
Dwarf: Shrinking the PetaCube,

Yannis Sismanis
Dept. of Computer Science

University of Maryland, College Park
isis@cs.umd.edu

Nick Roussopoulos
Dept. of Computer Science

University of Maryland, College Park
nick@cs.umd.edu

Antonios Deligiannakis
Dept. of Computer Science

University of Maryland, College Park
adeli@cs.umd.edu

Yannis Kotidis
AT&T Labs--Research

kotidis@research.att.com

ABSTRACT
Dwarf is a highly compressed structure for computing, storing, and
querying data cubes. Dwarf identifies prefix and suffix structural
redundancies and factors them out by coalescing their store. Pre-
fix redundancy is high on dense areas of cubes but suffix redun-
dancy is significantly higher for sparse areas. Putting the two to-
gether fuses the exponential sizes of high dimensional full cubes
into a dramatically condensed data structure. The elimination of
suffix redundancy has an equally dramatic reduction in the com-
putation of the cube because recomputation of the redundant suf-
fixes is avoided. This effect is multiplied in the presence of corre-
lation amongst attributes in the cube. A Petabyte 25-dimensional
cube was shrunk this way to a 2.3GB Dwarf Cube, in less than 20
minutes, a 1:400000 storage reduction ratio. Still, Dwarf provides
100% precision on cube queries and is a self-sufficient structure
which requires no access to the fact table. What makes Dwarf prac-
tical is the automatic discovery, in a single pass over the fact table,
of the prefix and suffix redundancies without user involvement or
knowledge of the value distributions.

This paper describes the Dwarf structure and the Dwarf cube
construction algorithm. Further optimizations are then introduced
for improving clustering and query performance. Experiments with
the current implementation include comparisons on detailed mea-
surements with real and synthetic datasets against previously pub-
lished techniques. The comparisons show that Dwarfs by far out-
perform these techniques on all counts: storage space, creation
time, query response time, and updates of cubes.

1. INTRODUCTION
The data cube operator [GBLP] performs the computation of one

or more aggregate functions for all possible combinations of group-
ing attributes. The inherent difficulty with the cube operator is its

*This research is based upon work supported by NASA under award No.
NAG59150 and upon work supported by Hughes Network Systems under
award No. 233113

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

size, both for computing and storing it. The number of all possible
group-bys increases exponentially with the number of the cube's
dimensions and a naive store of the cube behaves in a similar way.
The authors of [GBLP] provided some useful hints for cube com-
putation including the use of parallelism, and mapping string di-
mension types to integers for reducing the storage. The problem is
exacerbated by the fact that new applications include an increasing
number of dimensions and, thus, the explosion on the size of the
cube is a real problem. All methods proposed in the literature try to
deal with the space problem, either by precomputing a subset of the
possible group-bys [HRU, GHRU, Gup, BPT, SDN], by estimating
the values of the group-bys using approximation [GM, VWI, SFB,
AGP] or by using online aggregation [HHW] techniques.

This paper defines Dwarf, a highly compressed structure z for
computing, storing, and querying data cubes. Dwarf solves the stor-
age space problem, by identifying prefix and suffix redundancies in
the structure of the cube and factoring them out of the store.

Prefix redundancy can be easily understood by considering a
sample cube with dimensions a, b and e. Each value of dimen-
sion a appears in 4 group-bys (a, ab, ae, abe), and possibly many
times in each group-by. For example, for the fact table shown in
Table 1 (to which we will keep referring throughout the paper) the
value S1 will appear a total of 7 times in the corresponding cube,
and more specifically in the group-bys: (SI, C2, P2), (SI, C3, P1),
(S1,C2), (S1,C3), (S1,P2), (S1,P1) and (S1). The same also hap-
pens with prefixes of size greater than one -note that each pair of
a, b values will appear not only in the ab group-by, but also in the
abe group-by. Dwarf recognizes this kind of redundancy, and stores
every unique prefixjustonce.

Store Customer Product Price
S1 C2 P2 $70
S1 C3 P1 $40
$2 C1 P1 $90
$2 C1 P2 $50

Table 1: Fact Table for cube Sales

Suffix redundancy occurs when two or more group-bys share a
common suffix (like abe and be). For example, consider a value bj
of dimension b that appears in the fact table with a single value ai of

1 The name comes after Dwarf stars that have a very large condensed mass,
but occupy very small space. They are so dense, that their mass is about
one ton/cm 3

464

dimension a (such an example exists in Table 1, where the value C1
appears with only the value $2). Then, the group-bys (ai, bj,x) and
(bj,x) always have the same value, for any value x of dimension
c. This happens because the second group-by aggregates all the
tuples of the fact table that contain the combinations of any value
of the a dimension (which here is just the value ai) with bj and x.
Since x is generally a set of values, this suffix redundancy has a
multiplicative effect. Suffix redundancies are even more apparent
in cases of correlated dimension values. Such correlations are often
in real datasets, like the Weather dataset used in one of our exper-
iments. Suffix redundancy is identified during the construction of
the Dwarf cube and eliminated by coalescing their space.

What makes Dwarf practical is the automatic discovery of the
prefix and suffix redundancies without requiring knowledge of the
value distributions and without having to use sophisticated sam-
piing techniques to figure them out. The Dwarf storage savings are
spectacular for both dense and sparse cubes. We show that in most
cases of very dense cubes, the size of the Dwarf cube is much less
than the size of the fact table. However, while for dense cubes the
savings are almost entirely from prefix redundancies, as the cubes
get sparser, the savings from the suffix redundancy elimination in-
creases, and quickly becomes the dominant factor of the total sav-
ings.

Equally, or even more, significant is the reduction of the com-
putation cost. Each redundant suffix is identified prior to its com-
putation, which results in substantial computational savings during
creation. Furthermore, because of the condensed size of the Dwarf
cube, the time needed to query and update is also reduced. Inher-
ently, the Dwarf structure provides an index mechanism and needs
no additional indexing for querying it. It is also self-sufficient in
the sense that it does not need to access or reference the fact table
in answering any of the views stored in it.

An additional optimization that we have implemented is to avoid
precomputation of certain group-bys that can be calculated on-the-
fly by using fewer than a given constant amount oftuples. The in-
formation needed to calculate these group-bys is stored inside the
Dwarf structure in a very compact and clustered way. By modify-
ing the value of the above constant, the user is able to trade query
performance for storage space and creation time. This optimization
was motivated from iceberg cubes [BR] and may be enabled by the
user if a very limited amount of disk space and/or limited time for
computing the Dwarf is available.

To demonstrate the storage savings provided by Dwarf(and what
fraction of the savings can be attributed to prefix and suffix redun-
dancies), we first compare the Dwarf cube sizes against a binary
storage footprint (BSF), i.e. as if all the views of the cube were
stored in unindexed binary summary tables. Although this is not
an efficient (or sometimes feasible) store for a cube or sub-cubes, it
provides a well understood point of reference and it is useful when
comparing different stores.

We also compared the Dwarf cubes with Cubetrees which were
shown in [RKR, KR] to exhibit at least a 10:1 better query response
time, a 100:1 better update performance and 1:2 the storage of in-
dexed relations. Our experiments show that Dwarfs consistently
outperform the Cubetrees on all counts: storage space, creation
time, query response time, and updates of full cubes. Dwarf cubes
achieve comparable update performance on partial cubes stored on
Cubetrees having the same size with Dwarf cubes. However, byte
per byte, Dwarf stores many more materialized views than the cor-
responding Cubetree smactures and, therefore, can answer a much
wider class of queries for the same footprint.

We used several data sets to compute Dwarf cubes. One of them
was a cube of 20 dimensions, each having a cardinality of 1000,

and a fact table containing 100000 tuples. The BSF for its cube
is 4.4TB. 2 Eliminating the prefix redundancy, resulted in a Dwarf
cube of 1.4 TB (31.8% of the original size). Eliminating the suffix
redundancy reduced the size of the Dwarf cube to just 300 MB 3, a
1:14666 reduction over BSF. Following Jim Gray's spirit of push-
ing every idea to its limits, we decided to create a Petacube of 25-
dimensions with BSF equal to one Petabyte. The Dwarf cube for
the Petacube is just 2.3 GB and took less than 20 minutes to create.
This is a 1:400000 storage reduction ratio.

The rest of this paper is organized as follows: Section 2 presents
the Dwarf structure and its formal properties. Sections 3 and 4 ex-
plain how Dwarf cubes are constructed, queried and updated. Sec-
tion 5 contains the performance analysis. The related work is pre-
sented in Section 6 and the conclusions are reported in Section 7.

2. THE DWARF STRUCTURE
We first describe the Dwarf structure with an example. Then we

define the properties of Dwarf formally.

2.1 A Dwarf example
Figure 1 shows the Dwarf Cube for the fact table shown in Ta-

ble 1. It is a full cube using the aggregate function sum. The nodes
are numbered according to the order of their creation. The height
of the Dwarf is equal to the number of dimensions, each of which
is mapped onto one of the levels shown in the figure. The root node
contains cells of the form [key, pointer], one for each distinct value
of the first dimension. The pointer of each cell points to the node
below containing all the distinct values of the next dimension that
are associated with the cell's key. The node pointed by a cell and
all the cells inside it are dominated by the cell. For example the
cell S1 of the root dominates the node containing the keys C2, C3.
Each non-leaf node has a special ALL cell, shown as a small gray
area to the right of the node, holding a pointer and corresponding
to all the values of the node.

A path from the root to a leaf such as (S1,C3,P1) corresponds
to an instance of the group-by Store, Customer, Product and leads
to a cell [P1 $40] which stores the aggregate of that instance. Some
of the path cells can be open using the ALL cell. For example,
(S2,ALL,P2) leads to the cell [P2 $50], and corresponds to the
sum of the Prices paid by any Customer for Product P2 at Store
$2. At the leaf level, each cell is of the form [key, aggregate] and
holds the aggregate of all tuples that match a path from the root to
it. Each leaf node also has an ALL cell that stores the aggregates
for all the cells in the entire node. (ALL,ALL,ALL) leads to the to-
tal Prices (group-by NONE). The reader can observe that the three
paths ($2,C1,P2), (S2,ALL,P2), and (ALL,C1,P2), whose values
are extracted from processing just the last tuple of the fact-table, all
lead to the same cell [P2 $50], which, if stored in different nodes,
would introduce suffix redundancies. By coalescing these nodes,
we avoid such redundancies. In Figure 1 all nodes pointed by more
than one pointer are coalesced nodes.

2.2 Properties of Dwarf
In Dwarf, like previous algorithms proposed for cube computa-

tion, we require the dimension attributes to be of integer type (thus
mapping other types, like strings, to integers in required) but, un-
like other methods, we do not require packing the domain of values
between zero and the cardinality of the dimension. Any group-by

2The BSF sizes, and the size of Dwarf cubes without enabling suffix coa-
lescing were accurately measured by first constructing the Dwarf cube, and
then traversing it appropriately.
3All the sizes of Dwarf cubes, unless stated otherwise, correspond to the
~11 Dwarf cubes

465

1' '" (1) . . ~ . . . 1 Store Dimension

. F i :liC2 c:(.

(2) ~ . . t" (-')" , (6)~p!(7) () t 9) Customer Dimension 120 " 25i " "

I 1,40 I P ,70 _ _ , 9 0 I ,,301P ,

" - ~ P1 $40 [~ [~ "
(4)

[P2 $70
(3) Product Dimension

i
Figure 1: The Dwarf Cube for Table 1

of a D-dimensional cube can be expressed by a sequence of D val-
ues (one for each dimension), to which we will refer as the coordi-
nates of the group-by in a multidimensional space. In SQL queries,
the coordinates are typically specified in the WHERE clause. The
group-by's j - th coordinate can either be a value of the cube's j - th
dimension, or left open to correspond to the ALL pseudo-value.

The Dwarf data structure has the following properties:

1. It is a directed acyclic graph (DAG) with just one root node
and has exactly D levels, where D is the number of cube's
dimensions.

2. Nodes at the D-th level (leaf nodes) contain cells of the form:
[key, aggregateValues].

3. Nodes in levels other that the D-th level (non-leaf nodes) con-
tain cells of the form: [key, pointer]. A cell C in a non-leaf
node of level i points to a node at level i + 1, which it dom-
inates. The dominated node then has the node of C as its
parent node.

4. Each node also contains a special cell, which corresponds
to the cell with the pseudo-value ALL as its key. This cell
contains either a pointer to a non-leaf node or to the aggre-
gateValues of a leaf node.

5. Cells belonging to nodes at level i of the structure contain
keys that are values of the cube's i-th dimension. No two
cells within the same node contain the same key value.

6. Each cell Ci at the i-th level of the structure, corresponds
to the sequence Si of i keys found in a path from the root
to the cell's key. This sequence corresponds to a group-by
with (D - i) dimensions unspecified. All group-bys having
sequence Si as their prefix, will correspond to cells that are
descendants of Ci in the Dwarf structure. For all these group-
bys, their common prefix will be stored exactly once in the
structure.

7. When two or more nodes (either leaf or non-lea 0 generate
identical nodes and cells to the structure, their storage is co-
alesced, and only one copy of them is stored. In such a case,
the coalesced node will be reachable through more than one
paths from the root, all of which will share a common suf-
fix. For example, in the node at the bottom of the Product
level of Figure 1, the first cell of the node corresponds to the
sequences (S1,C2,P2) and (ALL, C2, P2), which share the

common suffix (C2,P2). If a node N is a coalesced node,
then any node X which is a descendant of N will also be a
coalesced node, since it can be reached from multiple paths
from the root.

A traversal in the Dwarf structure always follows a path of length
D, starting from the root to a leaf node. It has the form ([Nl .vallALL],
[N2.valIALL] [ND.valIALL]), meaning that the i-th key found in
the path will either be a value Ni.val of the i-th dimension, or the
pseudo-value ALL. The Dwarf structure itself constitutes an effi-
cient interlevel indexing method and requires no additional external
indexing.

We now define some terms which will help in the description of
the algorithms. The dwarfofa node N is defined to be the node
itself and all the dwarfs of the nodes dominated by the cells of N.
The dwarf of a node X that is dominated by some cell of N is called
a sub-dwarf of N. Since leaf node cells dominate no other nodes,
the dwarf of a leaf node is the node itself. The number of cells
in the node Nj, which a cell Ci dominates, is called the branching
factor of Ci.

A sequence of i keys, followed in any path from the root to a
node N at level i + 1 of the Dwarf structure, is called the leading
prefix of N. A leading prefix of N, which contains no coordinate
with ALL, is called the primary leading prefix of N.

The content of a cell Ci, belonging to a node N, is either the
aggregateValues ofCi i f N is a leaf node, or the sub-dwarf of Ci if
N is a non-leaf node.

2.3 Evidence of Structural Redundancy

2.3.1 Prefix Redundancy on dense areas
A path from the root of the Dwarf structure to a leaf, corresponds

to an instance of some group-by. Dwarf creates the minimum num-
ber of cells to accommodate all paths. In the cube presented in
Figure 1, for the first level of the structure (Store), the maximum
number of cells required is equal to the cardinality of the Store di-
mension Cardstore plus 1 (for the ALL cell).

For the second level (Customer), if the cube was completely
dense, we would need a number of cells equal to the product:

(Cardstore W 1) × (Cardcustomer + 1)

Since most cubes are sparse, there is no need to create so many
cells.

However, even in the case of dense cubes, the storage required
to hold all cells of the structure (including the ALL cells) is com-

466

parable to that required to hold the fact table. A Dwarf for a sat-
urated cube of D dimensions and the same cardinality N for each
dimension, is actually a tree with a constant branching factor equal
to: bf = N + 1. Therefore, the number of leaf nodes and non-leaf
nodes required to represent this tree is:

nonLeafNodes = (N + 1) D-I - 1 N , LeafNodes = (N + 1) 9-1

Each non-leaf node contains N non-leaf cells and one pointer and
each leaf node contains N leaf cells and the aggregates. The size of
a non-leaf cell is two units (one for the key and one for the pointer),
while the size of a leaf-cell is A + 1 (A units for the aggregates and
one for the key). The fact table of the saturated cube has N D tuples.
The size for each tuple is D+A. The ratio of the size of the Dwarf
over the fact table is then approximated 4 by:

ratio ~ A(N + 1) o + N(N + 1) D-I
(D+A)N D

For example for a full dense cube with D = l0 dimension, a
cardinality of N = 1000 for each dimension, and one aggregate
(A = 1), we have a ratio of: 0.18, i.e. the Dwarf representation
needs less than 20% of the storage that the fact table requires. This
proves that the fact table itself (and, therefore, certainly the cube)
contains redundancy in its structure.

The above discussion serves to demonstrate that Dwarf provides
space savings even in the case of very sparse cubes. Of course, for
such a case a MOLAP representation of the cube would provide a
larger cube compression. However, MOLAP methods for storing
the cube require knowledge (or the discovery) of the dense areas
of the cube, and do not perform well for sparse, high-dimensional
cubes. On the other hand, Dwarf provides an automatic method for
highly compressing the cube independently of the characteristics
(distribution, density, dimensionality...) of the data.

2.3.2 Suffix Redundancy on sparse areas
Since Dwarf does not store cells that correspond to empty re-

gions of the cube, each node contains at least one cell with a key
value, plus the pointer of the ALL cell. Therefore, the minimum
branching factor is 2, while the maximum value of the branching
factor of a cell at level j is 1 +Cardj+l , where Cardj+l is the
cardinality of dimension j + 1. The branching factor decreases as
we descend to lower levels of the structure. An approximation of
the branching factor at level j of the structure, assuming uniform
distribution for the values of each dimension for the tuples in the
fact table, is:

(branch(j) = 1 +ra in Cardj+l, max 1, T~ Cardi

where T is the number of tuples in the fact table. If the cube is
not very dense, the branching factor will become equal to 2 at the

k
k-th level, where k is the lowest number such that T~ H Cardi _< 1.

i=1
For example, for a sparse cube with the same cardinality N = 1000
for all dimensions, D = 10 dimensions and T = 10000000(<< N D)
tuples, the branching factor will reach the value 2 at level k =
[log N T] = 3. This means that in very sparse cubes, the branch-
ing factor close to the root levels deteriorates to 2. A branching
factor of 2 guarantees (as we will see in Section 3.2) that suffix re-
dundancy exists at this level. Therefore, the smaller the value of
k, the larger the benefits from eliminating suffix redundancy, since

4The size of all the leaf nodes is much larger than the size of all the non-leaf
nodes

the storage of larger dwarfs is avoided.
Correlated areas of the fact table can also be coalesced. Assume

for example, that a set of certain customers Cs shop only at a spe-
cific store S. The views (Store, Customer,...) and (ALL, Customer,...)
share the suffix that corresponds to the set Cs. In Table 1, cus-
tomers C2 and C3 shop only at store S1 and in Figure 1 we see that
the nodes 3 and 4 of the dwarf of node 2 are also coalesced from
node 8.

3. CONSTRUCTING DWARF CUBES
The Dwarf construction is governed by two processes: theprefix

expansion, and the suJfix coalescing. A non-interleaved two-pass
process would first construct a cube with the prefix redundancy
eliminated, and then check in it for nodes that can be coalesced.
However, such an approach would require an enormous amount of
temporary space and time, due to the size of the intermediate cube.
It is thus imperative to be able to determine when a node can be
coalesced with another node before actually creating it. By impos-
ing a certain order in the creation of the nodes, suffix coalescing
and prefix expansion can be performed at the same time, without
requiring two passes over the structure.

Before we present the algorithm for constructing the Dwarf cube,
we present some terms that will be frequently used in the algo-
rithm's description. A node Nans is called an ancestor o f N i f fN is
a descendant node of Nans. During the construction of the Dwarf
Cube, a node N at level j of the Dwarf structure is closed if there
does not exist an unprocessed tuple of the fact-table that contains a
prefix equal to the primary leading prefix of N. An existing node
of the Dwarf structure which is not closed is considered open.

The construction of a Dwarf cube is preceded by a single sort on
the fact table using one of the cube's dimensions as the primary key,
and collating the other dimensions in a specific order. The choice of
the dimensions' ordering has an effect on the total size of the Dwarf
Cube. Dimensions with higher cardinalities are more beneficial if
they are placed on the higher levels of the Dwarf cube. This will
cause the branching factor to decrease faster, and coalescing will
happen in higher levels of the structure. The ordering used will
either be the one given by the user (if one has been specified), or
will be automatically chosen by Dwarf after performing a scan on a
sample of the fact table and collecting statistics on the cardinalities
of the dimensions.

3.1 CreateDwarfCube algorithm
The Dwarf construction algorithm CreateDwarfCube is presented

in Algorithm 1. The construction requires just a single sequential
scan over the sorted fact table. For the first tuple of the fact ta-
ble, the corresponding nodes and cells are created on all levels of
the Dwarf structure. As the scan continues, tuples with common
prefixes with the last tuple will be read. We create the necessary
cells to accommodate new key values as we progress through the
fact table. At each step of the algorithm, the common prefix P of
the current and the previous tuple is computed. Consider the path
we need to follow to store the aggregates of the current tuple. The
first [P[+ 1 nodes (where]P[is the size of the common prefix) of
the path up to a node N have already been created because of the
previous tuple. Thus, for a D-dimensional cube, D - IPI - 1 new
nodes need to be created by expanding the structure downwards
from node N (and thus the name Prefi~ Expansion), and an equal
number of nodes have now become closed. When a leaf node is
closed, the ALL cell is produced by aggregating the contents (ag-
gregate values) of the other cells in the node. When a non-leaf node
is closed, the ALL cell is created and the SuffixCoalesce algorithm
is called to create the sub-dwarf for this cell.

467

Algorithm 1 CreateDwarfCube Algorithm

Input: sorted fact table, D : number of dimensions
1: Create all nodes and cells for the first tuple
2: last_tuple ~-- first tuple of fact table
3: while more tuples exist unprocessed do
4: current_tuple ~- extract next tuple from sorted fact table
5: P ~-- common prefix of current_tuple, last_tuple
6: if new closed nodes exist then
7: write special cell for the leaf node homeNode where

last_tuple was stored
8: For the rest D -]P[- 2 new closed nodes, starting from

homeNode's parent node and moving bottom-up, create
their ALL cells and call the SuffixCoalesce Algorithm

9: end if
I0: Create necessary nodes and cells for current_tuple

{ D - [P] - 1 new nodes created)
11: last_tuple ~- current_tuple
12: end while
13: write special cell for the leaf node homeNode where last_tuple

was stored
14: For the other open nodes, starting from homeNode's parent

node and moving bottom-up, create their ALL cells and call
the SuffixCoalesce Algorithm (Algorithm 2)

For example consider the fact table of Table 1 and the corre-
sponding Dwarf cube of Figure 1. The nodes in the figure are
numbered according to the order of their creation. The first tu-
pie (S1, C2, P2) creates three nodes (Nodes 1, 2 and 3) for the three
dimensions (Store, Customer and Product) and inserts one cell to
each node. Then the second tuple (S1, C3, P1) is read, which shares
only the prefix S1 with the previous tuple. This means that cell C3
needs to be inserted to the same node as C2 (Node 2) and that the
node containing P2 (Node 3) is now closed. The ALL cell for Node
3 is now created (the aggregation here is trivial, since only one other
cell exists in the node). The third tuple ($2,C1 ,P1) is then read and
contains no common prefix with the second tuple. Finally, we cre-
ate the ALL cell for Node 4 and call SuffixCoalesce for Node 2 to
create the sub-dwarf of the node's ALL cell.

3.2 Suffix Coalescing Algorithm
Suffix Coalescing creates the sub-dwarfs for the ALL cell of a

node. Suffix Coalescing tries to identify identical dwarfs and coa-
lesce their storage. Two, or more, dwarfs are identical if they are
constructed by the same subset of the fact table's tuples. Prefix ex-
pansion would create a tree if it were not for Suffix Coalescing. The
SuffixCoalesce algorithm is presented in Algorithm 2. It requires as
input a set of Dwarfs (inputDwarfs) and merges them to construct
the resulting dwarf. The algorithm makes use of the helping func-
tion calculateAggregate, which aggregates the values passed as its
parameter.

SuffixCoalesce is a recursive algorithm that tries to detect at each
stage whether some sub-dwarf of the resulting dwarf can be coa-
lesced with some sub-dwarf of inputDwarfs. If there is just one
dwarf in inputDwarfs, then coalescing happens immediately, since
the result of merging one dwarf will obviously be the dwarf itself.
The algorithm then repeatedly locates the cells toMerge in the top
nodes of inputDwarfs with the smallest key Keymin which has not
been processed yet 5. A cell in the resulting dwarf with the same
key Keymin needs to be created, and its content (sub-dwarf or ag-
gregateValues) will be produced by merging the contents of all the

5By using a priority queue. Details are omitted because of space con-
straints.

Algorithm 2 SuffixCoalesce Algorithm

Input: inputDwarfs = set of Dwarfs
1: if only one dwarf in inputDwarfs then
2: return dwarf in inputDwarfs {coalescing happens here)
3: end if
4: while unprocessed cells exist in the top nodes of inputDwarfs

do
5: find unprocessed key Keymin with minimum value in the top

nodes of inputDwarfs
6: toMerge ~ set of Cells of top nodes of inputDwarfs having

keys with values equal to Keymin
7: if already in the last level of structure then
8: curAggr~calculateAggregate(toMerge.aggregateValues)
9: write cell [Keymin, curAggr]

10: else
11: write cell [Keymin, SuffixCoalesce(toMerge.sub-dwarfs)]
12: end if
13: end while
14: create the ALL cell for this node either by aggregation or by

calling SuffixCoalesce
15: return position in disk where resulting dwarf starts

cells in the toMerge set. There are two cases:

1. If we are at a leaf node we call the function calculateAggre-
gate to produce the aggregate values for the resulting cell.

2. Otherwise, coalescing cannot happen at this level. We call
SuffixCoalesce recursively to create the dwarf of the current
cell, and check if parts of the structure can be coalesced at
one level lower.

At the end, the ALL cell for the resulting node is created, either by
aggregating the values of the node's cells (if this is a leaf node) or
by calling SuffixCoallesce, with the sub-dwarfs of the node's cells
as input.

As an example, consider again the Dwarf cube presented in Fig-
ure 1. We will move to the step of the algorithm after all the tuples
of Table 1 have been processed, and the ALL cell for Node 7 has
been calculated. SuffixCoalesce is called to create the sub-dwarf
of the ALL cell of Node 6. Since only one sub-dwarf exists in
inputDwarfs (the one where C1 points to), immediate coalescing
happens (case in Line 1) and the ALL cell points to Node 7, where
C 1 points to. Now, the sub-dwarf of the ALL cell for Node 1 must
be created. The cell C1 will be added to the resulting node, and
its sub-dwarf will be created by recursively calling SuffixCoalesce,
where the only input dwarf will be the one that has Node 7 as its
top node. Therefore, coalescing will happen there. Similarly, cells
C2 and C3 will be added to the resulting node one by one, and coa-
lescing will happen in the next level in both cases, because just one
of the inputDwarfs contains each of these keys. Then the ALL cell
for Node 8 must be created (Line 14). The key P1 is included in
the nodes pointed by C1 and C3 (Nodes 7,4), and since we are at a
leaf node, we must aggregate the values in the two cells (Line 8).

3.3 Memory Requirements
The CreateDwarfCube algorithm has no major requirements, since

it only needs to remember which was the previously read tuple. For
the SuffixCoalescing algorithm, the priority queue (used to locate
in Line 5 the cells with the minimum key), contains at each step
one key from the top node of each dwarf in inputDwarfs. Since in
the worst case we will descend all D levels of the structure when
creating the ALL cell for the root node, the memory requirements
for the priority queue (which are the only memory requirements for

468

the algorithm) in the worst case of a fully dense Dwarf cube are
equal to:

D

MaxMemoryNeeded = c. ~ Cardi
i = l

where c is the size of the cell. However, since the cube is "always"
sparse, the number of cells that must be kept in main memory will
be much smaller than the sum of the dimensions' cardinalities, and
the exact number depends on the branching factor at each level of
the structure.

3.4 Incremental Updates
The ability to refresh data in a modern data warehouse environ-

ment is currently more important than ever. As the data stored in-
creases in complexity, the possibility of incrementally updating the
data warehouse/data-mart becomes essential. The "recompute ev-
erything" strategy cannot keep up the pace with the needs of a mod-
em business. The most common strategy is using semi-periodic
bulk updates of the warehouse, at specific intervals or whenever
up-to-date information is essential.

In this section we describe how the Dwarf structure is incremen-
tally updated, given a set of delta tuples fi'om the data sources and
an earlier version of the Dwarf cube. We assume that the delta up-
dates are much smaller in size compared to the information already
stored. Otherwise, a bulk incremental technique that merges [KR]
the stored aggregates with the new updates and stores the result in
a new Dwarf might be preferable than the in-place method.

The incremental update procedure starts from the root of the
structure and recursively updates the underlying nodes and finishes
with the incremental update of the node that corresponds to the spe-
cial ALL cell. By cross-checking the keys stored in the cells of the
node with the attributes in the delta tuples, the procedure skips cells
that do not need to be updated, expands nodes to accommodate new
cells for new attribute values (by using overflow pointers), and re-
cursively updates those sub-dwarfs which might be affected by one
or more of the delta tuples.

Since the delta information is much less compared to the infor-
mation already stored, the number of the cells that are skipped is
much larger than the number of cells that need to be updated. One
case requires special attention: by descending the structure, we can
reach a coalesced node from different paths. Once we get to the
coalesced node we have to check if the coalesced path is still valid,
since the insertion of one or more tuples might have caused the
coalesced pointer to become invalid. In this case, the correspond-
ing subdwarf has to be re-evaluated, and any new nodes have to
be written to a different area of the disk. However, it is important
to realize that an invalid coalesced pointer does not mean that the
entire subdwarf needs to be copied again. Coalescing to nodes of
the old dwarf will most likely happen just a few levels below in
the structure, since only a small fraction of all the aggregate values
calculated is influenced by the update.

An important observation is that frequent incremental update
operations slowly deteriorate the original clustering of the Dwarf
structure 6, mainly because of the overflow nodes created. This is
an expected effect, encountered by all dynamic data structures as
a result to online modifications. Since Dwarf is targeted for data
warehousing applications that typically perform updates in sched-
uled periodic intervals, we envision running an process in the back-
ground periodically for reorganizing the Dwarf and transferring it
into a new file with its clustering restored.

6The query performance of Dwarf still remains far ahead of the closest
competitor as shown in our experiments section.

4. PERFORMANCE ISSUES

4.1 Query Execution
A point query is a simple traversal on the Dwarf structure from

the root to a leaf. At level i, we search for the cell having as key
the i-th coordinate value in the query and descend to the next level.
If the i-th coordinate value is ALL, we follow the pointer of the
ALL cell. A point query is fast simply because it involves exactly
D node visits (where D is the number of dimensions).

Range queries differ from point queries in that they contain at
least one dimension with a range of values. If a range is specified
for the i-th coordinate, for each key satisfying the specified range
we recursively descend to the corresponding sub-dwarf in a depth-
first manner. As a result, queries on the Dwarf structure have trivial
memory requirements (one pointer for each level of the structure).

According to the algorithms for constructing the Dwarf cube,
certain views may span large areas of the disk. For example, for
a 4-dimensional cube with dimensions a,b,c,d, view abcd is not
clustered, since all views containing dimension a (views a, ab, ac,
ad, abc, abd, acd) are all interleaved in the disk area that view abcd
occupies. Therefore, a query with multiple large ranges on any of
these views would fetch nodes that contain data for all these views.
For this reason, we deviate from the construction algorithm, in or-
der to cluster the Dwarf cube more efficiently. This is described in
the following section.

4.2 Clustering Dwarf Cubes
The algorithms described in section 3 present the general prin-

ciples for constructing Dwarf structures. However there is a lot of
room for improvement as far as the clustering of the structure is
concerned. As we mentioned, the algorithms do not cluster views
of the cube together and therefore accessing one view requires ac-
cessing nodes that are probably on different disk pages that are too
far apart from each other. In this section we describe how the Dwarf
structure can be created in a very clustered manner. Typically, the
clustered version of the dwarfs decreased the query response time
in real datasets by a factor of 2 to 3.

The lattice representation [HRU] of the Data Cube is used to rep-
resent the computational dependencies between the group-bys of
the cube. Each node in the lattice corresponds to a group-by (view)
over the node's dimensions. For example, node ab represents the
group-by ab view. The computational dependencies among group-
bys are represented in the lattice using directed edges. For example,
group-by a can be computed from the ab group-by, while group-by
abc can be used to compute any other group-by.

In Table 2 we illustrate an ordering of the views for a three di-
mensional cube. The second column of the table contains a binary
representation of the view with as many bits as the cube's dimen-
sions. An aggregated dimension has the corresponding bit set to
true(l). For example view ab corresponds to 001 since the dimen-
sion c is aggregated. The views are sorted in increasing order based
on their binary representation.

This ordering has the property that whenever a view w is about to
be computed, all the candidate ancestor views vi with potential for
suffix coalescing have already been computed. Note that the binary
representation for vi can be derived from the binary representation
ofw by resetting any one true bit (1) to false (0). This essentially
means that the binary representation of vi is arithmetically less than
the binary representation of w and therefore precedes that in the
sorted ordering. For example, in Table 2, view w = a(011) has
ancestors vl = ab(001) and v2 = ac(010). Figure 4.2 demonstrates
the processing tree for the example in Table 2. In this order we have
chosen to use the ancestor vi with the biggest common prefix for w.

469

View Binary Rep

abe 000
ab 001
ac 010
a 011

bc 100
b 101
c 110

none 111

Parents w/
Coalesce

abe
abe

ab, ac
abe

ab, bc
ac, be
a, b, c

Table 2: View ordering example

~ (5)

(~)(4) ~ (7)

L.___L.~J(8)

Figure 2: Processing tree

By removing the recursion in the algorithms in Section 3 (lines
8,14 in the CreateDwarfCube algorithm, and line 14 in the Suffix-
Coalesce algorithm) we are able to create any one view of the cube.
More specifically, the most detailed view (in our example abe) can
be created with CreateDwarfCube, while any other view can be
created with the SuffixCoalesce algorithm. Therefore it is easy to
iterate through all the views of the cube using the described order-
ing and create each one of them. This procedure clusters nodes of
the same view together and the resulting Dwarf structure behaves
much better. For example, consider the structure in Figure 1. If
this structure is created using the algorithms in Section 3 then the
nodes will be written in the order: 123456789. Note that node 5 that
belongs to view (Store,ALL,Product) is written between nodes 4
and 6 that belong to view (Store, Customer, Product), therefore de-
stroying the clustering for both views. However, the procedure de-
scribed here creates the nodes in the order 123467589, maintaining
the clustering of each view. Table 3 describes in more detail the
procedure.

View Binary Nodes
i Rep

Store,Customer, Product 000 create 1,2,3,4,6,7
Store,Customer 001 close 3,4,7
Store,Product 010 create 5, coalesce to 7

Store 011 close 5,7
Customer,Product 100 create 8, coalesce to 7,4,3

Customer 101
Product 110 create 9

none 111 close 9

Table 3: Example of creating a clustered Dwarf

4.3 Optimizing View Iteration
In our implementation we used a hybrid algorithm which does

not need to iterate over all views. The hybrid algorithm takes ad-
vantage of the situation encountered while creating view (Store,

Customer) or view (Store) as described in Table 3. Iterating over
these two views did not create any new nodes, but rather closed the
nodes by writing the ALL cell.

The situation is more evident in very sparse cubes (usually cubes
of high dimensionalities). Assume a five-dimensional cube with
ten thousand tuples where each dimension has a cardinality of one
hundred. Let us assume that data values are uniformly distributed.
The Dwarf representation of view abcde (00000) consists of five
levels. The first level has only one node with one hundred cells.
The second level for every cell of the first one has a node with an-
other one hundred cells. The third level however -since we assumed
that the data are uniform and there only ten thousand tuples- has
nodes that consist of only of one cell. Therefore we can close the
corresponding cells right away. Thus we avoid iterating on views
abcd(O0001), abce(O0010), abc(O0011) and abde(O0100).

4.4 Coarse-grained Dwarfs
Even though the Dwarf structure achieves remarkable compres-

sion ratios for calculating the entire cube, the Dwarf size can be, in
cases of sparse cubes, quite larger than the fact table. However we
can trade query performance for storage-space by using a granu-
larity Groin parameter. Whenever at some level of the Dwarf struc-
ture (during the Dwarf construction) the number of tuples that con-
tributes to the subdwarfbeneath the currently constructed node N of
level L is less than Groin, then for that subdwarfwe do not compute
any ALL cells. All the tuples contributing to this coarse-grained
area below node N can be stored either in a tree-like fashion (thus
exploiting prefix redundancy), or as plain tuples (which is useful
if the number of dimensions D is much larger than L, to avoid the
pointers overhead). Notice that for all these tuples we need to store
only the last D - L coordinates, since the path to the collapsed area
gives as the missing information. Each query accessing the coarse-
grained area below node N will require to aggregate at most amin
tuples to produce the desired result. The user can modify the ami n
parameter to get a Dwarf structure according to his/her needs.

5. EXPERIMENTS AND PERFORMANCE
ANALYSIS

We performed several experiments with different datasets and
sizes to validate our storage and performance expectations. All
tests in this section were run on a single 700Mhz Celeron processor
running Linux 2.4.t2 with 256MB of RAM. We used a 30GB disk
rotating at 7200 rpms, able to write at about 8MB/sec and read at
about 12MB/sec. We purposely chose to use a low amount of RAM
memory to allow for the effect of disk I/O to become evident and
demonstrate that the performance of Dwarf does not suffer even
when limited memory resources are available.

Our implementation reads a binary representation of the fact ta-
ble, where all values have been mapped to integer data (4 bytes).
Unless specified otherwise, all datasets contained one measure at-
tribute, and the aggregate function used throughout our experiments
was the SUM function. The reported times are actual times and
contain CPU and I/O times for the total construction of Dwarf
cubes including the initial sorting of the fact table.

In the experiments we compared Dwarf to Cubetrees, as far as
storage space, creation time, queries and update performance are
concerned. In [KR] Cubetrees were shown to exhibit at least 10
times faster query performance when compared to indexed rela-
tions, half the storage a commercial relational system requires and
at least 100 times faster update performance. Since no system has
been shown to outperform the Cubetrees so far, we concluded that
this was the most challenging test for Dwarf.

470

5.1 Cube construction

5.1.1 Prefix redundancy vs Suffix Coalescing
In this experiment we explore the benefits of eliminating pre-

fix redundancy, and using suffix coalescing when computing the
CUBE operator. For the first set of experiments, we used a binary
storage footprint (BSF) as a means of comparison. The BSF repre-
sentation models the storage required to store the views of the cube
in unindexed binary relations. This representation was also used
by [BR] to estimate the time needed to write out the output of the
cube.

d BSF

10 2333MB
15 106 GB
20 4400 GB
25 173 TB
30 6.55 PB

uniform
Dwarf Dwart
Prefix (MB)

1322MB 62
42.65GB 153
1400 GB 300
44.8 TB 516
1.43 PB 812

80-20
Time Dwarf Time
(see) (MB) (see)

26 115 46
68 366 147

142 840 351
258 1788 866
424 3063 1529

Table 4: Storage and creation time vs #Dimensions

In Table 4, we show the storage and the compute time for Dwarf
cubes as the number #Dims of dimensions range from 10 to 30. The
fact table contained 100000 tuples and the dimension values were
either uniformly distributed over a cardinality of 1000 or followed
a 80-20 Self-Similar distribution over the same cardinality. We did
not impose any correlation among the dimensions. The BSF col-
urrm shows an estimate of the total size of the cube if its views were
stored in unindexed relational tables. The "Dwarf Prefix" column
shows the storage of the Dwarf with the suffix coalescing off, and
therefore, without suffix redundancy elimination. To measure the
BSF size and the "Dwarf Prefix" size, we generated the Dwarf with
the suffix coalescing turned on, and then traversed the Dwarf struc-
ture appropriately. We counted the BSF and the "Dwarf prefix"
storage for both distributions and the results (as far as the savings
are concerned) were almost identical -slightly smaller savings for
the 80-20 distribution-, so we just present the uniform sizes. The re-
maining four columns show the Dwarf store footprint and the time
to construct it for each of the two distributions.

We observe the following:

• Elimination of prefix redundancy saves a great deal, but suf-
fix redundancy is clearly the dominant factor in the overall
performance.

• The creation time is proportional to the Dwarf size.

• The uniform distribution posts the highest savings. The ef-
fect of skew on the cube is that most tuples from the fact
table contribute to a small part of the whole cube while leav-
ing other parts empty. The denser areas benefit from prefix
elimination which is smaller, and sparser areas have less suf-
fix redundancy to eliminate (since fewer tuples exist there).

Table 5 gives the Dwarf storage and computation time for a 10-
dimensional cube when the number oftuples in the fact table varies
from 100000 to 1000000. The cardinalities of each dimension are
30000,5000, 5000, 2000, 1000, 1000, 100, 100, 100 and 10. The
distribution of the dimension values were either all uniform or all
80-20 self-similar. This set of experiments shows that the store
size and computation time grow linearly in the size of the fact table
(i.e. doubling the input tuples results in a little more than twice the
construction time and storage required).

#Tuples

100,000
200,000
400,000
600,000
800,000

1,000,000

uniform 80-20
Dwarf Time Dwarf Time
(MB) (see) (MB) (see)

62 27 72 31
133 58 159 69
287 127 351 156
451 202 553 250
622 289 762 357
798 387[975 457

Table 5: Storage and time requirements vs #Tuples

6.0xlO 9

5.0x10 g

m

,.oil0'

0.0

Cubetrees Uniform /
10-¢, C"ubetrees Sel f-Similar [/ /
[A-t~ ~ / ~ Dwarf Uniform

6 7 8 9 10
#Dimensions

Figure 3: Storage Space vs #Dimensions

5.1.2 Comparison with Full Cubetrees
In this experiment we created cubes of fewer dimensions, in or-

der to compare the performance of Dwarf with that of Cubetrees.
We created full cubes with the number of dimensions ranging from
4 to 10. In each case, the fact table contained 250000 tuples cre-
ated by using either a uniform, or a 80-20 self-similar distribution.
In Figure 3 we show the space required for Dwarf and for Cube-
trees to store the entire cube. Figure 4 shows the corresponding
construction times. From these two figures we can see that:

• Cubetrees do not scale, as far as storage space is concerned,
with the number of dimensions. On the contrary, Dwarf re-
quires much less space to store the same amount of informa-
tion.

• Dwarf requires significantly less time to build the cube. This
is because Cubetrees (like other methods that calculate the
entire cube) perform multiple sorting operations on the data,
and because Dwarf avoids computing large parts of the cube,
since suffix coalescing identifies parts that have already been
computed.

5.1.3 Comparison to Reduced Cubetrees
This experiment compares the construction time of Dwarf with

that of Cubetrees when the Cubetrees size is limited to that of the
Dwarf structure. We will refer to this type of Cubetrees as re-

duced Cubetrees. This is useful to examine, since in many cases
of high-dimensional data, Cubetrees (and most other competitive
structures) may not fit in the available disk space. Since the Cu-
betrees will not store all the views of the CUBE operator, we have
to make a decision of which views to materialize. The PBS algo-
rithm [SDN] provides a fast algorithm to decide which views to
materialize under a given storage constraint, while at the same time
guaranteeing good query performance. The PBS algorithm selects
the smallest views in size, which are typically the views that have
performed the most aggregation. In addition, we have also stored
in the reduced Cubetrees the fact table, in order for them to be able
to answer queries (in the Queries section) on views which are not
materialized or cannot be answered from other materialized views.

471

2500

2000

1500

.~ iooo
8

500

O-Q Cubetrees Uniform
Cubelrces Self-Similar
Dwarf Uniform

"~ 6 7 8 9 10
#Dimensions

Figure 4: Construction Time vs #Dimensions

Dataset d Size Cubetrees Dwarf PBS
(MB) Time(see) Time(see) Views

Meteo-9 9 66 64 35 63/512
Forest 10 594 349 350 113/1024

Meteo-12 12 358 451 228 310/4096

Table 6: Storage and Creation Time for Real Datasets

Table 6 gives the Dwarf and reduced Cubetrees storage and cre-
ation times for three real datasets. The Meteo datasets had 348448
tuples and the Forest dataset had 581012 tuples. Cubetrees were
created having the same size as the corresponding Dwarfs. The
construction times of the reduced Cubetrees do not include the run-
ning time for the PBS algorithm. The table also shows the num-
ber of views contained in the reduced Cubetrees. The first real
dataset contains weather conditions at various weather stations on
land for September 1985 [HWL]. From this dataset we created two
sets - Meteo-9 and Meteo-12 - of input data: one which contained
9 dimensions, and one with 12 dimensions. The second real data-
set contains "Forest Cover Type" data [Bla] which includes carto-
graphic variable that are used to estimate the forest cover type of
land areas. In all data sets some of the attributes were skewed and
among some dimensions there was substantial correlation.

Even though the reduced Cubetrees calculate significantly fewer
views that Dwarf does, Dwarf cubes are significantly faster at their
creation for the two Weather datasets, and took the same amount of
time as the Cubetrees for the Forest dataset. One important obser-
vation is that the Dwarf structure for the Weather dataset with 12
dimensions is smaller, and faster to compute than the Dwarf for the
Forest data, which had 10 dimensions. The top three dimensions in
the Weather data were highly correlated and suffix coalescing hap-
pened at the top levels of the Dwarf structure in many cases, thus
providing substantial space and computational savings.

5.2 Query Performance
In this section we study the query performance of Dwarf when

compared to full and reduced Cubetrees. A detailed analysis of how
range queries, applied to different levels of the Dwarf structure, are
treated by both the clustered and unclustered structure can be found
in the full version of this paper ([SDRK02]).

5.2.1 Dwar3~ vs Full Cubetrees
We created two workloads of 1000 queries, and queried the cubes

created in the previous experiment (full cubes of 4-10 dimensions
with 250000 tuples). The description of the workloads is presented
in Table 7.

Since other query workloads will also be given in tables simi-
lar to Table 7, we give below a description on the notation used.
An important thing to consider is that in query workloads to either
real data, or synthetic data produced by using the uniform distribu-
tion, the values specified in the queries (either point values, or the

Probabilities] Range I
Workload #Queries PnewQ Palm epointO Max Min

A 1000 0.34 0.4 0.2420% 1 1
B 1000 1.00 0.4 0.2 20% 1

Table 7: Workload Characteristics for "Dwarfs vs Full Cube-
trees" Query Experiment

15C

i
• 10£

. ~] i i *

6 7 8 9 10
#Dimensions

Figure 5: Query performance on uniform data

endpoints of ranges) are selected by using a uniform distribution.
Otherwise, we use the 80/20 Self-Similar distribution to produce
these values. This is more suitable, since we suspect that the user
will typically be more interested in querying the denser areas of the
cube.

enewQ The probability that the new query will not be related to
the previous query. In OLAP applications, users typically
perform a query, and then often execute a series of roll-up
or drill-down queries. When our query generator produces
a query, it produces a roll-up query with probability (1 -
PnewO)/2, a drill-down query with the same probability or a
new query with probability Pne~Q. For example, Workload
B creates only new (unrelated) queries, while workload A
creates a roll-up or a drill-down with a probability of 0.33
each.

The probability that each dimension will be selected to par-
ticipate in a new query. For example, for a 10-dimensional
cube, if the above probability is equal to 0.4, then new queries
will include 10- 0.4 = 4 dimensions on average.

epointQ The probability that we specify just a single value for each
dimension participating in a query. Otherwise, with proba-
bility 1 -PpointQ we will specify a range of values for that
dimension. This way we control how selective our queries
will be: a value of 1 produces only point queries, and a value
of 0 produces queries with ranges in every dimension partic-
ipating in the query. In most of our experiments we selected
low values for this parameter, since a high value would result
in most queries returning very few tuples (usually 0).

Range The range for a dimension is uniformly selected to cover
a specified percentage of the cardinality of the dimension.
For example, if a dimension a has values ranging from 1 to
1000, a 20% value maximum range will force any range of
dimension a to be limited to at most 200 values. Each range
contains at least one value.

Returning to the experiment, the results for the workloads of Ta-
ble 7 on the cubes created in the previous experiment are shown
in Figures 5 and 6. Dwarf outperforms Cubetrees in all cases, and
for small-dimensionality Dwarf cubes are 1-2 orders of magnitude

472

150

i
~loq

i ~ 6 7 8 9 10
#Dimensions

Figure 6: Query performance on self-similar data

faster. The main advantage of Dwarf cubes is their condensed stor-
age, which allows them to keep in main memory a lot more infor-
mation than Cubetrees can. Moreover, we can see that Dwarfpero
forms better in workload A, because roll-up and drill-down queries
have a common path in the Dwarf structure with the previously
executed query, and thus the disk pages corresponding to the com-
mon area are already in main memory. For example, for the 10-
dimensional cases, in the Uniform dataset the response time drops
from 35 to 28 seconds when roll-up and drill-down operations are
used (a 20% reduction), while for the Self-Similar case the im-
provement is even larger: from 58 to 40 seconds. This is a 31%
reduction in response time.

5.2.2 Dwar~ vs Reduced Cubetrees
In this set of experiments, we compare the query performance

of Dwarfs with that of reduced Cubetrees. The datasets used in
this experiment were the real datasets described in Section 5.1.3
(Meteo-9, Meteo-12, Forest). Since Cubetrees in this case did not
contain all the views of the cube, we need to explain how we an-
swered queries on non-materialized views.

When a query on a non-materialized view v is issued, the Cube-
tree optimizer picks the best materialized view w to answer v. If v
does not share a common prefix with w, then it uses a hash-based
approach to evaluate the query. If however v shares a common pre-
fix with w, then the result is calculated on the fly, taking advantage
of the common sort order. The second case is much faster than us-
ing a hash-table. The Cubetree optimizer needs estimates for the
size of all views, but in our case we had the exact sizes by issuing
appropriate queries to the Dwarf structure.

Workload

A
B
C
D
E

#Queries PnewQ ~ s PpointQ Rangem~
2000 0.34 4 0.1 15%
2000 0.34 4 0.5 25%
2000 1.00 4 0.5 25%
2000 0.34 3 0.5 25%
2000 1.00 3 0.5 25%

Table 8: Workload Characteristics for "Dwarfs vs Reduced Cu-
betrees" Query Experiment

For each real dataset we created 5 workloads of 2000 queries,
whose characteristics are presented in Table 8. Here, the #Dims col-
umn denotes the average number of dimensions specified on each
query. Notice that workloads C and E are similar to workloads B
and D, respectively, but contain no roll-up/drill-down queries.

The query performance of Dwarf and the reduced Cubetrees is
presented in Table 9. The WL column denotes the workload used.
Dwarf is about an order of magnitude faster than the reduced Cube-
trees in the Weather datasets Meteo-9, Meteo-12), and 2 - 3 times
faster in the Forest dataset. Dwarf performs significantly better in

the Weather datasets due to the correlation of the attributes in these
datasets. Because coalescing happened at the top levels of the struc-
ture, a large fraction of nodes at the top levels were cached, thus
improving performance dramatically.

An important observation is that Dwarfs are faster when the work-
load contains roll-up/drill-down queries. For example, for work-
loads D and E of the forest dataset, Dwarf was 17% faster. Also
notice that in this type of workloads the limitation of the average
number of dimensions specified in each query, favors Cubetrees,
which typically store views with up to 3 dimensions, because of
the PBS algorithm. For workloads with queries containing more
dimensions, on average, the performance of the Cubetrees was sig-
nificantly worse.

Reduced Cubetrees Dwarf
WL Meteo9 Meteo12 Forest Meteo9 Meteol2 Forest

A 305 331 462 13 34 150
B 292 346 478 13 39 176
C 304 340 483 13 44 208
D 315 301 427 12 47 217
E 305 288 448 15 49 262

Table 9: Query Times in Seconds for 2000 Queries on Real
Datasets

5.2.3 Coarse-grained Dwar~
As described in Section 4.4, we can limit the space that Dwarf

occupies and subsequently computation time, by appropriately set-
ting the minimum granularity (Groin) parameter. In this set of ex-
periments we investigate how the construction time, space, and
query performance of Dwarfs are influenced when increasing the
Groin threshold. We created two 8-dimensional datasets Buni, B80/20
each having 800,000 tuples. The cardinalities of the dimensions
were: 1250, 625, 300, 150, 80, 40, 20 and 10. The underlying
data in Buni was chosen using a uniform distribution, while for the
B80/20 we used the 80-20 self-similar distribution. We constructed
the correspoding Dwarf structures for different values of the Groin
parameter and then issued 8,000 queries on each of the resulting
Dwarf cubes. The query workload contained queries with ranges
on three consecutive dimensions. For a more detailed description
of the query workload see [SDRK02]. Table 10 presents the cre-
ation times, the required storage, and the time required to execute
all 8,000 queries for each Dwarf.

Uniform 80-20
Space]Creation Queries i Space Creation Queries

Groin (MB) (see) (sec) I(MB) (sec) (see)

0 490 202 ' 154 482 218 199
100 400 74 110 376 81 262

1000 312 59 317 343 62 295
5000 166 29 408 288 53 1094

20,000 151 25 476 160 30 1434

Table 10: Performance measurements for increasing Groin

When we increase the value of Groin, the space that Dwarf oc-
cupies decreases, while at the same time query performance de-
grades. The only exception was for the Uniform distribution and
Groin value of 100, where the reduction of space actually improved
query performance, despite the fact that some aggregations needed
to be done on-the-fly. The reason is that coarse-grained areas for
this value fit in one -or at most two- pages and it is faster to fetch
them and do the aggregation on the fly, rather than fetching two or

473

more pages to get to the precomputed aggregate.
In Table 10 the pay-offin construct time is even higher than the

space savings. A amin value of 20000 results in 3 to 1 storage
savings, but in more than 7 to 1 speedup of computation times.
After various experiments we have concluded that a value of Gmin
between 100 and 1000 typically provides significant storage/time
savings with small degradation in query performance.

5.3 Updates
In this section we present experimental results to evaluate the up-

date performance of Dwarfs when compared to the full and reduced
Cubetrees.

5.3.1 Using the APB-1 Benchmark Data
We tested the update performance of Dwarff on the APB-1 bench-

mark [Cou98], with the density parameter set to 2. The APB-1
benchmark contains a 4-d dataset with cardinalities 9000, 900, 17
and 9 and two measure attributes. We mapped the string data of the
fact table to integers, randomly permuted the fact table, and then se-
lected about 90% of the tuples (22,386,000 tuples) to initially load
the Cubetrees (full and reduced) and Dwarf, and then applied 10
successive increments of 1% each. Table 11 shows the results for
the reduced Cubetrees and Dwarf. The full Cubetrees are always
more expensive to update than the reduced Cubetrees (since they
have more views to update) and, thus, are not included in the re-
suits. Dwarf surpassed the reduced Cubetrees in all the incremen-
tal updates. Moreover, it is interesting to notice that the update time
of Dwarf decreased as more tuples were inserted. This is mainly be-
cause this dataset corresponded to a dense cube and, therefore, the
number of coalesced tuples was small. Updating coalesced tuples
is the most time consuming part of the imcremental update opera-
tion for Dwarf. As more tuples were inserted, fewer coalesced links
existed, and the update performance improved. In [SDRK02] we
can see that even in very sparse datasets, Dwarf matches the update
performance of the reduced Cubetrees, and by far outperforms the
full Cubetrees.

Reduced Dwarf
Cubetrees

Time
Action

(see)
Create 1124

Update # 1 42
Update #2 36
Update #3 39
Update #4 34
Update #5 24
Update #6 34
Update #7 24
Update #8 30
Update #9 22

Update # 10 20

Table 11: Update

Space Time
(MB) (sec)

346 1381
350 76
353 78
359 77
365 79
369 80
374 82
378 79
384 83
390 82
393 I 84

performance on the APB-1 benchmark

6. RELATED WORK
The goal of any algorithm that computes the data cube is to take

advantage of commonalities between different group-bys. Tech-
niques that have been proposed include sharing partitions, sorts or
partial sorts and intermediate results between group-bys with com-
mon attributes. Some of the most well known algorithms include
PipeSort [AAD +, SAG96], Overlap [DANR96], PartitionCube and

MemoryCube [RS], ArrayCube [ZDN]. Since these algorithms are
well noted, we will not review them here in detail.

The Bottom-Up Cube (BUC) algorithm is described in [BR] and
is designed to compute sparse and Iceberg-cubes. The general
Iceberg-cube problem is to compute all group-by partitions for ev-
ery combination of grouping attributes that satisfy an aggregate se-
lection condition. Iceberg-cubes can be used to compute iceberg
queries[FSGM+]. For Iceberg cubes, BUC stores only those parti-
tions of a group-by whose value is produced by aggregating at least
MinSup tuples of the fact table. The parameter MinSup is called
the minimum support. Sparse Iceberg cubes are much smaller than
the full cubes, because the minimum support pruning has a direct
effect on the number of views materialized. Assume a cube with 10
dimensions each with a cardinality 1000 and a fact table of 1000000
tuples uniformly distributed. A minimum support of 10 material-
izes only views with 3 dimensions or less. The other views contain
group-bys with partitions less than the minimum support.

Recently, work has been performed on approximating Data Cubes
through various forms of compression such as wavelets [VWI],
multivariate polynomials [BS98], or by using sampling [GM, AGP]
or data probability density distributions [SFB]. While these meth-
ods can substantially reduce the size of the Cube, they do not actu-
ally store the values of the group-bys, but rather approximate them,
thus not always providing accurate results.

In Cubetrees [RKR, KR], group-bys are mapped into orthogo-
nal hyperplanes of a multidimensional index. Common sort orders
are then used to cluster the points of each group-by into continuous
disk space. A packing algorithm guarantees full page utilization,
resulting in at least 50% space savings over indexed relations. Up-
dates are handled through a Merge-Packing algorithm that scans the
old aggregates and merges them with the update increment, which
is sorted in compatible order.

In [JS97], Cube Forests were proposed for storing the data cube.
Cube Forests are similar to Dwarfs in that they also exploit pre-
fix redundancy when storing the cube. However, they differ from
Dwarf both in their structure -forest of trees-, their construction al-
gorithms, and their indexing methods (Cube Forests use additional
B-trees along paths of their Cube Tree Template).

In [FH00], the idea of a statistics tree (ST) was introduced. In
this tree, prefix redundancy was partially exploited. Unique pre-
fixes were stored just once, but the tree contained all possible paths
(even paths corresponding to tuples that have not been inserted)
making it inappropriate for sparse datasets. Moreover, the con-
struction algorithm of the ST did not exploit data locality and clus-
tering, thus resulting in inefficient cube computation.

In [WLFY02] the notion of a base single tuple is similar to the
one of a coalesced tuple of this paper and previously in [RSDK01].
In [WLFY02], three algorithms are described for discovering tu-
pies whose storage can be coalesced: MinCube guarantees to find
all such tuples, but is very expensive computationally, while BU-
BST and RBU-BST are faster, but discover fewer coalesced tuples.
Compared to this work, our method provides a much more efficient
method not only for the automatic discovery of the coalesced tu-
pies, but also for indexing the produced cube, something also not
done by most of the methods for cube computation listed above.
A detailed comparison to this paper is not present because it was
published after the submission of our paper.

7. CONCLUSIONS
In this paper we presented Dwarf, a highly compressed structure

for computing, storing, and querying data cubes. Dwarf identifies
prefix and suffix structural redundancies and factors them out by
coalescing their storage. The Dwarf structure shows that suffix re-

474

dundancy is the dominant factor in sparse cubes and its elimination
has the highest return both in storage and computation time.

Dwarf is practical because it is generated over a single pass over
the data and requires no deep knowledge the underlying value dis-
tributions. It is scalable because the higher the dimensions the more
the redundancy to harvest. Dwarf can be used to store the full cube
(made possible because of its compact size) or, alternatively, pre-
compute only aggregates whose computation will be too costly to
be done on the fly, using the minimum granularity metric.

The great reduction in terms of storage space that the dwarf
structure exhibits has positive effects in terms of query and update
performance. The dwarf structure plays a double role as a stor-
age and indexing mechanism for high dimension data. Roll-up and
drill-down queries seem to benefit from the dwarf structure due to
common paths that are exploited while caching. In terms of update
speed, dwarf by far outperforms the closest competitor for storing
the full data cube, while their performance is comparable when the
competitor is reduced to storing only a partial cube of the same size
as Dwarf.

Acknowledgements

We would like to thank Alexandros Labrinidis, Dimitrios Tsouma-
kos and the anonymous reviewers for their helpful comments.

8. REFERENCES
[AAD +] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta,

J .E Naughton, R. Ramakrishnan, and S. Sarawagi.
On the computation of multidimensional aggregates.
In VLDB 1996.

[AGP] S. Acharya, P. B. Gibbons, and V. Poosala.
Congressional Samples for Approximate Answering
of Group-By Queries. In SIGMOD 2000, Dallas.

[Bla] Jock A. Blackard. The Forest CoverType Dataset.
fip://ftp.ics.uci.edu/pub/machine-learning-
databases/covtype.

[BPT] E. Baralis, S. Paraboschi, and E. Teniente.
Materialized View Selection in a Multidimensional
Database. In VLDB 1997, Athens.

[BR] K.S. Beyer and R. Ramakrishnan. Bottom-Up
Computation of Sparse and Iceberg CUBEs. In
SIGMOD 1999, Philadelphia.

[BS98] D. Barbara and M. Sullivan. A Space-Efficient way to
support Approximate Multidimensional Databases.
Technical report, ISSE-TR-98-03, George Mason
University, 1998.

[Cou98] Olap Council. APB-1 Benchmark.
http://www.olapcouncil.org/research/bmarkco.htm,
1998.

[DANR96] P.M. Deshpande, S. Agarwal, J.E Naughton, and
R. Ramakrishnan. Computation of multidimensional
aggregates. Technical Report 1314, University of
Wisconsin - Madison, 1996.
L. Fu and J. Hammer. CUBIST: A New Algorithm for
Improving the Performance ofAd-hoc OLAP
Queries. In DOLAP, 2000.
M. Fang, N. Shivaknmar, H. Garcia-Molina,
R. Motwani, and J.D. Ullman. Computing Iceberg
Queries Efficiently. In VLDB 1998.
J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals.
In 1CDE 1996, New Orleans. IEEE.

[FHO0]

[FSGM +]

[GBLP]

[GHRU]

[GM]

[Gup]

[HHW]

[HRU]

[HWL]

[JS97]

[KR]

[RKR]

[RS]

[RSDK011

[SAG96]

[SDN]

[SDRK02]

[SFB]

[vwH

[WLFY02]

[ZDN]

H. Gupta, V. Harinarayan, A. Rajaraman, and
J. Ullman. Index Selection for OLAP. In ICDE 1997,
Burmingham.
P. B. Gibbons and Y. Matias. New Sampling-Based
Summary Statistics for Improving Approximate
Query Answers. In SIGMOD 1998, Seattle.
H. Gupta. Selections of Views to Materialize in a
Data Warehouse. In ICDT 1997, Delphi.
J.M. Hellerstein, P.J. Haas, and H. Wang. Online
Aggregation. In SIGMOD 1997, Tucson.
V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing Data Cubes Efficiently. In SIGMOD
1996, Montreal.
C. Hahn, S. Warren, and J. London. Edited synoptic
cloud reports from ships and land stations over the
globe.
http://cdiac.esd.oml.gov/cdiac/ndps/ndpO26b.html.
T. Johnson and D. Shasha. Some Approaches to Index
Design for Cube Forests. Data Engineering Bulletin,
20(1), March 1997.
Y. Kotidis and N. Roussopoulos. An Alternative
Storage Organization for ROLAP Aggregate Views
Based on Cubetrees. In SIGMOD 1998, Seattle.
N. Roussopoulos, Y. Kotidis, and M. Roussopoulos.
Cubetree: Organization of and Bulk Incremental
Updates on the Data Cube. In SIGMOD 1997, Tucson.
K. A. Ross and D. Srivastana. Fast Computation of
Sparse Datacubes. In VLDB 1997, pages 116-125,
Athens, Greece.
N. Roussopoulos, J. Sismanis, A. Deligiannakis, and
Y. Kotidis. The Dwarf Structure for Creating, Storing,
and Querying Highly Compressed Data Cubes.
Application to U.S. patent office submitted, June
2001.
S. Sarawagi, R. Agrawal, and A. Gupta. On
computing the data cube. Technical Report RJ 10026,
IBM Almaden Research Center, San Jose, CA, 1996.
A. Shukla, P.M. Deshpande, and J.F. Naughton.
Materialized View Selection for Multidimensional
Datasets. In VLDB 1998, New York City.
Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: Shrinking the PetaCube. Technical
Report CS-TR 4342, University of Maryland, College
Park, February 2002.
J. Shanmugasundaram, U. Fayyad, and P.S. Bradley.
Compressed Data Cubes for OLAP Aggregate Query
Approximation on Continuous Dimensions. In KDD
1999.
J.S Vitter, M. Wang, and B. Iyer. Data Cube
Approximation and Histograms via Wavelets. In
CIKM 1998.
W. Wang, H. Lu, J. Feng, and J. Xu Yu. Condensed
Cube: An Effective Approach to Reducing Data Cube
Size. In ICDE, 2002.
Y. Zhao, E M. Deshpande, and J. E Naughton. An
array-based algorithm for simultaneous
multidimensional aggregates. In SIGMOD 1997.

475

