
Issues in Complex Event Processing Systems

Ioannis Flouris
School of Electronic and
Computer Engineering

Technical University of Crete
Chania, Greece

Email: gflouris@softnet.tuc.gr

Nikos Giatrakos
School of Electronic and
Computer Engineering

Technical University of Crete
Chania, Greece

Email: ngiatrakos@softnet.tuc.gr

Minos Garofalakis
School of Electronic and
Computer Engineering

Technical University of Crete
Chania, Greece

Email: minos@softnet.tuc.gr

Antonios Deligiannakis
School of Electronic and
Computer Engineering

Technical University of Crete
Chania, Greece

Email: adeli@softnet.tuc.gr

Abstract—Many Big Data technologies were built to enable the
processing of human generated data, setting aside the enormous
amount of data generated from Machine-to-Machine (M2M)
interactions. M2M interactions create real-time data streams that
are much more structured, often in the form of series of event
occurrences. In this paper, we provide an overview on the main
research issues confronted by existing Complex Event Processing
(CEP) techniques, as a starting point for Big Data applications
that enable the monitoring of complex event occurrences in M2M
interactions.

I. INTRODUCTION

Big Data is generally characterized by four main aspects:
Volume, which is the enormous amounts of data to be pro-
cessed; Velocity, which is the speed at which data must be pro-
cessed; Variety, which represents the multiple representations
in the data model; and Veracity, which is the uncertainty in
the data. Many modern Big Data applications aim to enhance
the processing of human generated data which are though
surpassed in volume by data produced during Machine-to-
Machine (M2M) interactions.

M2M data are generated in high frequency in every Big
Data system and include useful information that can be utilized
to identify the occurrence of interesting situations. Complex
Event Processing (CEP) systems aim to process M2M data
efficiently and immediately recognize interesting situations
when they occur. Generally, events can be thought of as single
occurrences of interest in time and complex events as situations
that comprise a particular composite meaning for the system.
CEP applications include, but are not limited to, network health
monitoring applications, mobile and sensor networks, com-
puter clusters and smart energy grids, security attacks detection
like denial-of service attacks, intrusions or fake identities. In
the business sector, accounting, logistics, warehousing and
stock trading applications are included among others.

In this paper, we aim to unravel the main research issues
tackled in the literature of CEP systems and shortly present
the contribution of developed techniques. Figure 1 illustrates
the main dimensions of our upcoming analysis. The distance
of the colored line from the center of the graph is proportional
to the depth of our discussion compared to the abundance of
related work for each dimension and our notion of significance.
Details on the content of each axis will be given in the sections
to come in a clockwise order, as shown by the dotted arc in
the figure.

This work was partially supported by the European Commission under ICT-
FP7-FERARI-619491 (Flexible Event pRocessing for big dAta aRchItectures)

Event Data Model

Query Language

Performance Metrics

Optimization Issues
Adaptivity

Considerations

Distributed Settings

Uncertainty Effect

Fig. 1: Dimensions & Depth of our Analysis

II. EVENT STREAM MODEL

Event tuples are defined by [11] as tuples e =< s, t >,
where e represents the event of interest, s refers to a list
of attributes and t is a list of timestamps, the first being
the start of the event and the last the end of it. [2] and
[1] define events based on a specific schema using different
syntax. [16] and [18] define an event as a single occurrence
of interest in time. In any case, events should be defined
with a number of attributes denoting the event’s meaning,
along with one or more time attributes denoting the event’s
time occurrence and/or its duration. Most research efforts [2],
[8], [11], [16] categorize events as primitive and composite
(also called complex or deferred). Primitive events are atomic
(i.e., non-decomposable) occurrences of interest. Composite
(or complex) events are detected from the CEP system based
on defined patterns (rules) involving primitive and/or other
complex events.

III. QUERY FORMULATION AND EVENT DETECTION

Queries submitted in a CEP system aim at detecting
complex events on the incoming stream of primitive events
based on a given pattern. A pattern includes one or more event
types (or classes). For instance, at the bottom of Figure 2,
the received event stream includes instances of event types in
the set {A,B,C,D}. The most common expression of complex
event queries receives the following form [1], [16], [18], [17]:

PATTERN OPERATOR(list of TypeOfEvents)
WHERE (event value constraint)
AND (another value constraint)
WITHIN (time)
RETURN (ComplexEvent or Events to return)



The prominent operators in the PATTERN OPERATOR clause
are {SEQ, AND, OR, NOT, Kleene Closure}. In particular
the SEQ pattern requires that all events occur sequentially,
the AND operator declares conjunction of all events included
in the pattern, OR corresponds to the occurrence of any
event, while the Kleene Closure operator means zero or more
individual occurrences for an event included in the pattern.
The WHERE clause is for one or more (in)equality constraints
among event attributes separated by logical operators. The
WITHIN clause specifies the time window in which all events
must occur for a full pattern match and thus, a valid complex
event detection. The RETURN clause outputs a complex event
or its list of primitive events.

As streaming events arrive on a CEP system, a query pat-
tern is progressively evaluated. This means that before complex
event detection via a full pattern match, partial matches of the
query pattern take place. These partial matches need to be
monitored as they express the potential for an imminent full
match. To track the state of a partial match and determine on a
complex event occurrence, multiple representations have been
used in the literature, mainly depending on the performance
metrics that each approach tries to enhance. The basic two cat-
egories are graph-based and automata-based representations.

Automata-based Non-Deterministic Finite Automata
(NFA) (see Fig. 2) is one of the most popular model
representations in CEP systems where the status of a partial
match corresponds to a state of the automaton. The NFA
model is used in [16], while a variant that uses a match buffer
and called NFAb is used in [1] and [18]. The Finite State
Machine (FSM) model [11], [2] is very similar to the NFA.
FSMs carry similar functionality with the NFA, where state
transitions are made when an event, that satisfies the query’s
predicates, is detected and that its states signal the partial or
full detection of a complex event.

Graph-based Various tree structures have been used to
facilitate the detection of complex events. Left and right
deep trees are used in [8] while [7] uses petri-nets for event
detection. Event detection graphs are deployed in [2] to merge
all existing complex event expressions in a single structure.
The leaves are primitive events and the internal nodes are
operators. This structure offers a general overview of defined
complex expressions and serves as a complementary data
structure that aims to describe event and pattern dependencies.
Event Processing Network (EPN) is another way of modeling
the processing for detecting complex events as proposed in [6].
An event processing agent (EPA) is a processing element that
applies logic to incoming events and outputs derived (complex)
events. The EPN follows an event driven logic where EPAs
communicate asynchronously through event channels (EC).

IV. PERFORMANCE METRICS

CEP systems that assume that all data is delivered in a
single source for processing, measure their performance based
on how fast they process incoming data. Hence, the main
optimization metric is Throughput i.e., how many events per
time unit are processed [1], [8], [11], [16], [18]. Another
performance metric, highly correlated with throughput, is the
time or CPU cost of the language operators [1], [18].

CEP systems, that assume a collection of streams arrive
to different computing sites having a central (coordinator site)
which dictates (based on a plan) which primitive event is mon-
itored in which site, opt for the reduction of the Transmission
cost under the counterweight of detection latency [2]. In such
cases, Detection Latency is the time between the occurrence
of a complex event and its detection from the coordinator.

Lastly, an important issue upon handling large time win-
dows is that of Memory Management, since, if proper care
is not taken, intermediate results or partial matches stored in
main memory may excessively grow.

V. A TAXONOMY OF CEP APPROACHES

The architectural scheme of the techniques presented in
this section entails a sole event stream received by a single
operating site. Thus, the main performance goals involve high
throughput or low CPU cost and memory consumption.

A. Predicate-Related Optimizations

A simple way to optimize performance is to evaluate pred-
icates and time windows, the WHERE and WITHIN clauses
of the query, early in a query execution plan. This can be
achieved by partitioning the input stream and by employing
early filtering in the selected events that will actually be
part of complex event detection based on the query. Other
approaches include on-the-fly hash-based lookups and early
filters deployment on value predicates as events arrive.

1) Pushing Predicates Down: One of the first complete
CEP framework was SASE [16]. SASE employs this filtering
technique by partitioning an event stream to many small ones,
where events in each partition have the same value for the
attribute used in a single equivalence test. Before we explain
how it works we should present the basics of SASE’s proposed
query plan. The basic component of the query plan is sequence
scan and a construction called SSC. SSC transforms a stream
of events into a stream of sequences, with each sequence being
a partial match of the query. For sequence scan they use Non-
Deterministic Finite Automata to represent the structure of
an event sequence. In sequence scan, for each partial match,
an NFA is created by mapping successive event types to
successive NFA states. To keep track of all simultaneous states,
a runtime stack is instantiated to record the set of active states
and how this set leads to a new set of active states, as an
event arrives, with the use of pointers (see Fig. 2). Sequence
construction is invoked when an accepting state is reached
during sequence scan. Sequence construction is performed by
extracting from the runtime stack a single source Directed
Acyclic Graph (DAG). The DAG starts at an instance of the
accepting state in the rightmost cell of the stack and traverses
back along the predecessor pointers, until reaching instances
of the starting state.

One simple solution for the single equivalence test is to
partition the stream first and then run the query plan bottom-
up for each partition, but the authors propose a more elaborate
approach. Using an auxiliary data structure, called Partitioned
Active Instance Stack or PAIS (see Fig. 2), they simultaneously
create the partitions and build a series of these stacks for
each partition without incurring any overhead to the events
that do not participate in the query. With PAIS sequence



Fig. 2: PAIS example from [16]

construction is only performed in stacks in the same partition,
thus producing fewer intermediate results.

When multiple equivalence tests are present in a query
the authors propose two different filtering approaches. The first
called Multi-PAIS performs aggressive cross-attribute (NFA)
state transition filtering in sequence scan, but this technique
fails to prune superfluous results in sequence construction.
The second approach, called Dynamic Filtering, pushes the
most selective equivalence test down to sequence scan and then
pushes all other tests to sequence construction. This approach
cannot filter as many events in sequence scan, thus having
more instances in the stacks, but does not need to pay the
overhead of cross-attribute transition filtering and multi-stack
maintenance.

The same principle can be applied to simple predicates and
time windows. Again, there are two approaches for pushing
time windows down which are not mutually exclusive. The
first is to apply windows in sequence scan and the second in
sequence creation. The former filters some of the events, so
that they are not included in the stacks, and the latter searches
those stacks and checks the time window on-the-fly for each
event sequence.

2) Postponing with Early Filters: [18] uses an optimization
to prune inconsistent events based on value predicates on
the kleene closure operator. Although predicate evaluation is
basically performed (or postponed) during edge evaluation
for state transition in an NFA model, an additional filtering
technique is proposed to prune repeating events, based on an
existing predicate upon them. [18] advocates that it is incorrect
to evaluate all value predicates on the fly as events arrive,
since there is the case of non-deterministic actions on the NFA
model. Hence, the value predicates are categorized based on
their consistency into 4 categories that can be applied to the
kleene closure operator: (a) true-value consistent predicates,(b)
false-value consistent predicates, (c) true and false-value con-
sistent predicates and (d) inconsistent predicates. Based on
these categories, it can be decided by the system whether a
predicate can be evaluated on the fly and prune nonconforming
events, or such an evaluation is not possible and therefore must
be postponed until the result creation phase.

3) Hashing for Equality Predicates: [8] addresses the issue
of equality predicates and multi-class equality predicates. It
proposes the use of hash-based lookups, whenever it is possi-
ble, in an effort to reduce search costs for equality predicates
between different event classes. Multi-class predicates can be

attached to the operators as other predicates. The mechanism
employed involves the use of buffers of events in all nodes
of a tree model representation, with the leaves being primitive
events and the internal nodes being operators. Based on the
equality predicate, a hash table is created in the buffer (of the
leaf node that takes part in the equality predicate) as events
arrive and when the predicate is employed (further up in the
tree) hash lookups are performed to prune results, that do not
conform with the predicate.

Hash tables are created on the buffers of leaf nodes, either
to some or all the involved events depending on the used
operator. If the operator is AND, then a hash-table is created
on all participating event buffers. If the operator is SEQ, a hash
table is created to the first event in the sequence that takes part
in the predicate. Hash construction can be easily extended with
multiple equality predicates, where the use of a secondary
hash table is possible for sequential patterns to facilitate faster
pruning of irrelevant events.

B. Buffering Techniques

The use of buffers, to facilitate optimizations, is a common
practice among CEP systems. Both [16] and [1] employ the
use of stacks upon the NFA states, that evaluate the query
upon the arrival of new related events, which are grouped into
buffers for each distinct run along the NFA. [8] also deploys
buffers upon the query evaluation tree structure’s nodes. These
buffers enable the use of optimization techniques, in order to
enhance the overall system efficiency in both throughput and
memory management.

1) Shared Buffer: [1] uses buffers to encode partial and
complete matches for each run. The basic principle is to share
both storage and processing across multiple runs in the NFA-
based query plans. The initial approach is to build a buffer for
each single run and then merge such individual buffers into
a shared one for all the runs. Each individual buffer contains
a series of stacks (similar to Fig. 2), one for each state of
the NFA except the final state. Each stack contains pointers to
events that triggered a transition in the NFA’s state and thus are
included into the buffer. Further, each event has a predecessor
pointer to the previously selected event in either the same stack
or the previous one. For any event that triggered a transition
to the final state, a traversal across the predecessor pointers
reveals the full detection of a complex event, as specified by
the evaluated query.

They consequently combine those buffers into a shared one
to reduce the memory and processing overhead. This process
is based on merging the corresponding stacks of individual
buffers, by merging the same events in those stacks while
maintaining the predecessor pointers. This process though can
result in erroneous results, since it is unable to distinguish pre-
decessor pointers from different runs. To alleviate this problem
they use an identifier number (version) for each individual run
to label all such pointers created in that particular run. An
additional issue is that runs cannot pre-assign version numbers,
since non-deterministic states can spawn new runs at any time.
Thus, the version number is dynamically grown as the run
proceeds in the form of id1.(idj) ∗ (1 ≤ j ≤ t), where t
refers to the current state. This technique guarantees that the
version number is compatible with a possibly ancestor run



(spawned by it), since they would share a common prefix. The
versioned shared buffer can thus encode compactly all possible
runs. To extract a detection of a complex event, the algorithm
takes the version number of the run and traverses from the
most recent event (in the last stack) along the compatible
predecessor pointers to the event that started the run.

2) Operator-specific optimizations: The buffers imple-
mented by [8] resemble the stacks used by [1]. They use a
buffer in each node of the tree plan to store intermediate results
(in the case of internal nodes) and incoming events (in the case
of leaves). The buffers store pointers pointing to the primitive
event as well as its start and end timestamp. Another important
aspect of this buffer is that it is stored in a sorted order, based
on the end time. This feature allows the intermediate evaluation
of query’s time window.

With the use of buffers as described above an optimization
is proposed to evaluate conjunction queries (i.e. queries with
AND operator). The query evaluation algorithm works like
sort-merge join. It maintains a cursor on both input buffers,
initially pointing to the oldest not-yet-matched event in each
buffer. In each step of the algorithm, it chooses the cursor
pointing to the earlier event and combines that event with all
earlier events in the other cursor’s buffer. It finally produces
events in end-time order, since the processing order starts with
the earliest event at each time step.

Using the same principles, evaluation algorithms are pro-
posed for all operators. The OR operator simply outputs all
events that were allowed inside the buffers. The NOT operator
is pushed down to the event selection, rather than negating
composite events on top of the query plan. The basic principle
in the algorithm is that it tries to prune from the buffers all
events that the occurrence of a negated event disqualifies based
on the time window of the query. The Kleene closure operator
uses the buffers to gather the events specified (either a specific
number or all qualified events) within the time window.

C. Query Rewriting/Reordering

Query rewriting is a popular optimization technique that
allows a non-optimized query expression to be rewritten to a
more efficient one. The rewritten query must produce exactly
the same results as the original one and must exhibit enhanced
performance upon the optimization objectives. In general,
the reordering in queries rearranges the monitoring or the
processing of events, while query rewriting transform the query
itself using semantically equivalent query with cheaper or
fewer operators.

In [11] the issue of query reordering is addressed for three
operators Union, Next and Exception, that have the same
functionality as AND, SEQ and NOT , respectively. The
main intuition is to transform the original patterns to equivalent
ones with lower CPU cost. For the Union operator, since
the detection of the complex event relies on detecting one of
each involving events without any order, different ordering of
the events may result in more efficient evaluation. Based on
the commutative and associative property of this operator, the
authors map the problem to finding the optimal prefix code
for compression of data, i.e., a set of bit strings in which
no string is the prefix of the other. A prefix code is also
represented by a binary tree, where each internal node is a

one or a zero and each leaf represents the frequency of the
character. They use the greedy Huffman algorithm to create that
tree and with a depth first traversal of the tree the optimal order
of the Union patterns is generated. The Next operator also
has the associative property but not the commutative one, i.e.,
the order of the events cannot be altered. The authors propose
a dynamic programming solution, of cubic time and quadratic
space complexity, where the lowest cost pattern can be found
by enumerating all equivalent patterns and computing each
cost. The same principle applies for the Exception operator
and therefore the same algorithm is used.

Query rewriting is tackled in [8] by using algebraic rule-
based transformations for all operators. The transformations -
performed by the authors - differ from the solution proposed by
[11] since the basic transformation is algebraic and can, thus,
alter the used operators. E.g. the expression SEQ(A, AND(!B,
!C), D) is equivalent with the expression SEQ(A, !OR(B, C),
D) where ! is the NOT operator. [8] implements a series
of such equivalence rules, that can generate an exponential
number of equivalence expressions for a given query pattern.
Instead of searching all those expressions exhaustively, the
query is transformed when the rewritten expression has a
smaller number of operators or the expression contains lower
cost operators. The higher cost operator is the AND operator,
followed by the SEQ operator, while the cheapest one is
the OR operator. After the query is simplified, the authors
propose an algorithm for reordering the operators in a similar
conceptual way as in [11]. Using a dynamic programming
algorithm, they try to find the optimal order of the events,
that are included in the query. The optimal order, though, can
be found in a set of different (left-deep, right-deep, bushy) tree
structures, which are derived from a single logical query plan.
They finally use an algorithm that generates quadratic subsets
and has cubic time complexity.

In [9] an assertion-based pattern rewriting framework is
presented for two operators, namely all (AND) and sequence
(SEQ). The patterns are split into disconnected components
that can be independently processed. The acquisition of the
disconnected components is achieved by converting the pat-
tern into Conjunctive Normal Form (CNF). They proceed by
recognizing independent components by creating a variable
dependency graph using variables in the WHERE clause of
the query as nodes and their connection as edges. Splitting the
pattern into maximal number of independent partitions implies
the finest granulation that can be performed.

VI. ADAPTIVITY CONSIDERATIONS

Adaptivity can be thought of as the ability of a CEP system
to alter the query execution plan at runtime, when it judges
(based on recent statistics) that a different plan could improve
performance metrics. As a result of potentially high variability
in input stream rates and selectivities, an initially optimal plan
may no longer be optimal after running for some time.

The first adaptive complex event query processor was
introduced by [8] and called ZStream. To recompute the plan
on the fly, ZStream maintains a running estimate of event
statistics, using sampling operators attached to the leaf buffers.
More precisely, it uses simple windowed averages to maintain
the rates of each input stream and the selectivity of each



predicate. When any statistic used in a plan varies by more than
some error threshold, the operator ordering algorithm is rerun
and the new plan is installed, if the performance improvement
predicted by a cost function is greater than a performance
threshold. More sophisticated adaptive strategies may try to
reuse some of the already stored intermediate results and
minimize the recalculation, or incorporate parallelism when
plans are changed. With the use of this technique, the system is
able to adjust to changing data distributions, without suffering
from the degradation in performance of a poorly selected or
outdated query plan.

VII. DISTRIBUTED SETTINGS

There are two basic insights of how a distributed system
can perform. In [11] the idea that is introduced is that dis-
tributing the query processing across multiple sites enhances
drastically the system’s performance, in terms of throughput.
On the other hand, in [2] the architectural scheme that is
considered has multiple streaming sources and a single base-
processing site. Each source is a receiver of an input stream
of events and the base site is a coordinator that communicates
with all the sources, for detecting complex events.

The basic insight in [11] is that distributing the query
operators elevates the problem of memory management, as
well as system throughput. Memory management is enhanced,
since the partial matches (automaton instances) are distributed
through many sites, and are therefore able to deal with larger
time windows. Throughput is also optimized, through the fact
that each site receives fewer events for fewer queries, thus the
overall system is able to process more events per second. The
main optimization in this paper is that the queries are reordered
to more efficient ones, as described in previous sections.

The processing is distributed with the use of a greedy algo-
rithm for choosing operator deployment plans. The algorithm
reuses already deployed operators and deploys the remaining
operators in a bottom-up fashion. Existing operators are stored
in a hash map for fast retrieval. First, a submitted query is
traversed top-down to find the largest equivalent deployed
operator in the hash map, if any, starting with the entire query.
If found, the expression is replaced with a marker containing
the operator identifier and location to allow operators to be
connected once deployed. Next, the remaining operators are
deployed bottom-up. The location of each operator is selected
by recursively placing the left and right sub-expressions of the
operator and then the operator itself. An operator is placed by
calculating the cost of placing the operator on each site and
selecting the lowest cost site. This approach has O(Q·N) time
complexity where Q is the number of operators and N is the
number of sites. This approach has the advantage of selecting
good deployment plans, but the disadvantage that these plans
are not optimal.

In [2] the main concern is that the latency for detecting
the complex events is user (or system) specified and that the
communication cost for communicating with the coordinator
site is controlled. With the above in mind, plans are generated
that try to balance the communication cost with the detection
latency. They use FSMs for the physical event detection plans
and event detection graphs for the logical model representation
of all the existing queries. The event detection graph depicts

(in a single graph) all available queries, with leaf nodes
being primitive events and internal nodes being operators or
complex events. Using the event detection graph they are able
to create pareto optimal plans, that take into account event
sharing across multiple queries, in the sense of Multi-Query
Optimization, as well as event frequencies and acceptable
latency values. With these optimal plans being deployed, based
on the cost-latency model that they propose, they are able
to generate monitoring plans (FSMs), which conform with
the chosen cost and latency constraints. These plans are kept
in the coordinator site and through push and pull messages
the coordinator detects complex events. The activation of the
FSM’s final state, after the occurrence of all the related events
in the way that the query specifies, signals the detection of a
complex event.

Based on the number of states of the FSM, they can
monitor any number of events that participate in the query.
The activation of a new state (through the detection of the
current state’s primitive event) marks the monitoring of a new
set of events. The basic idea behind the number of selected
states of an FSM (which is the monitoring order of events) is
that; ”processing the higher frequency events conditional upon
the occurrence of lower frequency ones eliminates the need to
communicate the former in many cases, thus has the potential
to reduce communication cost in exchange of increased detec-
tion latency” [2]. In that way, [2] trades communication for
latency, by varying the number of FSM states.

The plan generation is done by traversing the event detec-
tion graph in depth-first manner, running the plan generation
algorithm on each node, in order to create a set of plans with a
variety of cost and latency characteristics. At the parent node of
each complex event, where all plans are propagated, the selec-
tion of the plan marks the selection on the children nodes. This
hierarchical plan composition takes also into account shared
primitive events by multiple queries, so that it will be taken
into consideration at the plan selection. The plan generation
algorithm is a Dynamic Programming algorithm that achieves
the minimum global cost for a given latency value, but has
exponential time complexity and is, thus, only applicable to
small problem instances. This is the reason that the authors
applied a heuristic algorithm that runs in polynomial time
and, although it cannot guarantee optimality, it produces near
optimal results in their experimental evaluation.

Plan execution then commences by activating all the FSMs’
starting states that trigger the continuous monitoring of some
primitive events at the various sites, by informing them which
events are of interest by the coordinator. Once such an event
is detected at a source site, it is pushed to the coordinator who
makes the transition in the respective FSM to the next state
and then pulls from the sites the next primitive event that the
FSM’s following state monitors. FSMs are non-deterministic
since the starting state is always activated and there may be
multiple active states at a time. Once a final state is reached,
inside the time window specified by the query, the coordinator
detects a complex event.

VIII. HANDLING UNCERTAINTY ASPECTS

Sources that produce event entities that stream into a
CEP system may incorporate imprecisions in the data [4],



[10], [12], [17], [13], [5], [14], [15]. These imprecisions
may appear on either the attributes that comprise an event,
causing Content Uncertainty, or even on an event apparition
i.e., Uncertain Event Occurrence. A third type of uncertainty,
regards Uncertain Rules (patterns) quantifying the hesitancy
with which application experts define a query pattern that truly
signals the occurrence of a composite event.

Content uncertainty is propagated to an event occurrence
since the uncertainty on attribute values yields probabilistic
decisions on whether these attributes satisfy posed predicates
for event’s occurrence [5]. In turn, uncertain event occurrences
lead to probabilistic pattern matches as the event instances in
a full match actually appear with a probability ≤ 1. Uncer-
tainty propagation from attributes to events and among events
relies on the assumptions that are made with respect to the
dependency of the involved entities. The assumptions existing
uncertain CEP techniques employ, in a nutshell, involve [3]:
Independence of events, Markovian property adoption and
Bayesian Network construction.

Due to the fact that probabilistically enumerating possible
event instances and potential partial pattern matches generates
an exponential amount of possible worlds i.e., probabilistic
(sets of) tuples, processing costs and memory requirements are
tremendously increased. To optimize performance, techniques
such as those presented in Section V are applicable to filter
out inconsistent possible worlds. Still, these techniques do not
consider the uncertainty dimension. A form of a predicate
that is tailored for probabilistic event handling is that of a
confidence parameter that can be incorporated in the posed
query to filter highly improbable possible worlds given a
threshold value. Confidence based pruning is explicitly taken
into consideration in [12], [13], but virtually any probabilistic
event processing engine is capable of utilizing such a predicate.

Lahar [10] utilizes a combination of query rewriting and
sharing techniques to improve CEP performance. A query of
interest is broken down to a number of subgoals and query
classes are identified based on the variables that are shared
amongst the subgoals. Efficient algorithms for processing each
query class are accordingly proposed. Of particular interest
are the Regular and Extended Regular query classes discussed
in [10], due to their ability to be processed in an online fashion.
In the Regular query class, the identified subgoals do not share
any variables. They are translated to regular expressions using
a four step procedure which initially defines a set of symbols
on which a simple automaton operates. Then, the set of all
possible worlds is translated into a sequence of subsets of the
previous symbols, while a third step involves query translation
into a regular expression. Finally, the distribution of a Markov
chain that is induced by the possible worlds is recovered
and used to evaluate the regular expression. Extended Regular
queries, share variables across all their subgoals, but can be
decomposed to regular queries and be processed independently,
propagating uncertainty in the final outcome based on the
independence assumption.

IX. CONCLUSION

Our work identified and shortly reviewed the basic research
issues encountered by techniques tailored for CEP systems
in the light of their Big Data essence. We focused on the

inherent high-rate streaming nature of events, the complexity
of query languages and the often distributed network of event
generating sources. Thus, we divided our analysis based on
the adopted architecture (distributed or not); the optimizations
introduced subjected to proper performance metrics (Velocity
and Volume); the adaptivity to changing data distributions
(Velocity); and the uncertainty aspects (Veracity) studied by
each framework.

REFERENCES

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern
matching over event streams. In Proceedings of SIGMOD, June 2008.

[2] M. Akdere, U. Cetintemel, and N. Tatbul. Plan-based complex event
detection across distributed sources. In Proceedings of VLDB, August
2008.

[3] E. Alevizos, A. Skarlatidis, A. Artikis, and G. Paliouras. Complex event
recognition under uncertainty: A short survey. In EPForDM, EDBT
Workshop, 2015.

[4] A. Artikis, O. Etzion, Z. Feldman, and F. Fournier. Event processing
under uncertainty. In Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, DEBS ’12, pages 32–
43, New York, NY, USA, 2012. ACM.

[5] G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli. Introducing
uncertainty in complex event processing: model, implementation, and
validation. Computing, pages 1–42, 2014.

[6] O. Etzion and P. Niblet. Event Processing in Action. Manning
Publications Co, 2011.

[7] S. Gatziu and K. R. Dittrich. Detecting composite events in active
database systems using petri-nets. In Proceedings of the Fourth
International Workshop on Research Issues in Data Engineering (RIDE-
ADS ’94), pages 2–9, February 1994.

[8] Y. Mei and S. Madden. Zstream: A cost-based query processor for
adaptively detecting composite events. In Proceedings of SIGMOD,
June 2009.

[9] E. Rabinovich, O. Etzion, and A. Gal. Pattern rewritting framework for
event processing optimization. In Proceedings of DEBS, July 2011.

[10] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on
correlated probabilistic streams. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 715–728, New York, NY, USA, 2008. ACM.

[11] N. P. Schultz-Moller, M. Migliavacca, and P. Pietzuch. Distributed
complex event processing with query reqwriting. In Proceedings of
DEBS, July 2009.

[12] Z. Shen, H. Kawashima, and H. Kitagama. Probabilistic event stream
processing with lineage. In Proceedings of Data Engineering Workshop
(DEWS), June 2008.

[13] Y. Wang, K. Cao, and X. Zhang. Complex event processing over
distributed probabilistic event streams. Computers & Mathematics with
Applications, 66(10):1808 – 1821, 2013.

[14] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Complex event
processing over uncertain data. In Proceedings of the Second Inter-
national Conference on Distributed Event-based Systems, DEBS ’08,
pages 253–264, New York, NY, USA, 2008. ACM.

[15] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Efficient processing
of uncertain events in rule-based systems. Knowledge and Data
Engineering, IEEE Transactions on, 24(1):45–58, Jan 2012.

[16] E. Wu, Y. Diao, and S. Rizvi. High performance copmlex event
processing over streams. In Proceedings of SIGMOD, June 2006.

[17] H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in streams
with imprecise timestamps. Proc. VLDB Endow., 3(1-2):244–255, sep
2010.

[18] H. Zhang, Y. Diao, and N. Immerman. Optimizing expensive queries in
complex event processing. In Proceedings of SIGMOD, pages 217–228,
June 2014.


