
Shortcut Selection in RDF Databases
Vicky Dritsou #∗1, Panos Constantopoulos #∗2, Antonios Deligiannakis †∗3, Yannis Kotidis #∗4

Department of Informatics, Athens University of Economics and Business, Greece
† Department of Electronic and Computer Engineering, Technical University of Crete, Greece

∗Digital Curation Unit, IMIS, Athena Research Centre, Greece
1 vdritsou@aueb.gr, 2 panosc@aueb.gr, 3 adeli@softnet.tuc.gr, 4 kotidis@aueb.gr

Abstract—An increasing amount of data produced nowadays
is in RDF format. While significant work has been performed on
view selection and query optimization algorithms in relational
database systems, little attention has been paid to the problem
of optimizing the performance of query workloads in RDF
databases. In this paper we propose the notion of shortcuts, as a
method for reducing the query processing cost. We then devise
a greedy algorithm that, given a space constraint and a query
workload in an RDF database, seeks to select the optimal short-
cuts to materialize. Our experiments validate our approach and
demonstrate that our algorithm manages to significantly reduce
the query processing cost while keeping space requirements low.

I. INTRODUCTION

Accessing information on the Web is greatly enhanced by
semantic overlays that support the semantic integration of and
unified access to disparate sources. This is part of the promise
of the Semantic Web and is in practice effected by employing
ontologies, in the role of conceptual models accepted within
specific communities (which may range from small to global),
expressed in representation languages recommended by W3C,
namely RDF(S) and OWL.

The structural part of these ontologies is commonly seen
as a directed graph with nodes representing concepts and
edges representing relations between concepts (“properties” in
RDF jargon). An issue that invariably arises when formulating
ontology-based queries is the need to traverse particular paths
(sequences of nodes and edges) repeatedly. From a practical
point of view, accessing information through paths, especially
long ones, raises certain problems: first, users need to be
exposed to the underlying schema to formulate a query, even
though they may remain indifferent to those details; second,
the computation of the answer they seek can get expensive,
as it requires the traversal of large data graphs containing
instances of the ontology. Independently of the model used to
store these graphs (RDF/OWL files, relational databases, etc.),
path expressions require substantial processing; when using
relational tables, this often results in multiple join expressions
that can be hard to process [4], [15], [17], [22].

In the relational world, views have long been considered as
a solution to the issues raised above. For example, relational
views help achieve schema independence [21] by hiding
certain details of the underlying schema from the end-user.
Alternatively, views can be seen as “shortcuts” that conceal
certain schema details enabling easier formulation of user
queries and reducing the risks of errors when formulating
queries over complex schemata. If a solution similar to the
concept of materialized views is desired for RDF databases, we

need a formalism that can help us first understand the available
space of solutions, and subsequently let us design efficient
algorithms that will automate the view selection process. In
RDF databases, given the prevalence of path expressions,
it is only logical to consider schema paths as the basic
unit of materialization. In this paper we, thus, propose to
augment the schema and instance graphs of an RDF database
with the creation of appropriate shortcuts corresponding to
frequently accessed paths, so that the query formulation and
answering process is more easily and efficiently performed.
These shortcuts have a direct analogy to relational views.
Similar to a view, the instance of a shortcut does not have
an independent existence but is rather composed from the
instance-level data paths that evaluate the schema-path denoted
by the shortcut.

Considering possible shortcuts in a large RDF database
gives rise to an optimization problem in which we seek to
select shortcuts that maximize the reduction of query process-
ing cost subject to a given space constraint. Our proposed
algorithm is based on estimates on the execution cost of either
entire, or parts of queries. Thus, it does not assume (i) any
storage representation of the RDF data (relational or verti-
cally partitioned [4]), or (ii) the way that the execution cost
estimates are obtained (i.e., using query optimizer estimates, or
performing the actual queries and measuring the costs). Thus,
our algorithm is applicable independently of the used storage
representation or the way that query estimates are obtained.

Unfortunately, the selection of schema paths as the basic
candidate unit of materialization leads to a space of possible
solutions that is exponentially large with respect to the size of
the RDF schema graph. In our work, we manage to prune a
large number of shortcuts that cannot possibly help expedite an
available workload of queries. As it turns out that the shortcut
selection problem is a knapsack problem, which is known to
be NP-hard, it does not admit a guaranteed efficient optimal
solution. So we develop a greedy algorithm that incrementally
selects shortcuts based on the notion of per unit space benefit,
i.e. a quantification of the expected decrease in query cost that
the selection of a given shortcut provides, divided by the space
needed to materialize the shortcut.

The contributions of this work are: (i) we formally define
the notion of a shortcut as a structural augmentation of an
existing RDF database; (ii) we describe a framework for
decomposing a set of user queries that describe popular user
requests into a set of simple path expressions in the RDF
schema graph, while these paths are then combined in order
to form a set of candidate shortcuts that can help during the

evaluation of the original queries; (iii) we describe the shortcut
selection problem where we evaluate the expected benefit of
reducing query processing cost by materializing a shortcut
in the knowledge base, under a given space constraint and
describe a greedy algorithm for solving this problem; and (iv)
we provide an extensive set of experiments where we evaluate
our proposed algorithm.

II. RELATED WORK

Relational views have long been an important aspect of
database management systems [23]. Depending on the context,
relational views have been treated as pure programs [25],
[26], derived data that can be further queried [18], pure data
(e.g. detached from the view query) and pure index [24].
Materialized views have been recently rediscovered within the
context of OLAP and data warehouses. A flurry of papers
has been generated on how views can be used to accelerate
frequent computations over massive datasets. Selecting and
materializing a proper set of views with respect to the query
workload and the available system resources has been at
the core of this discussion [13], [16]. Key to the popularity
and acceptance of the view selection problem has been the
existence of the multidimensional framework of the Data
Cube, which restricts the solution space to a well defined set
of views with well understood containment properties [11]. In
the context of RDF databases such a framework is lacking.

The vision of Semantic Web requires methods and systems
able to handle efficiently query processing over large amounts
of semantic data. These are mostly expressed in RDF and/or
OWL and a variety of systems have been developed towards
this direction, including among others Jena1, SWKM2 man-
agement system, relying on a backend relational DBMS, and
Sesame3. Many RDF query languages have been proposed in
the literature for querying such systems with the most popular
of them being SPARQL [3], RQL [2] and RDQL [1].

Indexing techniques for RDF databases have already been
explored [10], [19], [28]. In [7] the authors propose techniques
for selecting which (out of all available) indices can help
accelerate a given SPARQL query, and then determine how to
execute and rewrite the query. Our techniques are orthogonal
and can be used in conjunction with these approaches to
accelerate query processing, since they target the problem of
determining the proper set of shortcuts to materialize. Indexing
RDF data also seems similar in concept (due to the hierarchical
nature of path queries) to indexing data in object oriented
(OO) and XML Databases. A good overview of indexing
techniques for OO databases is presented in [5]. The work
of [6] presented techniques for selecting the optimal index
configuration in OO databases when only a single path is
considered, without taking overlaps of subpaths into account.
In [12] a uniform indexing scheme, termed U-index, for OO
databases is presented. The work of [8] targets building indices
over XML data. Unlike XML data, RDF data is not rooted at
a single node. Moreover, the above three techniques target the
creation of indices over paths, thus not tackling the problem

1Available at http://jena.sourceforge.net/
2Available at http://139.91.183.30:9090/SWKM/
3Available at http://www.openrdf.org/

ArtStyle CreatorfollowedBy Objectcreates

Title

MuseumexhibitedAt

hasTitle

Fig. 1: Sample Schema Graph

of this paper, which is the selection of shortcuts to materialize
given a workload of overlapping queries.

In a recent work [4], the authors propose a novel vertically
partitioned approach to storing RDF triples and consider
materialized path expression joins for improving performance.
While their approach is similar in spirit to the notion of
shortcuts we introduce, the path expression joins they consider
are hand-crafted (thus, there is no automated way to generate
them in an arbitrary graph). Moreover the proposed solutions
are tailored to relational backends (and more precisely column
stores), while in our work we do not assume a particular
storage model for the RDF database. Thus, our techniques can
be applied on the model proposed in [4]. Finally, in [20] the
authors propose a novel architecture for indexing and querying
RDF data. While that system handles large RDF data sets in
an efficient way using indices and optimizes the execution cost
of small path queries, applying our technique to their system
further reduces the execution cost for long path queries.

III. SHORTCUTS

Given a workload of user queries, we define the notion
of a query shortcut, and then present a way to generate the
set of shortcuts which, if materialized, can help speed up the
execution of the queries in our workload.
Database Conceptual Representation. We assume an RDF
database G comprising two parts: (i) a schema graph
GS(VS , ES), consisting of a set of nodes VS , representing
entity classes (or, concepts) and a set of edges ES , representing
relationship classes (or, properties); and (ii) a data graph
GD(VD, ED), consisting of a set of nodes VD which are
instances of nodes in VS and a set of edges ED which are in-
stances of edges in ES . More generally, G could be any graph-
structured semantic database. Figure 1 demonstrates a sample
schema graph of an RDF database, where all oval shapes (e.g.
“Creator”) are examples of entity classes, while edges (e.g.
“creates”) denote the relationship classes (properties).
Queries and Query Fragments. A query workload consists
of a set of queries Q = {q1, q2, q3, . . . , qm}, where each query
qi is associated with a frequency of occurrence fi.

In this paper we focus on data-level queries: a query qi in
Q is defined on the schema graph GS and specifies a subset
of relevant elements of the data graph GD (thus, the queries
retrieve data from the “raw” data of the instance graph). A
query q can be represented as a weakly connected subgraph
Gq of the schema graph GS , where the subgraph originates

ArtStyle CreatorfollowedBy creates hasTitleObject Title

ArtStyle CreatorfollowedBy creates exhibitedAtObject Museum

q1

q2

Fig. 2: Example Queries q1 and q2

ArtStyle CreatorfollowedBy Objectcreates

Title

MuseumexhibitedAt

hasTitle
sh1

sh2

sh3

Fig. 3: Candidate Shortcuts of Example Queries q1 and q2.

and terminates at entity nodes. Essentially, the subgraph Gq

defines at the schema level the structural properties of the
data that the query seeks to retrieve from the data graph.
Consider for example the graph presented in Figure 1 and
the queries q1: “For each art style that creators of objects
follow, find the title of these objects”; and q2: “For each
art style that creators of objects follow, find the museums
where the objects are exhibited at”. Figure 2 depicts these
two sample queries. Regardless of the query language used,
the important issue is that the evaluation of a query requires
traversing the corresponding query path (for example, q1 =
ArtStyle

followedBy→ Creator
creates→ Object

hasTitle→ Title)
in order to find the matching instances of the query path in
the data graph GD.

The two aforementioned queries represent simple path
queries. However, more complex queries are also plausible.
One can consider, for example, a query that retrieves in-
stances of Titles of artworks of any ArtStyle, along with the
Museums they are exhibited at. The graphic representation of
such a query is exactly what is depicted in Figure 1. Note that
this sample query essentially requires “joining” information
from two different subpaths.

We define the length of a simple path query to be equal
to the number of relationships (edges) that appear in it. For
any query qi ∈ Q, any subpath of qi of length greater than
1 is called a query fragment in our framework. As will be-
come clear shortly, any shortcut considered for materialization
matches a query fragment of the query workload.
Candidate shortcuts. Given a query workload Q, containing
|Q| queries, and L the length of the query having the longest
path among all queries in Q, the number of query fragments is
O(|Q|×L2). Recall that a shortcut in our framework matches
a query fragment. Since the selection of the “optimal” set of
shortcuts to materialize under a space constraint is NP-hard, in
order to reduce the size of our search space we seek to limit
the set of candidate shortcuts that our algorithm considers.
A natural way to achieve this, is to consider only shortcuts
that originate from or terminate to (user-defined) “interesting”
nodes of VS , which we shall call candidate shortcut nodes.
In particular, we consider a node v ∈ GS to be a candidate
shortcut node if at least one of the following conditions is true
for v:

1) v is the origin or endpoint of a query q,
2) v is a starting node of two different edges ei, ej , ei 6= ej

traversed by one or more queries in Q,
3) v is the end of two different edges ei, ej , ei 6= ej

traversed by one or more queries in Q.
Having defined the set of candidate nodes, we then develop

the set of candidate shortcuts SH by considering all valid
combinations between candidate shortcut nodes, so that they
are connected through an existing path of the ontology and

this path is traversed by at least one query.
Example: Figure 3 shows all the candidate shortcuts for the

queries of Figure 2. The node ArtStyle is a candidate shortcut
node, since it is the origin of the two queries. Similarly, nodes
Title and Museum are also candidate shortcut nodes, since
they are the last nodes traversed in the queries. Finally, node
Object is a candidate shortcut node, since two different edges
(hasT itle and exhibitedAt) that appear in the two queries
originate from it.

Recall that any candidate shortcut shi ∈ SH maps to a
query fragment, and that the corresponding query fragment
may be contained in more that one queries, which will be
called related queries of shi and denoted as RQi. In the
example of Figure 3, the set of related queries of the candidate
shortcut sh1 is RQ1 = {q1, q2}. Two query shortcuts are
disjoint if the query fragments that they map to do not share
any edge. Two shortcuts that are not disjoint have one of the
following two containment relationships: full containment or
overlap. A shortcut shi is fully contained in shj iff the query
fragment that shi maps to is a subpath of the corresponding
query fragment of shj , denoted hereafter as shi ≺ shj . A
shortcut shi overlaps shj if they are not disjoint, and none of
them fully contains the other.

IV. BENEFIT OF SHORTCUTS AND PROBLEM DEFINITON

We now turn to defining the benefit of introducing a shortcut
and describing shortcut selection as a benefit maximization
problem. Assume a candidate shortcut shi with underlying
query fragment qfi and its set of related queries RQi. Let
ci denote the estimated cost of retrieving the answer to qfi.
As explained in Section I, this cost depends on the storage
representation of the RDF data (i.e., relational or vertically
partitioned). Our algorithm is based on estimates of the ci

values, and is applicable independently of how these costs are
obtained (i.e., using query optimizer estimates, or performing
the actual queries and measuring their costs).

Now suppose that we augment the database by shortcut shi.
This involves inserting one edge in the schema graph GS ,
while in the data graph GD one edge (i.e., RDF triple) is
inserted for each result of qfi

4 . Let c′i denote the new cost
of answering qfi given the materialization of shortcut shi.

We define the benefit obtained by introducing shortcut shi

in order to answer qfi to be equal to the difference between
the initial cost minus the new cost: ci−c′i. Since qfi is used in
answering each of its related queries, the benefit for query qk ∈
RQi can be estimated by multiplying the fragment benefit by
the frequency of the query: fk × (ci − c′i). The total benefit
obtained by introducing shortcut shi is then equal to the sum
of the benefits obtained for each related query.

If the query fragments underlying the candidate shortcuts
are disjoint then the aggregate benefit is the sum of the benefits
of all candidate shortcuts. If, however, there are containment
relationships between fragments, things get more complicated.
We illustrate this through an example. Consider again the
aforementioned queries q1 and q2 of Figure 2 and candidate

4By inserting one instance of shi for each result of qfi and allowing
duplicate instances of shortcuts (triples) using RDF Bags, we obtain the same
query results, since the result cardinalities remain unchanged.

shortcuts sh1 and sh2 of Figure 3. Assume now that shortcut
sh1 has been implemented first and that adding sh2 is being
considered. The benefit of adding sh2 with regard to query q1

will be smaller than what it would have been without sh1 in
place, since sh1 reduces the cost of a part of q1. We denote
as dij the difference in the cost required to answer qfi due
to the existence of a shortcut induced by qfj . This difference
is positive for all qfj ≺ qfi. Finally, shortcuts induced by
overlapping query fragments do not interfere in the above
sense: since the starting node of one of them is internal to
the other, they cannot have common related queries.

Let us now turn to the space consumption entailed by using
shortcuts. The augmentation of the RDF database by a shortcut
shi has a space footprint denoted as spi. This space can
be evaluated exactly by issuing the corresponding query and
observing the size of the result (number of RDF triples), or
by exploiting statistics of the query optimizer. The total space
consumption of all shortcuts actually introduced should not
exceed some given space allocation expressed as a budget B.

The goal is to select the set of shortcuts to materialize, such
that (i) the selected shortcuts fit within the space budget B; (ii)
the benefit of the selected shortcuts is the maximum among all
the sets that fit within the space budget B. This is a knapsack
problem, which is known to be NP-hard [14].

V. GREEDY ALGORITHM FOR SHORTCUT SELECTION

In order to approximately solve this specific variation of
knapsack, we developed a greedy algorithm (presented in
Algorithm 1). This algorithm takes as input a space budget
b for the materialization of shortcuts and the set of candidate
shortcuts, which are obtained as explained in Section III. Each
candidate shortcut shi is associated: (i) space: the actual space
for materializing shi; (ii) benefit: the estimated benefit of
materializing shi; (iii) L1: a list of shortcuts in which shi

is fully contained; (iv) L2: a list of shortcuts which shi fully
contains; and (v) QP: a list of query paths that “traverse” shi.
The use of the lists L1, L2 and QP will become evident when
we discuss the adjustment of the benefits of each shortcut after
our algorithm selects a candidate for materialization.

The candidate shortcuts are stored in an AVL-tree, where
the sorting key of its elements is their per unit space benefit.
This structure allows us to perform insert(), remove() and
removeMax() operations in logarithmic time with respect to
the number of candidate shortcuts. For each shortcut in shi.L1
and shi.L2, the algorithm maintains pointers to other nodes
in the AVL-tree, in order to efficiently be able to locate the
nodes in these lists.

The algorithm operates in an iterative manner, always
maintaining the amount of budget SpaceLeft that remains to
be allocated to shortcuts. Our greedy algorithm repeatedly
selects the candidate shortcut candSh with the largest per-
space benefit and removes it from the AVL-tree. If the short-
cut requires more space than the available space SpaceLeft ,
then this shortcut is ignored. Otherwise, the selected shortcut
candSh is chosen for materialization (at a later step). Before
proceeding to the next candidate shortcut, the algorithm needs
to update certain benefit estimates as a result of the most recent

Algorithm 1 GreedyAddShortcuts
Require: Space budget B, AVL-tree candShortcuts containing the candidate short-

cuts {
Entries in AVL-tree sorted by per-space benefit
Each candidate shortcut shi contains the following info:

space: Estimated space for materializing shi

benefit: Estimated benefit of materializing shi

L1: list of shortcuts in which shi is fully contained
L2: list of shortcuts which shi fully contains
QP: list of query paths that “traverse” shi

L1 and L2 lists contain pointers to other nodes in AVL-tree}
1: SpaceLeft = B
2: while SpaceLeft > 0 AND |candShortcuts| > 0 do
3: candSh = candShortcuts.removeMax() {Remove shortcut with max-

imum per-space benefit}
4: if candSh.space > SpaceLeft then
5: continue {cannot materialize shortcut}
6: end if
7: Mark candSh for materialization
8: SpaceLeft− = candSh.space
9: for all biggerSh ∈ candSh.L1 do

10: {Cost of biggerSh reduced due to candSh}
11: candShortcuts.remove(biggerSh)
12: commonQueries = biggerSh.QP

⋂
candSh.QP {Queries where both

biggerSh and candSh are used}
13: for all qj ∈ commonQueries do
14: Update biggerSh.benefit given addition of candSh, utilizing fre-

quency fj of qj in calculation
15: end for
16: Remove candSh from the L2 list of biggerSh
17: if biggerSh.benefit > 0 then
18: candShortcuts.insert(biggerSh) {Re-insert}
19: end if
20: end for
21: for all smallerSh ∈ candSh.L2 do
22: {Shortcuts fully contained in candSh may become useless for some queries.

Update their benefit}
23: candShortcuts.remove(smallerSh)
24: commonQueries = smallerSh.QP

⋂
candSh.QP {Queries where both

smallerSh and candSh are used}
25: for all qj ∈ commonQueries do
26: Update smallerSh.benefit given addition of candSh, utilizing fre-

quency fj of qj in calculation
27: end for
28: Remove candSh from the L1 list of smallerSh
29: if smallerSh.benefit > 0 then
30: candShortcuts.insert(smallerSh) {Re-insert}
31: end if
32: end for
33: end while

shortcut insertion. In particular:
Shortcuts that fully contain candSh. The algorithm iter-
ates over all candidate shortcuts biggerSh that appear in
candSh.L1 and removes them from the AVL-tree one-by-one.
The estimated cost of each query that contained biggerSh is
now reduced given the materialization of candSh. Thus, the
expected benefit of biggerSh is also reduced, since part of its
computation has been made easier, due to candSh. In order
to obtain the benefit of biggerSh, we first need to observe
that biggerSh and candSh are not necessarily useful for the
same set of queries. Some queries may contain both shortcuts.
For such queries, the benefit of biggerSh is reduced, based
on the frequency of these queries in the query workload. For
queries where only candSh is useful, no action needs to be
taken. A final note is that, given the removal of candSh from
the AVL-tree, we also need to remove candSh from the L2
list of biggerSh (please note that biggerSh was in the L1
list of candSh). Finally, if biggerSh is still useful (i.e., has
a benefit larger than 0), it is re-inserted in the AVL-tree.
Shortcuts fully contained in candSh. The operation of
the algorithm for shortcuts fully contained in candSh is
similar. The algorithm iterates over all such candidate shortcuts
smallerSh that appear in candSh.L2 and starts by removing

100
Cost Metric: Traversals [Sesame]

80

co
st

Cost Metric: Traversals [Sesame]
Cost Metric: Query Times [Sesame]
Cost Metric: Traversals [SWKM]
Cost Metric Query Times [SWKM]

60

qu
er
y
c Cost Metric: Query Times [SWKM]

40

of
 in
it
ia
l

0

20%
 o

0

0 5 10 15 20
% of data spacep

Fig. 4: Using the Yago Data Set.

80

100

e

SWKM

Sesame

60

80

ue
ry
 ti
m
e

20

40

of
 in
iti
al
 q

0

20

%
 o

0 10 20 30
% of data space

Fig. 5: Using the CIDOC Ontology.

80

100
RDF3X

Sesame

60

80

ue
ry
 ti
m
e Sesame

20

40

of
 in
iti
al
 q
u

0

20

%
 o

0 2 4 6 8
% of data space

Fig. 6: Using Long Path Queries.

them from the AVL-tree one-by-one. The estimated cost of
each query that contained smallerSh is now reduced given
the materialization of candSh, as smallerSh may not be
useful for some queries where candSh is also useful. Thus, the
expected benefit of smallerSh is reduced. In order to obtain
the benefit of smallerSh, for the set of queries where both
smallerSh and candSh are useful, the benefit of smallerSh
is reduced, based on the frequency of these queries in the
query workload. We then remove candSh from the L1 list
of smallerSh. Finally, if biggerSh is still useful (i.e., has a
benefit larger than 0), it is re-inserted in the AVL-tree.

VI. EVALUATION

In order to evaluate our technique, we implemented our
algorithm in C++ and compared the query execution times
before and after the augmentation of the database in question
with the selected shortcuts. We used for this purpose three
systems with different underlying architecture: (i) the SWKM
Semantic management system, which relies on a backend
relational DBMS, (ii) the native Sesame repository and (iii)
the RDF3X system, that optimizes the query performance by
creating a specific set of indices. Thus, we tested whether our
technique can be beneficial with regard to different types of
RDF stores. We also used real and synthetic data sets derived
from uniform and non-uniform schema graphs. All reported
experiments were executed on a Intel Core 2 Duo 2.33GHz
PC with 4GB RAM running 32bit Windows Vista. Our greedy
algorithm required at most 2193 secs to execute for the largest
data set of 4 million RDF triples that we tested.

In an attempt to provide a fair and unbiased evaluation of
the algorithm, instead of obtaining approximate statistics from
the storage engine, we computed in a preprocessing step exact
estimates of the costs and sizes of the queries and shortcuts, by
probing the underlying repositories. These statistics were then
fed as input to our implemented algorithm. We considered two
approaches to determining query cost: the first takes as query
cost the number of edges required to be traversed in order to
retrieve the answer of the query, while the second takes the
actual time required to execute a query.

In this spirit, we first tested the reduction in query time
achieved by our algorithm using the Yago data set ([27])
consisting of 1.62 million triples, while the query workload
consisted of the 233 distinct query paths of length 3 contained
in the Yago schema. We experimented with two different RDF
store systems, namely SWKM and Sesame, that do not share
common architecture features; SWKM relies on a relational

DBMS, while Sesame relies on a native triple store system.
These two storage systems, along with the two different types
of input statistics (traversals and actual query costs) yield four
possible combinations that are presented in Figure 4. The lines
in this Figure depict the reduction in the execution time for
the entire workload after the materialization of the proposed
shortcuts (y-axis) w.r.t. the space consumption these shortcuts
require (x-axis).

The results deriving from these experiments are twofold;
first, it is shown that the materialization of shortcuts signifi-
cantly reduces the query time for small space consumptions.
Indeed, in all cases depicted we achieve a reduction of at
least 40% of the initial query time by consuming space equal
to only 1,5% of the data set. Moreover, materialized shortcuts
that require 23% of the data size reduce the query time by at
least 90% in both systems and for all cost metrics. On the other
hand, it is obvious that both cost metrics yield almost identical
behaviors with each system. Therefore, the choice between the
two query cost metrics does not affect the performance of our
algorithm.

In order to evaluate our algorithm with different kinds of
schema and query workload, we performed the experiment
presented in Figure 5. Here we test our greedy algorithm
using the popular ISO 21127 CIDOC CRM ontology [9],
which contains 74 nodes and 111 properties at the schema
level. This ontology has a different schema type than Yago.
Its schema graph forms a “constellation graph” structure
with non-uniform density. More precisely, it contains a small
number of “star” nodes, each connected with a large number
of of “planet” nodes and sparsely connected with other star
nodes. We generated synthetic data for this graph by using
a Perl script that picks a schema node at random, generates
one data node from it, and then produces all the data edges
emanating from the latter according to the schema graph. This
process is then repeated on the newly created ending data
nodes of the produced edges. A parameter p defining the
probability of breaking a path (stop following the edges of
the current node and continue with a new one) is also used,
which in this experiment is set to 0.4. The data set generated
for this experiment comprises of 1 million triples. Regarding
the query workload, we first extracted from the schema graph
all possible paths of length at least 2 and then reduced this set
to include only path queries that are strongly correlated. By
this we mean queries that share all or almost all of their edges
with many of the other queries. Our objective here was to test
whether our algorithm is also able to capture the dependencies

among such query fragments. The final set of queries used in
this experiment contains 65 path queries with path lengths
varying from 2 to 4. We obtained these path queries by using
a Perl script that, given a schema graph, identifies all possible
path queries of a specific length provided as input parameter.
Figure 5 shows the relative reduction achieved in the total
query time of the workload w.r.t. the fraction of data space
that needs to be consumed when using SWKM and Sesame
respectively. Since we have showed that the query cost metric
does not affect the performance of the algorithm, we have used
here as query cost the number of traversals required. Again our
algorithm significantly reduces the query time, while the best
performance is achieved when using Sesame: by consuming
30% of the data space it reduces the query time by 95%.

The results obtained from experiments with the RDF3X
system are different depending on the length of the path
queries. RDF3X creates a set of indices when loading the
data, so that it can efficiently reduce query execution time,
and requires for these indices, according to the authors, space
size that is less than the data size. Indeed, adding shortcuts
to this system does not improve query execution time when
path queries have length up to 4. However, in Figure 6 we
demonstrate the results obtained by using a query workload
of 26 queries with lengths varying from 10 to 15 edges,
obtained again by the same Perl script mentioned in the
previous experiment. We generated a synthetic schema graph
containing 190 nodes and 467 edges from which a data set of
4 million triples was generated using the above Perl script with
a probability of breaking a path of 0.2. The query cost metric
used here was again the number of traversals. The results
show that our technique still significantly reduces the query
execution time for small consumption of space: by consuming
approx. 8% of the data set space we reduce the total query
time by 50%. Note here that the authors in [20] state that the
space required for the indices they generate and which reduce
the query execution time is less than the space of the data
set. However, the consumption presented in the experiment by
our approach is far less than this initial space. We also depict
in Figure 6 the reduction in query time when using Sesame,
where the results are slightly better: by consuming 8% of the
data space we achieve a reduction of 65% in query time.

In summary, our experimental study shows that the augmen-
tation of RDF databases with shortcuts reduces significantly
the query time of the workload. We observed this reduction
for different types of RDF stores, using both uniform and non-
uniform schema graphs, for real and synthetic data sets, for
real and synthetic ontologies, with different types of query
workloads and for different database sizes.

VII. CONCLUSIONS

The popularity of the Semantic Web and the adaptation of
ontologies by many disciplines results in large RDF databases
that are being developed in different domains. While the data
management community has significant experience in opti-
mizing queries via the use of materialized views in relational
databases, there is considerable lack of similar techniques on
the emerging problem of optimizing path queries over large
RDF instance graphs. In this work, we first introduced the

notion of a shortcut, as the basic structural augmentation
unit of an existing RDF database, and then we introduced
the shortcut selection problem: how to select the best set of
shortcuts that reduce query processing cost under a given space
constraint. We then proposed a greedy algorithm that seeks to
maximize the benefit of the selected shortcuts and our exper-
iments demonstrate that the proposed technique significantly
reduces the cost of processing common queries, using a small
fraction of the space required for storing the complete data
graph.

REFERENCES

[1] RDQL - A Query language for RDF. W3C Member. Available at
http://www.w3.org/Submission/RDQL/.

[2] RQL Query Language. Available at
http://139.91.183.30:9090/RDF/RQL/.

[3] SPARQL Query Language for RDF. W3C Recommendation. Available
at http://www.w3.org/TR/rdf-sparql-query/.

[4] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable
Semantic Web Data Management Using Vertical Partitioning. In VLDB,
2007.

[5] E. Bertino. A Survey of Indexing Techniques for Object-Oriented
Database Management Systems. Query Processing for Advanced
Database Systems, 1994.

[6] E. Bertino. Index Configuration in Object-Oriented Databases. The
VLDB Journal, 3(3), 1994.

[7] R. Castillo, U. Leser, and C. Rothe. RDFMatView: Indexing RDF Data
for SPARQL Queries. Technical report, Humboldt University, 2010.

[8] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shad-
mon. A Fast Index for Semistructured Data. In VLDB, 2001.

[9] N. Crofts, M. Doerr, T. Gill, S. Stead, and M. S. (editors). Definition
of the cidoc conceptual reference model, January 2010.

[10] G. H. L. Fletcher and P. W. Beck. Indexing social semantic data. In
ISWC’08 (Posters & Demos), 2008.

[11] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
and Sub-Total. In ICDE, 1996.

[12] E. Gudes. A Uniform Indexing Scheme for Object-Oriented Databases.
Information Systems, 22(4), 1997.

[13] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data
Cubes Efficiently. In SIGMOD Conference, 1996.

[14] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
2004.

[15] Y. Kotidis. Extending the Data Warehouse for Service Provisioning
Data. Data Knowl. Eng., 59(3), 2006.

[16] Y. Kotidis and N. Roussopoulos. A Case for Dynamic View Manage-
ment. ACM Trans. Database Syst., 26(4), 2001.

[17] P. Larson and V. Deshpande. A File Structure Supporting Traversal
Recursion. In SIGMOD Conference, 1989.

[18] P. Larson and H. Z. Yang. Computing Queries from Derived Relations.
In VLDB, 1985.

[19] B. Liu and B. Hu. Path Queries Based RDF Index. In SKG, Washington,
DC, USA, 2005.

[20] T. Neumann and G. Weikum. The rdf-3x engine for scalable manage-
ment of rdf data. VLDB J., 19(1), 2010.

[21] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill, 2nd edition, 2000.

[22] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola. Traversal Recursion: A
Practical Approach to Supporting Recursive Applications. In SIGMOD
Conference, 1986.

[23] N. Roussopoulos. Materialized Views and Data Warehouses. SIGMOD
Record, 27, 1997.

[24] N. Roussopoulos, C.-M. Chen, S. Kelley, A. Delis, and Y. Papakonstanti-
nou. The ADMS Project: View R Us. IEEE Data Eng. Bull., 18(2),
1995.

[25] T. K. Sellis. Efficiently Supporting Procedures in Relational Database
Systems. In SIGMOD Conference, 1987.

[26] M. Stonebraker. Implementation of Integrity Constraints and Views by
Query Modification. In SIGMOD Conference, 1975.

[27] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic
Knowledge. In WWW, New York, NY, USA, 2007. ACM Press.

[28] O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN: A Graph Based
RDF Index. In AAAI, 2007.

	Introduction
	Related Work
	Shortcuts
	Benefit of Shortcuts and Problem Definiton
	Greedy Algorithm for Shortcut Selection
	Evaluation
	Conclusions
	References

