process would first construct a cube with the prefix redundancy 
eliminated, and then check in it for nodes that can be coalesced. 
However, such an approach would require an enormous amount of 
temporary space and time, due to the size of the intermediate cube. 
It is thus imperative to be able to determine when a node can be 
coalesced with another node before actually creating it. By impos- 
ing a certain order in the creation of the nodes, suffix coalescing 
and prefix expansion can be performed at the same time, without 
requiring two passes over the structure. 

Before we present the algorithm for constructing the Dwarf cube, 
we present some terms that will be frequently used in the algo- 
rithm's description. A node Nans is called an ancestor o f N  i f fN is 
a descendant node of Nans. During the construction of the Dwarf 
Cube, a node N at level j of  the Dwarf structure is closed if  there 
does not exist an unprocessed tuple of the fact-table that contains a 
prefix equal to the primary leading prefix of N. An existing node 
of the Dwarf structure which is not closed is considered open. 

The construction of a Dwarf cube is preceded by a single sort on 
the fact table using one of the cube's dimensions as the primary key, 
and collating the other dimensions in a specific order. The choice of 
the dimensions' ordering has an effect on the total size of the Dwarf 
Cube. Dimensions with higher cardinalities are more beneficial if 
they are placed on the higher levels of the Dwarf cube. This will 
cause the branching factor to decrease faster, and coalescing will 
happen in higher levels of the structure. The ordering used will 
either be the one given by the user (if one has been specified), or 
will be automatically chosen by Dwarf after performing a scan on a 
sample of the fact table and collecting statistics on the cardinalities 
of the dimensions. 

3.1 CreateDwarfCube algorithm 
The Dwarf construction algorithm CreateDwarfCube is presented 

in Algorithm 1. The construction requires just a single sequential 
scan over the sorted fact table. For the first tuple of the fact ta- 
ble, the corresponding nodes and cells are created on all levels of 
the Dwarf structure. As the scan continues, tuples with common 
prefixes with the last tuple will be read. We create the necessary 
cells to accommodate new key values as we progress through the 
fact table. At each step of the algorithm, the common prefix P of 
the current and the previous tuple is computed. Consider the path 
we need to follow to store the aggregates of the current tuple. The 
first [P[ + 1 nodes (where ]P[ is the size of the common prefix) of 
the path up to a node N have already been created because of the 
previous tuple. Thus, for a D-dimensional cube, D -  IPI - 1 new 
nodes need to be created by expanding the structure downwards 
from node N (and thus the name Prefi~ Expansion), and an equal 
number of nodes have now become closed. When a leaf node is 
closed, the ALL cell is produced by aggregating the contents (ag- 
gregate values) of the other cells in the node. When a non-leaf node 
is closed, the ALL cell is created and the SuffixCoalesce algorithm 
is called to create the sub-dwarf for this cell. 
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Algorithm 1 CreateDwarfCube Algorithm 

Input: sorted fact table, D : number of dimensions 
1: Create all nodes and cells for the first tuple 
2: last_tuple ~-- first tuple of fact table 
3: while more tuples exist unprocessed do 
4: current_tuple ~- extract next tuple from sorted fact table 
5: P ~-- common prefix of current_tuple, last_tuple 
6: if new closed nodes exist then 
7: write special cell for the leaf node homeNode where 

last_tuple was stored 
8: For the rest D - ]P[ - 2 new closed nodes, starting from 

homeNode's parent node and moving bottom-up, create 
their ALL cells and call the SuffixCoalesce Algorithm 

9: end if 
I0: Create necessary nodes and cells for current_tuple 

{ D - [P] - 1 new nodes created) 
11: last_tuple ~- current_tuple 
12: end while 
13: write special cell for the leaf node homeNode where last_tuple 

was stored 
14: For the other open nodes, starting from homeNode's parent 

node and moving bottom-up, create their ALL cells and call 
the SuffixCoalesce Algorithm (Algorithm 2) 

For example consider the fact table of Table 1 and the corre- 
sponding Dwarf cube of Figure 1. The nodes in the figure are 
numbered according to the order of their creation. The first tu- 
pie (S1, C2, P2) creates three nodes (Nodes 1, 2 and 3) for the three 
dimensions (Store, Customer and Product) and inserts one cell to 
each node. Then the second tuple (S1, C3, P1) is read, which shares 
only the prefix S1 with the previous tuple. This means that cell C3 
needs to be inserted to the same node as C2 (Node 2) and that the 
node containing P2 (Node 3) is now closed. The ALL cell for Node 
3 is now created (the aggregation here is trivial, since only one other 
cell exists in the node). The third tuple ($2,C1 ,P1) is then read and 
contains no common prefix with the second tuple. Finally, we cre- 
ate the ALL cell for Node 4 and call SuffixCoalesce for Node 2 to 
create the sub-dwarf of the node's ALL cell. 

3.2 Suffix Coalescing Algorithm 
Suffix Coalescing creates the sub-dwarfs for the ALL cell of a 

node. Suffix Coalescing tries to identify identical dwarfs and coa- 
lesce their storage. Two, or more, dwarfs are identical if they are 
constructed by the same subset of the fact table's tuples. Prefix ex- 
pansion would create a tree if it were not for Suffix Coalescing. The 
SuffixCoalesce algorithm is presented in Algorithm 2. It requires as 
input a set of Dwarfs (inputDwarfs) and merges them to construct 
the resulting dwarf. The algorithm makes use of the helping func- 
tion calculateAggregate, which aggregates the values passed as its 
parameter. 

SuffixCoalesce is a recursive algorithm that tries to detect at each 
stage whether some sub-dwarf of the resulting dwarf can be coa- 
lesced with some sub-dwarf of inputDwarfs. If there is just one 
dwarf in inputDwarfs, then coalescing happens immediately, since 
the result of merging one dwarf will obviously be the dwarf itself. 
The algorithm then repeatedly locates the cells toMerge in the top 
nodes of inputDwarfs with the smallest key Keymin which has not 
been processed yet 5. A cell in the resulting dwarf with the same 
key Keymin needs to be created, and its content (sub-dwarf or ag- 
gregateValues) will be produced by merging the contents of all the 

5By using a priority queue. Details are omitted because of space con- 
straints. 

Algorithm 2 SuffixCoalesce Algorithm 

Input: inputDwarfs = set of Dwarfs 
1: if only one dwarf in inputDwarfs then 
2: return dwarf in inputDwarfs {coalescing happens here) 
3: end if 
4: while unprocessed cells exist in the top nodes of inputDwarfs 

do 
5: find unprocessed key Keymin with minimum value in the top 

nodes of inputDwarfs 
6: toMerge ~ set of Cells of top nodes of inputDwarfs having 

keys with values equal to Keymin 
7: if already in the last level of structure then 
8: curAggr~calculateAggregate(toMerge.aggregateValues) 
9: write cell [Keymin, curAggr] 

10: else 
11: write cell [Keymin, SuffixCoalesce(toMerge.sub-dwarfs)] 
12: end if 
13: end while 
14: create the ALL cell for this node either by aggregation or by 

calling SuffixCoalesce 
15: return position in disk where resulting dwarf starts 

cells in the toMerge set. There are two cases: 

1. If we are at a leaf node we call the function calculateAggre- 
gate to produce the aggregate values for the resulting cell. 

2. Otherwise, coalescing cannot happen at this level. We call 
SuffixCoalesce recursively to create the dwarf of the current 
cell, and check if parts of the structure can be coalesced at 
one level lower. 

At the end, the ALL cell for the resulting node is created, either by 
aggregating the values of the node's cells (if this is a leaf node) or 
by calling SuffixCoallesce, with the sub-dwarfs of the node's cells 
as input. 

As an example, consider again the Dwarf cube presented in Fig- 
ure 1. We will move to the step of the algorithm after all the tuples 
of Table 1 have been processed, and the ALL cell for Node 7 has 
been calculated. SuffixCoalesce is called to create the sub-dwarf 
of the ALL cell of Node 6. Since only one sub-dwarf exists in 
inputDwarfs (the one where C1 points to), immediate coalescing 
happens (case in Line 1) and the ALL cell points to Node 7, where 
C 1 points to. Now, the sub-dwarf of the ALL cell for Node 1 must 
be created. The cell C1 will be added to the resulting node, and 
its sub-dwarf will be created by recursively calling SuffixCoalesce, 
where the only input dwarf will be the one that has Node 7 as its 
top node. Therefore, coalescing will happen there. Similarly, cells 
C2 and C3 will be added to the resulting node one by one, and coa- 
lescing will happen in the next level in both cases, because just one 
of the inputDwarfs contains each of these keys. Then the ALL cell 
for Node 8 must be created (Line 14). The key P1 is included in 
the nodes pointed by C1 and C3 (Nodes 7,4), and since we are at a 
leaf node, we must aggregate the values in the two cells (Line 8). 

3.3 Memory Requirements 
The CreateDwarfCube algorithm has no major requirements, since 

it only needs to remember which was the previously read tuple. For 
the SuffixCoalescing algorithm, the priority queue (used to locate 
in Line 5 the cells with the minimum key), contains at each step 
one key from the top node of each dwarf in inputDwarfs. Since in 
the worst case we will descend all D levels of the structure when 
creating the ALL cell for the root node, the memory requirements 
for the priority queue (which are the only memory requirements for 

468 



the algorithm) in the worst case of a fully dense Dwarf cube are 
equal to: 

D 

MaxMemoryNeeded = c. ~ Cardi 
i = l  

where c is the size of the cell. However, since the cube is "always" 
sparse, the number of cells that must be kept in main memory will 
be much smaller than the sum of the dimensions' cardinalities, and 
the exact number depends on the branching factor at each level of 
the structure. 

3.4 Incremental Updates 
The ability to refresh data in a modern data warehouse environ- 

ment is currently more important than ever. As the data stored in- 
creases in complexity, the possibility of incrementally updating the 
data warehouse/data-mart becomes essential. The "recompute ev- 
erything" strategy cannot keep up the pace with the needs of a mod- 
em business. The most common strategy is using semi-periodic 
bulk updates of the warehouse, at specific intervals or whenever 
up-to-date information is essential. 

In this section we describe how the Dwarf structure is incremen- 
tally updated, given a set of  delta tuples fi'om the data sources and 
an earlier version of the Dwarf cube. We assume that the delta up- 
dates are much smaller in size compared to the information already 
stored. Otherwise, a bulk incremental technique that merges [KR] 
the stored aggregates with the new updates and stores the result in 
a new Dwarf might be preferable than the in-place method. 

The incremental update procedure starts from the root of the 
structure and recursively updates the underlying nodes and finishes 
with the incremental update of the node that corresponds to the spe- 
cial ALL cell. By cross-checking the keys stored in the cells of  the 
node with the attributes in the delta tuples, the procedure skips cells 
that do not need to be updated, expands nodes to accommodate new 
cells for new attribute values (by using overflow pointers), and re- 
cursively updates those sub-dwarfs which might be affected by one 
or more of the delta tuples. 

Since the delta information is much less compared to the infor- 
mation already stored, the number of the cells that are skipped is 
much larger than the number of cells that need to be updated. One 
case requires special attention: by descending the structure, we can 
reach a coalesced node from different paths. Once we get to the 
coalesced node we have to check if the coalesced path is still valid, 
since the insertion of one or more tuples might have caused the 
coalesced pointer to become invalid. In this case, the correspond- 
ing subdwarf has to be re-evaluated, and any new nodes have to 
be written to a different area of the disk. However, it is important 
to realize that an invalid coalesced pointer does not mean that the 
entire subdwarf needs to be copied again. Coalescing to nodes of 
the old dwarf will most likely happen just a few levels below in 
the structure, since only a small fraction of all the aggregate values 
calculated is influenced by the update. 

An important observation is that frequent incremental update 
operations slowly deteriorate the original clustering of the Dwarf 
structure 6, mainly because of the overflow nodes created. This is 
an expected effect, encountered by all dynamic data structures as 
a result to online modifications. Since Dwarf is targeted for data 
warehousing applications that typically perform updates in sched- 
uled periodic intervals, we envision running an process in the back- 
ground periodically for reorganizing the Dwarf and transferring it 
into a new file with its clustering restored. 

6The query performance of Dwarf still remains far ahead of the closest 
competitor as shown in our experiments section. 

4. PERFORMANCE ISSUES 

4.1 Query Execution 
A point query is a simple traversal on the Dwarf structure from 

the root to a leaf. At level i, we search for the cell having as key 
the i-th coordinate value in the query and descend to the next level. 
If the i-th coordinate value is ALL, we follow the pointer of the 
ALL cell. A point query is fast simply because it involves exactly 
D node visits (where D is the number of  dimensions). 

Range queries differ from point queries in that they contain at 
least one dimension with a range of values. If a range is specified 
for the i-th coordinate, for each key satisfying the specified range 
we recursively descend to the corresponding sub-dwarf in a depth- 
first manner. As a result, queries on the Dwarf structure have trivial 
memory requirements (one pointer for each level of the structure). 

According to the algorithms for constructing the Dwarf cube, 
certain views may span large areas of the disk. For example, for 
a 4-dimensional cube with dimensions a,b,c,d, view abcd is not 
clustered, since all views containing dimension a (views a, ab, ac, 
ad, abc, abd, acd) are all interleaved in the disk area that view abcd 
occupies. Therefore, a query with multiple large ranges on any of 
these views would fetch nodes that contain data for all these views. 
For this reason, we deviate from the construction algorithm, in or- 
der to cluster the Dwarf cube more efficiently. This is described in 
the following section. 

4.2 Clustering Dwarf Cubes 
The algorithms described in section 3 present the general prin- 

ciples for constructing Dwarf structures. However there is a lot of  
room for improvement as far as the clustering of the structure is 
concerned. As we mentioned, the algorithms do not cluster views 
of the cube together and therefore accessing one view requires ac- 
cessing nodes that are probably on different disk pages that are too 
far apart from each other. In this section we describe how the Dwarf 
structure can be created in a very clustered manner. Typically, the 
clustered version of the dwarfs decreased the query response time 
in real datasets by a factor of 2 to 3. 

The lattice representation [HRU] of the Data Cube is used to rep- 
resent the computational dependencies between the group-bys of 
the cube. Each node in the lattice corresponds to a group-by (view) 
over the node's dimensions. For example, node ab represents the 
group-by ab view. The computational dependencies among group- 
bys are represented in the lattice using directed edges. For example, 
group-by a can be computed from the ab group-by, while group-by 
abc can be used to compute any other group-by. 

In Table 2 we illustrate an ordering of the views for a three di- 
mensional cube. The second column of the table contains a binary 
representation of the view with as many bits as the cube's dimen- 
sions. An aggregated dimension has the corresponding bit set to 
true(l). For example view ab corresponds to 001 since the dimen- 
sion c is aggregated. The views are sorted in increasing order based 
on their binary representation. 

This ordering has the property that whenever a view w is about to 
be computed, all the candidate ancestor views vi with potential for 
suffix coalescing have already been computed. Note that the binary 
representation for vi can be derived from the binary representation 
ofw by resetting any one true bit (1) to false (0). This essentially 
means that the binary representation of vi is arithmetically less than 
the binary representation of w and therefore precedes that in the 
sorted ordering. For example, in Table 2, view w = a(011) has 
ancestors vl = ab(001) and v2 = ac(010). Figure 4.2 demonstrates 
the processing tree for the example in Table 2. In this order we have 
chosen to use the ancestor vi with the biggest common prefix for w. 
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View Binary Rep 

abe 000 
ab 001 
ac 010 
a 011 

bc 100 
b 101 
c 110 

none 111 

Parents w/ 
Coalesce 

abe 
abe 

ab, ac 
abe 

ab, bc 
ac, be 
a, b, c 

Table 2: View ordering example 

~ ( 5 )  

(~)(4) ~ ( 7 )  

L.___L.~J(8) 

Figure 2: Processing tree 

By removing the recursion in the algorithms in Section 3 (lines 
8,14 in the CreateDwarfCube algorithm, and line 14 in the Suffix- 
Coalesce algorithm) we are able to create any one view of the cube. 
More specifically, the most detailed view (in our example abe) can 
be created with CreateDwarfCube, while any other view can be 
created with the SuffixCoalesce algorithm. Therefore it is easy to 
iterate through all the views of the cube using the described order- 
ing and create each one of them. This procedure clusters nodes of 
the same view together and the resulting Dwarf structure behaves 
much better. For example, consider the structure in Figure 1. If 
this structure is created using the algorithms in Section 3 then the 
nodes will be written in the order: 123456789. Note that node 5 that 
belongs to view (Store,ALL,Product) is written between nodes 4 
and 6 that belong to view (Store, Customer, Product), therefore de- 
stroying the clustering for both views. However, the procedure de- 
scribed here creates the nodes in the order 123467589, maintaining 
the clustering of each view. Table 3 describes in more detail the 
procedure. 

View Binary Nodes 
i Rep 

Store,Customer, Product 000 create 1,2,3,4,6,7 
Store,Customer 001 close 3,4,7 
Store,Product 010 create 5, coalesce to 7 

Store 011 close 5,7 
Customer,Product 100 create 8, coalesce to 7,4,3 

Customer 101 
Product 110 create 9 

none 111 close 9 

Table 3: Example of creating a clustered Dwarf 

4.3 Optimizing View Iteration 
In our implementation we used a hybrid algorithm which does 

not need to iterate over all views. The hybrid algorithm takes ad- 
vantage of the situation encountered while creating view (Store, 

Customer) or view (Store) as described in Table 3. Iterating over 
these two views did not create any new nodes, but rather closed the 
nodes by writing the ALL cell. 

The situation is more evident in very sparse cubes (usually cubes 
of high dimensionalities). Assume a five-dimensional cube with 
ten thousand tuples where each dimension has a cardinality of one 
hundred. Let us assume that data values are uniformly distributed. 
The Dwarf representation of view abcde (00000) consists of five 
levels. The first level has only one node with one hundred cells. 
The second level for every cell of the first one has a node with an- 
other one hundred cells. The third level however -since we assumed 
that the data are uniform and there only ten thousand tuples- has 
nodes that consist of only of one cell. Therefore we can close the 
corresponding cells right away. Thus we avoid iterating on views 
abcd(O0001), abce(O0010), abc(O0011) and abde(O0100). 

4.4 Coarse-grained Dwarfs 
Even though the Dwarf structure achieves remarkable compres- 

sion ratios for calculating the entire cube, the Dwarf size can be, in 
cases of sparse cubes, quite larger than the fact table. However we 
can trade query performance for storage-space by using a granu- 
larity Groin parameter. Whenever at some level of the Dwarf struc- 
ture (during the Dwarf construction) the number of tuples that con- 
tributes to the subdwarfbeneath the currently constructed node N of 
level L is less than Groin, then for that subdwarfwe do not compute 
any ALL cells. All the tuples contributing to this coarse-grained 
area below node N can be stored either in a tree-like fashion (thus 
exploiting prefix redundancy), or as plain tuples (which is useful 
if the number of dimensions D is much larger than L, to avoid the 
pointers overhead). Notice that for all these tuples we need to store 
only the last D - L coordinates, since the path to the collapsed area 
gives as the missing information. Each query accessing the coarse- 
grained area below node N will require to aggregate at most amin 
tuples to produce the desired result. The user can modify the ami n 
parameter to get a Dwarf structure according to his/her needs. 

5. EXPERIMENTS AND PERFORMANCE 
ANALYSIS 

We performed several experiments with different datasets and 
sizes to validate our storage and performance expectations. All 
tests in this section were run on a single 700Mhz Celeron processor 
running Linux 2.4.t2 with 256MB of RAM. We used a 30GB disk 
rotating at 7200 rpms, able to write at about 8MB/sec and read at 
about 12MB/sec. We purposely chose to use a low amount of RAM 
memory to allow for the effect of disk I/O to become evident and 
demonstrate that the performance of Dwarf does not suffer even 
when limited memory resources are available. 

Our implementation reads a binary representation of the fact ta- 
ble, where all values have been mapped to integer data (4 bytes). 
Unless specified otherwise, all datasets contained one measure at- 
tribute, and the aggregate function used throughout our experiments 
was the SUM function. The reported times are actual times and 
contain CPU and I/O times for the total construction of Dwarf 
cubes including the initial sorting of the fact table. 

In the experiments we compared Dwarf to Cubetrees, as far as 
storage space, creation time, queries and update performance are 
concerned. In [KR] Cubetrees were shown to exhibit at least 10 
times faster query performance when compared to indexed rela- 
tions, half the storage a commercial relational system requires and 
at least 100 times faster update performance. Since no system has 
been shown to outperform the Cubetrees so far, we concluded that 
this was the most challenging test for Dwarf. 
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5.1 Cube construction 

5.1.1 Prefix redundancy vs Suffix Coalescing 
In this experiment we explore the benefits of eliminating pre- 

fix redundancy, and using suffix coalescing when computing the 
CUBE operator. For the first set of experiments, we used a binary 
storage footprint (BSF) as a means of comparison. The BSF repre- 
sentation models the storage required to store the views of the cube 
in unindexed binary relations. This representation was also used 
by [BR] to estimate the time needed to write out the output of the 
cube. 

d BSF 

10 2333MB 
15 106 GB 
20 4400 GB 
25 173 TB 
30 6.55 PB 

uniform 
Dwarf Dwart 
Prefix (MB) 

1322MB 62 
42.65GB 153 
1400 GB 300 
44.8 TB 516 
1.43 PB 812 

80-20 
Time Dwarf Time 
(see) (MB) (see) 

26 115 46 
68 366 147 

142 840 351 
258 1788 866 
424 3063 1529 

Table 4: Storage and creation time vs #Dimensions 

In Table 4, we show the storage and the compute time for Dwarf 
cubes as the number #Dims of dimensions range from 10 to 30. The 
fact table contained 100000 tuples and the dimension values were 
either uniformly distributed over a cardinality of 1000 or followed 
a 80-20 Self-Similar distribution over the same cardinality. We did 
not impose any correlation among the dimensions. The BSF col- 
urrm shows an estimate of the total size of the cube if its views were 
stored in unindexed relational tables. The "Dwarf Prefix" column 
shows the storage of the Dwarf with the suffix coalescing off, and 
therefore, without suffix redundancy elimination. To measure the 
BSF size and the "Dwarf Prefix" size, we generated the Dwarf with 
the suffix coalescing turned on, and then traversed the Dwarf struc- 
ture appropriately. We counted the BSF and the "Dwarf prefix" 
storage for both distributions and the results (as far as the savings 
are concerned) were almost identical -slightly smaller savings for 
the 80-20 distribution-, so we just present the uniform sizes. The re- 
maining four columns show the Dwarf store footprint and the time 
to construct it for each of the two distributions. 

We observe the following: 

• Elimination of prefix redundancy saves a great deal, but suf- 
fix redundancy is clearly the dominant factor in the overall 
performance. 

• The creation time is proportional to the Dwarf size. 

• The uniform distribution posts the highest savings. The ef- 
fect of skew on the cube is that most tuples from the fact 
table contribute to a small part of the whole cube while leav- 
ing other parts empty. The denser areas benefit from prefix 
elimination which is smaller, and sparser areas have less suf- 
fix redundancy to eliminate (since fewer tuples exist there). 

Table 5 gives the Dwarf storage and computation time for a 10- 
dimensional cube when the number oftuples in the fact table varies 
from 100000 to 1000000. The cardinalities of each dimension are 
30000,5000, 5000, 2000, 1000, 1000, 100, 100, 100 and 10. The 
distribution of the dimension values were either all uniform or all 
80-20 self-similar. This set of experiments shows that the store 
size and computation time grow linearly in the size of the fact table 
(i.e. doubling the input tuples results in a little more than twice the 
construction time and storage required). 

#Tuples 

100,000 
200,000 
400,000 
600,000 
800,000 

1,000,000 

uniform 80-20 
Dwarf Time Dwarf Time 
(MB) (see) (MB) (see) 

62 27 72 31 
133 58 159 69 
287 127 351 156 
451 202 553 250 
622 289 762 357 
798 387[ 975 457 

Table 5: Storage and time requirements vs #Tuples 
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#Dimensions 

Figure 3: Storage Space vs #Dimensions 

5.1.2 Comparison with Full Cubetrees 
In this experiment we created cubes of fewer dimensions, in or- 

der to compare the performance of Dwarf with that of Cubetrees. 
We created full cubes with the number of dimensions ranging from 
4 to 10. In each case, the fact table contained 250000 tuples cre- 
ated by using either a uniform, or a 80-20 self-similar distribution. 
In Figure 3 we show the space required for Dwarf and for Cube- 
trees to store the entire cube. Figure 4 shows the corresponding 
construction times. From these two figures we can see that: 

• Cubetrees do not scale, as far as storage space is concerned, 
with the number of dimensions. On the contrary, Dwarf re- 
quires much less space to store the same amount of informa- 
tion. 

• Dwarf requires significantly less time to build the cube. This 
is because Cubetrees (like other methods that calculate the 
entire cube) perform multiple sorting operations on the data, 
and because Dwarf avoids computing large parts of the cube, 
since suffix coalescing identifies parts that have already been 
computed. 

5.1.3 Comparison to Reduced Cubetrees 
This experiment compares the construction time of Dwarf with 

that of Cubetrees when the Cubetrees size is limited to that of the 
Dwarf structure. We will refer to this type of Cubetrees as re- 

duced Cubetrees. This is useful to examine, since in many cases 
of high-dimensional data, Cubetrees (and most other competitive 
structures) may not fit in the available disk space. Since the Cu- 
betrees will not store all the views of the CUBE operator, we have 
to make a decision of which views to materialize. The PBS algo- 
rithm [SDN] provides a fast algorithm to decide which views to 
materialize under a given storage constraint, while at the same time 
guaranteeing good query performance. The PBS algorithm selects 
the smallest views in size, which are typically the views that have 
performed the most aggregation. In addition, we have also stored 
in the reduced Cubetrees the fact table, in order for them to be able 
to answer queries (in the Queries section) on views which are not 
materialized or cannot be answered from other materialized views. 
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Figure 4: Construction Time vs #Dimensions 

Dataset d Size Cubetrees Dwarf PBS 
(MB) Time(see) Time(see) Views 

Meteo-9 9 66 64 35 63/512 
Forest 10 594 349 350 113/1024 

Meteo-12 12 358 451 228 310/4096 

Table 6: Storage and Creation Time for Real Datasets 

Table 6 gives the Dwarf and reduced Cubetrees storage and cre- 
ation times for three real datasets. The Meteo datasets had 348448 
tuples and the Forest dataset had 581012 tuples. Cubetrees were 
created having the same size as the corresponding Dwarfs. The 
construction times of the reduced Cubetrees do not include the run- 
ning time for the PBS algorithm. The table also shows the num- 
ber of views contained in the reduced Cubetrees. The first real 
dataset contains weather conditions at various weather stations on 
land for September 1985 [HWL]. From this dataset we created two 
sets - Meteo-9 and Meteo-12 - of input data: one which contained 
9 dimensions, and one with 12 dimensions. The second real data- 
set contains "Forest Cover Type" data [Bla] which includes carto- 
graphic variable that are used to estimate the forest cover type of 
land areas. In all data sets some of the attributes were skewed and 
among some dimensions there was substantial correlation. 

Even though the reduced Cubetrees calculate significantly fewer 
views that Dwarf does, Dwarf cubes are significantly faster at their 
creation for the two Weather datasets, and took the same amount of 
time as the Cubetrees for the Forest dataset. One important obser- 
vation is that the Dwarf structure for the Weather dataset with 12 
dimensions is smaller, and faster to compute than the Dwarf for the 
Forest data, which had 10 dimensions. The top three dimensions in 
the Weather data were highly correlated and suffix coalescing hap- 
pened at the top levels of the Dwarf structure in many cases, thus 
providing substantial space and computational savings. 

5.2 Query Performance 
In this section we study the query performance of Dwarf when 

compared to full and reduced Cubetrees. A detailed analysis of how 
range queries, applied to different levels of the Dwarf structure, are 
treated by both the clustered and unclustered structure can be found 
in the full version of this paper ([SDRK02]). 

5.2.1 Dwar3~ vs Full Cubetrees 
We created two workloads of 1000 queries, and queried the cubes 

created in the previous experiment (full cubes of 4-10 dimensions 
with 250000 tuples). The description of the workloads is presented 
in Table 7. 

Since other query workloads will also be given in tables simi- 
lar to Table 7, we give below a description on the notation used. 
An important thing to consider is that in query workloads to either 
real data, or synthetic data produced by using the uniform distribu- 
tion, the values specified in the queries (either point values, or the 

Probabilities ] Range I 
Workload #Queries PnewQ Palm epointO Max Min 

A 1000 0.34 0.4 0.2420% 1 1  
B 1000 1.00 0.4 0.2 20% 1 

Table 7: Workload Characteristics for "Dwarfs vs Full Cube- 
trees" Query Experiment 
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Figure 5: Query performance on uniform data 

endpoints of ranges) are selected by using a uniform distribution. 
Otherwise, we use the 80/20 Self-Similar distribution to produce 
these values. This is more suitable, since we suspect that the user 
will typically be more interested in querying the denser areas of the 
cube. 

enewQ The probability that the new query will not be related to 
the previous query. In OLAP applications, users typically 
perform a query, and then often execute a series of roll-up 
or drill-down queries. When our query generator produces 
a query, it produces a roll-up query with probability (1 - 
PnewO)/2, a drill-down query with the same probability or a 
new query with probability Pne~Q. For example, Workload 
B creates only new (unrelated) queries, while workload A 
creates a roll-up or a drill-down with a probability of 0.33 
each. 

The probability that each dimension will be selected to par- 
ticipate in a new query. For example, for a 10-dimensional 
cube, if the above probability is equal to 0.4, then new queries 
will include 10- 0.4 = 4 dimensions on average. 

epointQ The probability that we specify just a single value for each 
dimension participating in a query. Otherwise, with proba- 
bility 1 -PpointQ we will specify a range of values for that 
dimension. This way we control how selective our queries 
will be: a value of 1 produces only point queries, and a value 
of 0 produces queries with ranges in every dimension partic- 
ipating in the query. In most of our experiments we selected 
low values for this parameter, since a high value would result 
in most queries returning very few tuples (usually 0). 

Range The range for a dimension is uniformly selected to cover 
a specified percentage of the cardinality of the dimension. 
For example, if a dimension a has values ranging from 1 to 
1000, a 20% value maximum range will force any range of 
dimension a to be limited to at most 200 values. Each range 
contains at least one value. 

Returning to the experiment, the results for the workloads of Ta- 
ble 7 on the cubes created in the previous experiment are shown 
in Figures 5 and 6. Dwarf outperforms Cubetrees in all cases, and 
for small-dimensionality Dwarf cubes are 1-2 orders of magnitude 
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Figure 6: Query performance on self-similar data 

faster. The main advantage of Dwarf cubes is their condensed stor- 
age, which allows them to keep in main memory a lot more infor- 
mation than Cubetrees can. Moreover, we can see that Dwarfpero 
forms better in workload A, because roll-up and drill-down queries 
have a common path in the Dwarf structure with the previously 
executed query, and thus the disk pages corresponding to the com- 
mon area are already in main memory. For example, for the 10- 
dimensional cases, in the Uniform dataset the response time drops 
from 35 to 28 seconds when roll-up and drill-down operations are 
used (a 20% reduction), while for the Self-Similar case the im- 
provement is even larger: from 58 to 40 seconds. This is a 31% 
reduction in response time. 

5.2.2 Dwar~  vs Reduced Cubetrees 
In this set of experiments, we compare the query performance 

of Dwarfs with that of reduced Cubetrees. The datasets used in 
this experiment were the real datasets described in Section 5.1.3 
(Meteo-9, Meteo-12, Forest). Since Cubetrees in this case did not 
contain all the views of the cube, we need to explain how we an- 
swered queries on non-materialized views. 

When a query on a non-materialized view v is issued, the Cube- 
tree optimizer picks the best materialized view w to answer v. If v 
does not share a common prefix with w, then it uses a hash-based 
approach to evaluate the query. If however v shares a common pre- 
fix with w, then the result is calculated on the fly, taking advantage 
of the common sort order. The second case is much faster than us- 
ing a hash-table. The Cubetree optimizer needs estimates for the 
size of all views, but in our case we had the exact sizes by issuing 
appropriate queries to the Dwarf structure. 

Workload 

A 
B 
C 
D 
E 

#Queries PnewQ ~ s  PpointQ Rangem~ 
2000 0.34 4 0.1 15% 
2000 0.34 4 0.5 25% 
2000 1.00 4 0.5 25% 
2000 0.34 3 0.5 25% 
2000 1.00 3 0.5 25% 

Table 8: Workload Characteristics for "Dwarfs vs Reduced Cu- 
betrees" Query Experiment 

For each real dataset we created 5 workloads of 2000 queries, 
whose characteristics are presented in Table 8. Here, the #Dims col- 
umn denotes the average number of dimensions specified on each 
query. Notice that workloads C and E are similar to workloads B 
and D, respectively, but contain no roll-up/drill-down queries. 

The query performance of Dwarf and the reduced Cubetrees is 
presented in Table 9. The WL column denotes the workload used. 
Dwarf is about an order of magnitude faster than the reduced Cube- 
trees in the Weather datasets Meteo-9, Meteo-12), and 2 - 3 times 
faster in the Forest dataset. Dwarf performs significantly better in 

the Weather datasets due to the correlation of the attributes in these 
datasets. Because coalescing happened at the top levels of the struc- 
ture, a large fraction of nodes at the top levels were cached, thus 
improving performance dramatically. 

An important observation is that Dwarfs are faster when the work- 
load contains roll-up/drill-down queries. For example, for work- 
loads D and E of the forest dataset, Dwarf was 17% faster. Also 
notice that in this type of workloads the limitation of the average 
number of dimensions specified in each query, favors Cubetrees, 
which typically store views with up to 3 dimensions, because of 
the PBS algorithm. For workloads with queries containing more 
dimensions, on average, the performance of the Cubetrees was sig- 
nificantly worse. 

Reduced Cubetrees Dwarf 
WL Meteo9 Meteo12 Forest Meteo9 Meteol2 Forest 

A 305 331 462 13 34 150 
B 292 346 478 13 39 176 
C 304 340 483 13 44 208 
D 315 301 427 12 47 217 
E 305 288 448 15 49 262 

Table 9: Query Times in Seconds for 2000 Queries on Real 
Datasets 

5.2.3 Coarse-grained Dwar~  
As described in Section 4.4, we can limit the space that Dwarf 

occupies and subsequently computation time, by appropriately set- 
ting the minimum granularity (Groin) parameter. In this set of ex- 
periments we investigate how the construction time, space, and 
query performance of Dwarfs are influenced when increasing the 
Groin threshold. We created two 8-dimensional datasets Buni, B80/20 
each having 800,000 tuples. The cardinalities of the dimensions 
were: 1250, 625, 300, 150, 80, 40, 20 and 10. The underlying 
data in Buni was chosen using a uniform distribution, while for the 
B80/20 we used the 80-20 self-similar distribution. We constructed 
the correspoding Dwarf structures for different values of the Groin 
parameter and then issued 8,000 queries on each of the resulting 
Dwarf cubes. The query workload contained queries with ranges 
on three consecutive dimensions. For a more detailed description 
of the query workload see [SDRK02]. Table 10 presents the cre- 
ation times, the required storage, and the time required to execute 
all 8,000 queries for each Dwarf. 

Uniform 80-20 
Space ]Creation Queries i Space Creation Queries 

Groin (MB) (see) (sec) I(MB) (sec) (see) 

0 490 202 ' 154 482 218 199 
100 400 74 110 376 81 262 

1000 312 59 317 343 62 295 
5000 166 29 408 288 53 1094 

20,000 151 25 476 160 30 1434 

Table 10: Performance measurements for increasing Groin 

When we increase the value of Groin, the space that Dwarf oc- 
cupies decreases, while at the same time query performance de- 
grades. The only exception was for the Uniform distribution and 
Groin value of 100, where the reduction of space actually improved 
query performance, despite the fact that some aggregations needed 
to be done on-the-fly. The reason is that coarse-grained areas for 
this value fit in one -or at most two- pages and it is faster to fetch 
them and do the aggregation on the fly, rather than fetching two or 
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more pages to get to the precomputed aggregate. 
In Table 10 the pay-offin construct time is even higher than the 

space savings. A amin value of 20000 results in 3 to 1 storage 
savings, but in more than 7 to 1 speedup of computation times. 
After various experiments we have concluded that a value of Gmin 
between 100 and 1000 typically provides significant storage/time 
savings with small degradation in query performance. 

5.3 Updates 
In this section we present experimental results to evaluate the up- 

date performance of Dwarfs when compared to the full and reduced 
Cubetrees. 

5.3.1 Using the APB-1 Benchmark Data 
We tested the update performance of Dwarff on the APB-1 bench- 

mark [Cou98], with the density parameter set to 2. The APB-1 
benchmark contains a 4-d dataset with cardinalities 9000, 900, 17 
and 9 and two measure attributes. We mapped the string data of the 
fact table to integers, randomly permuted the fact table, and then se- 
lected about 90% of the tuples (22,386,000 tuples) to initially load 
the Cubetrees (full and reduced) and Dwarf, and then applied 10 
successive increments of 1% each. Table 11 shows the results for 
the reduced Cubetrees and Dwarf. The full Cubetrees are always 
more expensive to update than the reduced Cubetrees (since they 
have more views to update) and, thus, are not included in the re- 
suits. Dwarf surpassed the reduced Cubetrees in all the incremen- 
tal updates. Moreover, it is interesting to notice that the update time 
of Dwarf decreased as more tuples were inserted. This is mainly be- 
cause this dataset corresponded to a dense cube and, therefore, the 
number of coalesced tuples was small. Updating coalesced tuples 
is the most time consuming part of the imcremental update opera- 
tion for Dwarf. As more tuples were inserted, fewer coalesced links 
existed, and the update performance improved. In [SDRK02] we 
can see that even in very sparse datasets, Dwarf matches the update 
performance of the reduced Cubetrees, and by far outperforms the 
full Cubetrees. 

Reduced Dwarf 
Cubetrees 

Time 
# Action 

(see) 
Create 1124 

Update # 1 42 
Update #2 36 
Update #3 39 
Update #4 34 
Update #5 24 
Update #6 34 
Update #7 24 
Update #8 30 
Update #9 22 

Update # 10 20 

Table 11: Update 

Space Time 
(MB) (sec) 

346 1381 
350 76 
353 78 
359 77 
365 79 
369 80 
374 82 
378 79 
384 83 
390 82 
393 I 84 

performance on the APB-1 benchmark 

6. RELATED WORK 
The goal of any algorithm that computes the data cube is to take 

advantage of commonalities between different group-bys. Tech- 
niques that have been proposed include sharing partitions, sorts or 
partial sorts and intermediate results between group-bys with com- 
mon attributes. Some of the most well known algorithms include 
PipeSort [AAD +, SAG96], Overlap [DANR96], PartitionCube and 

MemoryCube [RS], ArrayCube [ZDN]. Since these algorithms are 
well noted, we will not review them here in detail. 

The Bottom-Up Cube (BUC) algorithm is described in [BR] and 
is designed to compute sparse and Iceberg-cubes. The general 
Iceberg-cube problem is to compute all group-by partitions for ev- 
ery combination of grouping attributes that satisfy an aggregate se- 
lection condition. Iceberg-cubes can be used to compute iceberg 
queries[FSGM+]. For Iceberg cubes, BUC stores only those parti- 
tions of a group-by whose value is produced by aggregating at least 
MinSup tuples of the fact table. The parameter MinSup is called 
the minimum support. Sparse Iceberg cubes are much smaller than 
the full cubes, because the minimum support pruning has a direct 
effect on the number of views materialized. Assume a cube with 10 
dimensions each with a cardinality 1000 and a fact table of 1000000 
tuples uniformly distributed. A minimum support of 10 material- 
izes only views with 3 dimensions or less. The other views contain 
group-bys with partitions less than the minimum support. 

Recently, work has been performed on approximating Data Cubes 
through various forms of compression such as wavelets [VWI], 
multivariate polynomials [BS98], or by using sampling [GM, AGP] 
or data probability density distributions [SFB]. While these meth- 
ods can substantially reduce the size of the Cube, they do not actu- 
ally store the values of the group-bys, but rather approximate them, 
thus not always providing accurate results. 

In Cubetrees [RKR, KR], group-bys are mapped into orthogo- 
nal hyperplanes of a multidimensional index. Common sort orders 
are then used to cluster the points of each group-by into continuous 
disk space. A packing algorithm guarantees full page utilization, 
resulting in at least 50% space savings over indexed relations. Up- 
dates are handled through a Merge-Packing algorithm that scans the 
old aggregates and merges them with the update increment, which 
is sorted in compatible order. 

In [JS97], Cube Forests were proposed for storing the data cube. 
Cube Forests are similar to Dwarfs in that they also exploit pre- 
fix redundancy when storing the cube. However, they differ from 
Dwarf both in their structure -forest of trees-, their construction al- 
gorithms, and their indexing methods (Cube Forests use additional 
B-trees along paths of their Cube Tree Template). 

In [FH00], the idea of a statistics tree (ST) was introduced. In 
this tree, prefix redundancy was partially exploited. Unique pre- 
fixes were stored just once, but the tree contained all possible paths 
(even paths corresponding to tuples that have not been inserted) 
making it inappropriate for sparse datasets. Moreover, the con- 
struction algorithm of the ST did not exploit data locality and clus- 
tering, thus resulting in inefficient cube computation. 

In [WLFY02] the notion of a base single tuple is similar to the 
one of a coalesced tuple of this paper and previously in [RSDK01]. 
In [WLFY02], three algorithms are described for discovering tu- 
pies whose storage can be coalesced: MinCube guarantees to find 
all such tuples, but is very expensive computationally, while BU- 
BST and RBU-BST are faster, but discover fewer coalesced tuples. 
Compared to this work, our method provides a much more efficient 
method not only for the automatic discovery of the coalesced tu- 
pies, but also for indexing the produced cube, something also not 
done by most of the methods for cube computation listed above. 
A detailed comparison to this paper is not present because it was 
published after the submission of our paper. 

7. CONCLUSIONS 
In this paper we presented Dwarf, a highly compressed structure 

for computing, storing, and querying data cubes. Dwarf identifies 
prefix and suffix structural redundancies and factors them out by 
coalescing their storage. The Dwarf structure shows that suffix re- 
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dundancy is the dominant factor in sparse cubes and its elimination 
has the highest return both in storage and computation time. 

Dwarf is practical because it is generated over a single pass over 
the data and requires no deep knowledge the underlying value dis- 
tributions. It is scalable because the higher the dimensions the more 
the redundancy to harvest. Dwarf can be used to store the full cube 
(made possible because of its compact size) or, alternatively, pre- 
compute only aggregates whose computation will be too costly to 
be done on the fly, using the minimum granularity metric. 

The great reduction in terms of storage space that the dwarf 
structure exhibits has positive effects in terms of query and update 
performance. The dwarf structure plays a double role as a stor- 
age and indexing mechanism for high dimension data. Roll-up and 
drill-down queries seem to benefit from the dwarf structure due to 
common paths that are exploited while caching. In terms of update 
speed, dwarf by far outperforms the closest competitor for storing 
the full data cube, while their performance is comparable when the 
competitor is reduced to storing only a partial cube of the same size 
as Dwarf. 
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