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Abstract—The topic of outlier detection in sensor networks
has received significant attention in recent years. Detecting when
the measurements of a node become “abnormal” is interesting,
because this event may help detect either a malfunctioning node,
or a node that starts observing a local interesting phenomenon
(i.e., a fire). In this paper we present a new algorithm for detecting
outliers in sensor networks, based on the geometric approach. Un-
like prior work. our algorithms perform a distributed monitoring
of outlier readings, exhibit 100% accuracy in their monitoring
(assuming no message losses), and require the transmission of
messages only at a fraction of the epochs, thus allowing nodes to
safely refrain from transmitting in many epochs. Our approach
is based on transforming common similarity metrics in a way
that admits the application of the recently proposed geometric
approach. We then propose a general framework and suggest
multiple modes of operation, which allow each sensor node to
accurately monitor its similarity to other nodes. Our experiments
demonstrate that our algorithms can accurately detect outliers
at a fraction of the communication cost that a centralized
approach would require (even in the case where the central node
lies just one hop away from all sensor nodes). Moreover, we
demonstrate that these bandwidth savings become even larger as
we incorporate further optimizations in our proposed modes of
operation.

I. INTRODUCTION

Recent advances in microelectronics have enabled the de-
velopment of large scale sensor networks for a variety of mon-
itoring applications, ranging from wildlife monitoring, health-
care, traffic monitoring, agriculture, production monitoring,
battlefield surveillance etc. In such applications, detecting
events of interest may require monitoring whether sensors
collect measurements that are deemed as “similar” to the
measurements of nearby sensors [6]. Detecting when the
measurements of two nodes become dissimilar is interesting,
because this event may help detect either (i) a malfunctioning
node, or (ii) a node that starts observing a local interesting
phenomenon (i.e., a fire).

The aforementioned detection process is often referred to
as outlier detection. We need to note that, while several
ways of classifying and detecting nodes as outliers exist, our
work targets the important case where testing the similarity
of measurements between different nodes is required by the
outlier detection process. It, thus, is not applicable to other
scenarios, for example when the measurements of a node may

A. Deligiannakis was supported by the European Commission under ICT-
FP7-LIFT-255951 (Local Inference in Massively Distributed Systems).

be classified as an outlier solely based on the node’s past
measurements.

For monitoring applications, it is often crucial to be able to
detect interesting events with absolute accuracy. For example,
in applications where sensors are deployed in order to detect
natural phenomena, such as tsunamis, landslides or avalanches,
a failure to quickly detect and report the offset of such phe-
nomena may result in a failure to safely evacuate people from
areas that are in danger. In other applications, extinguishing
fires in forests is much easier when the fire is detected early,
but extremely harder after the fire has escalated. In equipment
monitoring, failure to accurately detect a malfunctioning part
may result in the destruction of a much larger and expensive
system. In all the above applications, it is crucial to have
an outlier detection system that reports outlier nodes with
100% accuracy. Of course, to ensure the longevity of the
sensor network, the requirement for accurate detection needs to
coexist with data processing techniques that efficiently reduce
the number of messages transmitted by sensor nodes.

A significant amount of effort [2], [4], [6], [8], [27], [29],
[33] has been recently placed on detecting outliers. However,
none of the existing techniques has tackled the general prob-
lem of being able to detect with 100% accuracy the similarity
amongst any desired pair of sensor nodes, while at the same
allowing, in some cases, sensor nodes to refrain from trans-
mitting any information regarding their measurements. In a
nutshell, existing outlier detection techniques suffer from one,
or more, of the following drawbacks: (i) they cannot identify
the similarity of two nodes with 100% accuracy (assuming
no message losses); or (ii) they require the transmission of
information that is comparable in size to a centralized query
evaluation; or (iii) they require nodes to perform transmissions
at each epoch; or (iv) they are tailored to the evaluation of
specific similarity functions and/or cannot handle similarity
functions over the measurements collected at different nodes
(such as the correlation coefficient, or the L∞ norm).

In this paper we present an outlier detection framework that
is based on the recently proposed geometric approach [21],
[22], [23], [24]. The geometric approach allows us to accu-
rately (and efficiently) monitor whether a complex, potentially
non-linear function, computed over the average of vectors
maintained at all the sensor nodes, is above or below a
specified threshold. In a nutshell, each sensor is automati-
cally assigned a monitoring zone, which is a subset of the



domain space, and examines whether the monitored function
at any point within its monitoring zone may have crossed
the threshold. Each sensor that detects a potential threshold
violation makes a transmission (e.g., to a coordinator). While
monitoring zones of different shapes may be chosen [24],
without loss of generality, in this work we adopt the simplest
case where the shape of each monitoring zone is a sphere [22].
What is guaranteed by the geometric approach is that, at any
time, the true average vector (which is unknown to the sensor
nodes) will lie within the union of the local monitoring zones
examined by the sensor nodes. Thus, if no sensor signals a
potential threshold violation, then the monitored function will
not have crossed the threshold either, since the value of the
monitored function for the true average vector has certainly
been examined by at least one sensor node.

As we demonstrate in this paper, several common simi-
larity functions (depicted in Figure 2) can be transformed
in a way that they allow the application of the geometric
approach. Then, the similarity between any pair of nodes
is simply expressed as a function whose value is desirable
to lie above/below a specified threshold. For example, we
may consider two nodes to be similar if their vector of
measurements have an L1 distance that is below a threshold, or
have a cosine similarity above a given threshold. Of course, the
number of functions that we need to monitor in our application
scenario may increase quadratically (in the worst case O(

(
n
2

)
))

to the number n of sensor nodes. Our transformations allow
us to utilize the geometric approach and develop a generic
framework that: (i) supports a variety of similarity functions;
(ii) performs the monitoring with 100% accuracy; and (iii)
allows nodes to often refrain from any communication thus,
as shown in our experimental evaluation, consuming only a
fraction of the bandwidth that centralized techniques would
require. This is in contrast to recently proposed outlier de-
tection techniques [6], [8] that require each node to perform
a transmission at each epoch. Extensions to allowing the
specification of a minimum support (i.e., how many nodes
need to be similar to me, so that I am not considered an
outlier?) are also trivially incorporated in our framework.
Our contributions can be summarized as follows:
• We demonstrate that several common similarity functions

used in outlier detection can be transformed in a way that
allows the application of the geometric approach.

• We propose a generic framework for outlier detection in
sensor networks using the geometric approach and propose
various modes of node operation that achieve the desired
monitoring task. Our framework computes with absolute
accuracy (assuming no message losses) the similarity of
two nodes, a property that stems directly from the geometric
approach transformation.

• We examine cases of monitoring the similarity amongst
sensor nodes when the communication between these sen-
sors is direct, or not. We also demonstrate how our frame-
work allows the evaluation of minimum support queries.

• We perform an extensive experimental evaluation using real
world data. Our analysis demonstrates that our algorithms

can accurately detect outliers at a fraction of the communi-
cation cost that a centralized approach would require (even
in the case where the central node lies just one hop away
from all sensor nodes). Moreover, we demonstrate that these
bandwidth savings become even larger as we incorporate
further optimizations in our proposed modes of operation.

The paper proceeds as follows. In Section II we present
related work. Section III provides the necessary background
on the geometric approach. Section IV details the setup that we
consider in this paper. In Section V we demonstrate how sev-
eral common similarity functions can be transformed in order
to allow the application of the geometric approach. Section VI
contains our framework and algorithms for monitoring the
similarity of a node with any other sensor that our application
deems necessary. Our experimental evaluation is presented in
Section VII, while Section VIII contains concluding remarks
and future directions.

II. RELATED WORK

In recent years, significant effort has been placed on de-
termining and designing the necessary primitives for data
acquisition based on sensor networks [17], [30]. Multiple ways
of organizing the network have been proposed, including hier-
archical (i.e., tree-like) organizations such as the aggregation
tree [17], [26], [32], clustered formations [3], [9], [20], [31],
or even completely ad-hoc formations [1], [13], [16].

Due to their inexpensive hardware, sensor nodes are prone
to producing outlier readings. Thus, many techniques that
seek to determine nodes with “abnormal” behavior have been
have been proposed [34]. In [10], [11], a declarative data
cleaning mechanism over data streams produced by the sensors
is proposed. Similarly, the work of [7] introduces a data
cleaning module designed to capture noise in sensor streaming
data based on the prior data distribution and a given error
model N(0, δ2). In [18] kalman filters are adopted during data
cleaning or outlier detection procedures. Nonetheless, without
prior knowledge of the data distribution the parameters and
covariance values used in these filters are difficult to set.
The data cleaning technique presented in [36] makes use of
a weighted moving average which takes into account both
recent local samples and corresponding values by neighboring
motes to estimate actual measurements. A wavelet-based value
correction process is discussed in [35] while outliers are deter-
mined utilizing the Dynamic Time Warping (DTW) distance of
neighboring motes’ values. The work in [28] proposes a fuzzy
approach to infer the correlation among readings from different
sensors, assigns a confidence value to each of them, and then
performs a fused weighted average scheme. A histogram-based
method to detect outliers with reduced communication cost is
presented in [25].

The work in [4], [29] addresses the problem of identifying
faulty sensors using a localized voting protocol. However,
localized voting schemes are prone to errors when motes that
observe interesting events generating outlier readings are not in
direct communication [6]. Furthermore, the framework of [29]
requires a correlation network to be maintained.



TABLE I
NOTATION

Symbol Definition
Si The i-th sensor node
CNi The Comparison Neighborhood of Si: With

which nodes does Si compute its similarity
with?

W Dimensionality of the measurements vector
d Dimensionality of the local statistics vector
T The similarity threshold
~e The estimate vector. Its dimensionality is d

~vi The local statistics vector of Si. Its dimen-
sionality is d

~v The true (not known by the sites) global
statistics vector

∆~vi The delta vector of Si. Calculated as the
difference of the current local statistic vector
from the last local statistic vector that Si has
transmitted.

~ui The drift vector of Si. Equal to ~e + ∆~vi

B(~e, ~ui) The sphere having ~e and ~ui as its diameter
Conv(~e, ~u1, . . . , ~un) The convex hull determined by vectors ~e,

~u1, . . . , ~un

minSupp The specified minimum support

In [15], the authors discuss a framework for cleaning input
data errors using integrity constraints, while in [2], [33]
unsupervised outlier detection techniques are used to report the
top-k values that exhibit the highest deviation in a network’s
global sample. However, these techniques provide no means of
directly controlling the bandwidth consumption, thus often re-
quiring comparable bandwidth to centralized approaches [10]
for outlier detection [2].

In [12], a probabilistic technique for cleaning RFID data
streams is presented. In [27] the authors introduce a novel
definition of an outlier, as an observation that is sufficiently
far from most other observations in the data set. A simi-
lar definition is adopted in [19] where a distributed outlier
detection approach for dynamic data sets is presented. The
framework of [6] is used to identify and remove outliers during
the computation of aggregate and group-by queries posed to an
aggregation tree [5], [17]. The TACO [8] framework operates
on top of a clustered network organizations and attempt to
identify outliers based on compressed (LSH) representations
of the collected data.

The algorithms in [6], [8], [27] have significant drawbacks
compared to our proposed technique. Perhaps most important,
they provide no strong guarantees of detecting outlier nodes,
but rather follow a best-effort approach ([6], [27]), or at best
offer (TACO) some probabilistic guarantees, which however
are poor when the similarity of two sensors is close the
similarity threshold. Furthermore, the work in [27] is tailored
to different similarity functions and cannot directly handle the
similarity functions that we target in this paper. The bandwidth
savings of [6], compared to centralized alternative algorithms,
are modest, while TACO cannot operate at each epoch (with-
out being prohibitively expensive in bandwidth), but rather
operates in tumbles. Both [6] and TACO require each node
to perform a transmission at each epoch. On the contrary,

our proposed algorithms (i) guarantee that the similarity (or
not) of two nodes can always be performed with absolute
certainty (assuming reliable communication), (ii) can operate
in a continuous fashion, thus computing the similarity of nodes
at each epoch, and (iii) enable sensor nodes to safely refrain
from transmitting in many epochs, thus achieving significant
bandwidth savings.

The geometric approach was first presented in [22]. The
monitoring zones used in [22] were spheres, an approach that
we also adopt in our work due to its lower computational
requirements. The work in [14], [24] demonstrated that using
monitoring zones of different shapes (i.e., triangles or ellipses)
may be more beneficial in terms of the number of transmitted
messages. In Section VI we also exploit (for some functions
such as the L∞, L1, L2 metrics) the notion of safe zones
introduced in [14] in order to further reduce the number of
transmitted messages. [21] presents a framework for the
efficient evaluation of threshold queries of general functions
over distributed data (as opposed to distributed data streams
settings used in [14], [22], [24]). The work in [23] is the
only work that we are aware of that applies the geometric
approach over sensor networks (in order to answer aggregate
threshold queries). In [23] the aggregate function is computed
over the entire network. Besides the difference in the type of
the monitored function with our problem, in this paper we are
interested in evaluating multiple pair-wise similarity functions,
a setting in which [23] is not efficient.

III. BASICS - THE GEOMETRIC APPROACH

We now describe in more detail the geometric approach
for function monitoring over a distributed system of n sites.
Table I summarizes the most important notation used in this
paper. The corresponding definitions appear at appropriate
areas of the text. Figure 1 demonstrates the basic ideas of
the geometric approach that we discuss in this section.

Each site Si maintains a local d-dimensional vector, termed
as the local statistics vector, with the j-th (j = 1 . . . d) element
of the local statistics vector of Si denoted as ~vj,i. All sites
contain a vector of the same dimensionality (i.e., number of
elements). The global statistics vector ~v is computed as the
average1 amongst all local statistics vectors. Thus, the j-th
component of the global statistics vector, denoted as ~vj is
computed as: ~vj = 1

n

∑n
i=1 ~vj,i.

For the framework to be applicable, any supported monitor-
ing function f : Rd → R must be expressed over the global
statistics vector ~v (thus, over the average of all local statistics
vectors). An important feature is the wide applicability of the
geometric approach, as the threshold function can in general
be non-linear. Given a threshold T, the framework in [21],
[22], [23], [24] can safely determine whether f(~v) > T .

The geometric approach decomposes the monitoring task
into a set of constraints (one per site) that each site can monitor
locally. To achieve this, during the operation of the algorithm,

1The same framework also applies when the global statistics vector is
calculated as a weighted average of the local statistics vectors.
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Fig. 1. Local constraints using the Geometric Approach. Each node
constructs a sphere with diameter the drift vector ~u of the node and the
estimate vector ~e. The global statistics vector ~v is guaranteed to lie in the
convex hull of ~e, ~u1, ~u2, ~u3, ~u4. The union of the local spheres covers the
convex hull.

each site Si maintains (i) the estimate vector ~e, which is
equal to the global statistics vector ~v computed by the local
statistics vectors transmitted by sites at certain times, and (ii)
a delta vector ∆~vi, denoting the difference of the current local
statistic vector from the last local statistic vector that Si has
transmitted. Based on these two quantities, Si calculates its
drift vector ~ui = ~e+∆~vi. Additional optimizations have been
developed in the framework, such as the ability to balance
only a portion of the network in case of violations. In that
case, an additional slack vector needs to be maintained and
added in the calculation of the drift vector.

The domain space Rd represents the potential locations
of the global statistics vector at any time. Let all points in
Rd where f(~v) <= T be colored by the same color (i.e.,
white in Figure 1), while the remaining points be colored by
a different color (i.e., green in Figure 1). Because the sites
do not perform transmissions at each time period, the current
global statistics vector ~v is not known to the sites. However,
what is guaranteed is that ~v will always lie within the convex
hull Conv(~u1, . . . , ~un) of the drift vectors and, thus, within the
convex hull Conv(~e, ~u1, . . . , ~un) of the drift vectors and the
estimate vector. Thus, if Conv(~e, ~u1, . . . , ~un) is monochro-
matic (i.e., either entirely below/equal to the threshold, or
entirely above to the threshold), then all sites are certain
about the color of the function f(), since this will coincide
with the color of f(~e). Of course, each node cannot compute
Conv(~e, ~u1, . . . , ~un), since it is not aware of the current drift
vectors of other sites. However, an important observation [22]
is that if each site monitors the sphere B(~e, ~ui) constructed
with diameter the estimate vector and its own drift vector,
then the union of these spheres covers the convex hull. Thus,
it suffices for each node to simply monitor whether its sphere
is monochromatic. If all the spheres are monochromatic, then
the convex hull is also monochromatic and, thus, f(~v) has
the same color as f(~e). Otherwise, nodes transmit their local
statistics vectors, and a new estimate vector is computed and

made known to all nodes.

IV. PROBLEM SETUP

In this paper we are interested in the following general
problem setup. A base station monitors the pair-wise similarity
of W -dimensional vectors of measurements collected at sensor
nodes. While our techniques are not restricted to the origin of
these W values, two likely alternatives are the following: (i)
the vector contains the latest W readings regarding the same
quantity; or (ii) the vector contains the current reading of W
different quantities that the sensor monitors.

Each sensor Si is asked to continuously compare its vector
of measurements to a subset (which we will term as the
comparison neighborhood (CN ) of Si) of the other nodes
in the network. We make no assumption on whether Si can
directly communicate with all nodes in CNi. We, thus, first
discuss the general case, where each sensor may require a
unicast (potentially multi-hop) communication with all nodes
in its CN , and then discuss further potential optimizations
that can be applied when all the nodes in CNi are in direct
communication with Si. The in-between scenario where a node
Si is in direct communication with only a fraction of the nodes
in CNi can be trivially handled by partitioning the nodes in
CNi in two sets - the first set contains those nodes that are in
direct communication with Si, while the second set contains
the remaining nodes - and applying the techniques developed
for the appropriate scenario to each of these sets.

The requirement of our application is for the base station
to know with certainty (assuming no message losses) whether
each node is similar (or not) to the other nodes in its CN . If a
node Si detects that its similarity with a node Sj ∈ CNi has
changed (i.e., Si and Sj were dissimilar/similar up until the
previous epoch, but they are now deemed similar/dissimilar),
then (exactly) one of these nodes needs to notify the base
station. Obviously, these notifications from all sensor nodes
may use for their propagation an interconnect such as the
aggregation tree [17].

Another interesting application involves monitoring whether
the measurements in each node Si have a required minimum
support minSupp, expressed as the number of nodes in CNi

that are deemed similar to Si. We show in Section VI-C that
this case can also be easily handled in our framework.

V. EXPRESSING SIMILARITY FUNCTIONS USING THE
GEOMETRIC APPROACH

We now show how several interesting similarity functions
(shown in Figure 2) can be transformed in a way that they can
be used in the geometric approach.
Notation and Important Notes. Let us consider the similarity
between two nodes with measurement vectors X and Y,
correspondingly. Because some of the transformations that we
need to perform do not treat X and Y in a symmetric way, we
always assign X to the node (in the pair-wise test) with the
lowest identifier (id), among the two nodes.

In order to use the geometric approach, each similarity
function must be expressed as a general function over the
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Fig. 2. Expressing common similarity functions between two nodes with W-dimensional measurement vectors X and Y using the geometric approach. The
function must be expressed as a general function over the average of local statistics vectors X’ and Y’, with the elements of X’ (Y’) being computed based
only on the elements of X (Y). X’ (Y’) may have a different dimensionality than X (Y).

average of local statistics vectors X’ and Y’, with the elements
of X’/Y’ being computed based only on the elements of X/Y.
We need to emphasize the following points:
• X’/Y’ may have a different dimensionality than X/Y.
• The dimensions of the sub-space that each node monitors

(i.e., the spheres in Figure 1) correspond to the dimension-
ality of X’/Y’, and not on the dimensionality of X/Y.

• During its monitoring, each node needs to calculate the
value of the similarity function over any point Z that lies
in its monitoring zone (i.e., in the sphere that it constructs).
Any such point Z represents a potential position of the
global statistics vector (which is computed as the average
of local statistics vectors), and should not be confused with
how the function is computed on either X/Y/X’/Y’. The last
column of Figure 2 demonstrates how to compute the value
of the function over any point Z.

Transformations for the L∞, L1, L2 and Lk norms. Let us
first consider the simplest case of the L∞ norm, computed as
the maximum difference maxi=1...W {|Xi − Yi|}. Then:

L∞(X, Y ) = max
i=1...W

{|Xi − Yi|} = 2 max
i=1...W

{|Xi − Yi

2
|}

= 2 max
i=1...W

{|Xi + (−Yi)
2

|}

Thus, by setting X ′ = X and Y ′ = −Y , the overall
L∞(X, Y ) can be computed as a function on the average
vector 1

2 (X ′ + Y ′). Please recall that, as mentioned earlier
in this section, the local statistics vector Y’ corresponds to the

node in the pair-wise test with the highest id.
The transformations for the L1, L2 and Lk norms are similar

in principle. We, thus demonstrate the transformation only for
the L2 norm.

L2(X, Y ) =

√√√√ W∑
i=1

(Xi − Yi)2 =

√√√√22

W∑
i=1

(
Xi − Yi

2
)2

= 2

√√√√ W∑
i=1

(
Xi − Yi

2
)2

Thus, similarly to the L∞ case, by using X ′ = X and Y ′ =
−Y as the local statistics vectors at the two nodes, the L1, L2

and Lk norms, can be evaluated as shown in Figure 2.

Transformations for the Cosine Similarity. In order to
compute the cosine similarity of two vectors, we first need
to express the inner product (which is equal to the summation
of the products of corresponding vector elements) in a form
that admits the geometric approach. Thus:

X · Y =
W∑
i=1

XiYi =
1
2

W∑
i=1

2XiYi

=
1
2
(

W∑
i=1

(Xi + Yi)2 − (
W∑
i=1

(Xi)2 +
W∑
i=1

(Yi)2))

= 2
W∑
i=1

(
Xi + Yi

2
)2 − ||X||22 + ||Y ||22

2



Using a similar transformation for the quantity at the denom-
inator of the cosine similarity:

||X||2||Y ||2 = 2(
||X||2 + ||Y ||2

2
)2 − ||X||22 + ||Y ||22

2
.

Therefore, the overall cosine similarity

cos(θ(X, Y )) =
XY

||X||2||Y ||2
can be computed as a function of average quantities. Thus, by
maintaining

X ′ = [X1, . . . , XW , ||X||22, ||X||2]T

(for the node with the lowest id in the comparison test), and

Y ′ = [Y1, . . . , YW , ||Y ||22, ||Y ||2]T

(for the node with the highest id), the overall cosine similarity
can be computed over the average of the local statistics vectors
maintained at the nodes (Figure 2). Please note that in this case
the dimensionality of the local statistics vectors is W +2 and,
therefore, larger than the dimensionality of the measurements
vector.
Transformations for the Extended Jaccard Coefficient. The
Extended Jaccard contains two quantities that need to be
transformed: (i) The inner product X ·Y , which is transformed
in the same way as in the cosine similarity, and (ii) the term
||X||22 + ||Y ||22, which can be transformed to 2 ||X||22+||Y ||22

2 .
Thus, as shown in Figure 2, the Extended Jaccard Coefficient
can be transformed in the required format by maintaining as
local statistics vectors

X ′ = [X1, . . . , XW , ||X||22]T

(for the node with the lowest id in the comparison test), and

Y ′ = [Y1, . . . , YW , ||Y ||22]T

(for the node with the highest id).
Transformations for the Correlation Coefficient. The most
difficult transformation involves the computation of the Cor-
relation Coefficient: corr(X, Y ) = cov(X,Y )

σXσY
, computed based

on the covariance of the two vectors of measurements, and
their standard deviations. The denominator can be computed
based on the same approach that we have demonstrated:

σXσY = 2(
σX + σY

2
)2 − σ2

X + σ2
Y

2
.

We then observe that the covariance cov(X, Y ) can be
computed as: cov(X, Y ) = E[XY ]−E[X]E[Y ]. The product
E[X]E[Y ] can be transformed as:

E[X]E[Y ] = 2(
E[X] + E[Y ]

2
)2 − (E[X])2 + (E[Y ])2

2
.

For the term E[XY ] we obtain:

E[XY ] =
1
W

W∑
i=1

XiYi

See inner
product

=
2
W

W∑
i=1

(
Xi + Yi

2
)2 − 1

W

||X||22 + ||Y ||22
2

Based on the above transformations, as shown in Figure 2,
the Correlation Coefficient can be transformed in the required
format by maintaining as local statistics vectors

X ′ = [X1, . . . , XW , ||X||22, E[X], (E[X])2, σX , σ2
X ]T

(for the node with the lowest id in the comparison test), and

Y ′ = [Y1, . . . , YW , ||Y ||22, E[Y ], (E[Y ])2, σY , σ2
Y ]T

(for the node with the highest id).

VI. NODE OPERATION FOR SIMILARITY MONITORING

We now propose different alternatives of node operation, so
that each node can monitor with accuracy its similarity with
any node in its CN set. For ease of presentation, we begin our
discussion with a model of having just two nodes that want
to compute their similarity. This model, on one hand, helps
explain the various alternatives and, on the other hand, can be
used for answering similarity queries between nodes that do
not communicate directly with each other (the first scenario
discussed in Section IV), while also being applicable to the
second scenario (direct connectivity with all nodes in CN ) as
well.

Besides, simply applying the same pair-wise algorithms that
we will present to all neighbors of a node, provides a solution
to the monitoring task that we tackle in this paper. Each node,
simply has to maintain statistics for each node in its CN set,
and follow for each such node the process described in the
two-node communication model.

A. A Two-Node Communication Model

In our initial model, we do not worry about whether the
two nodes are in direct communication with each other. Thus,
whenever we refer to a node Si transmitting a message to
Sj , this message may involve a multihop communication. Of
course, it is more natural to expect that the similarity between
the readings of two nodes will be useful when these sensors
are placed nearby and can, thus, either communicate directly
(pending any obstacle that may block their communication),
or are reachable within a few hops.

All but (the last) one of the modes of operation that we
propose in this paper do not require a fixed order (amongst
the two nodes whose similarity is monitored) in which the
sensor nodes will examine whether they have a local violation.
However, for ease of presentation, let us simply assume that
such an order, which need not be the same across all epochs
(i.e., as in a case where nodes alternate their turn) has been
established.

We need to note that a local violation occurs when a node
deems that its local constraint is violated (i.e, when the sphere
that it monitors is bi-chromatic). A global violation occurs
when a node is certain that its similarity with another node
has changed color. The node that detects a global violation
notifies the base station.
The Simple Mode of Operation. Algorithm 1 presents
the Simple mode of operation of each node. This mode of
operation has no optimizations in its decisions and it is,



Algorithm 1 Node i: Operation under Simple Mode
Require: Threshold T , Similarity Function F

1: Maintain ~v′
i: last transmitted local statistics vector

2: Maintain ~e: Estimate vector
3: Maintain ~v′

j : last received local statistics vector from Sj

4: while Asked to Monitor Similarity to Sj do
5: Obtain new measurements and form local statistics vector ~vi

6: Compute delta vector ∆~vi = ~vi − ~v′
i

7: Compute drift vector ~ui = ~e + ∆~vi

8: if Acting Second in Pair then
9: if MessageWait(Sj , ~v′

j , ~e′ ) == true then
10: if ~e′ and ~e are bi-chromatic then
11: Notify base station about global violation
12: end if
13: Send local measurements vector to Sj

14: ~v′
i = ~vi, ~e = ~e′

15: Continue
16: end if
17: end if
18: {Acting first, or acting second but did not receive a message}
19: localViolation = checkIfViolation(~e, ~ui, F , T )
20: if localViolation == true then
21: Send local measurements vector to Sj

22: ~v′
i = ~vi

23: MessageWait(Sj , ~v′
j , ~e′ ) {Will definitely arrive}

24: Compute ~e = 1
2
(~v′

j + ~vi)
25: Continue {If global violation, Sj will send notification}
26: end if
27: if Acting first then
28: if MessageWait(Sj , ~v′

j , ~e′ ) == true then
29: goto 10
30: end if
31: end if
32: end while

Algorithm 2 Node i: MessageWait Subroutine

Require: Paired node Sj , last received local statistics vector ~v′
j ,

vector ~e′

1: Wait for message from Sj

2: if Message Arrived, containing vector of measurements then
3: Compute local statistics vector ~vj of Sj

4: ~v′
j = ~vj

5: Compute ~e′ = 1
2
(~v′

j + ~vi)
6: RETURN true
7: end if
8: RETURN false

thus, presented only as a baseline solution for estimating
the similarity of two nodes Si and Sj . One may consider
this Simple mode as the most natural way of applying the
geometric approach to our problem. However, while in prior
work typically a coordinator node exists, in the Simple mode,
as an optimization to reduce message transmissions, each node
in a pair may act as a coordinator.

Both nodes at each epoch update their vectors of mea-
surements (Line 5), and compute their delta and drift vectors
(Lines 6-7). There are three cases in which Si may receive a
message from Sj :
• Lines 8-17: If Si acts second and receives a message from

Sj (local violation at Sj). Then Si checks to see if a global

Algorithm 3 Node i: checkIfViolation Subroutine
Require: estimate vector ~e, drift vector ~ui, function F , threshold T

1: if F (~e) > T then
2: Find min value testVal in sphere B(~e, ~ui)
3: else
4: Find max value testVal in sphere B(~e, ~ui)
5: end if
6: if F (~e) and testVal are monochromatic then
7: Return false
8: end if
9: Return true

violation has occurred. In order to accomplish this, it does
not need to construct any spheres using its drift vector.
Please note that Si knows the measurement vector of Sj

and also knows its own vector of measurements. Then Si

knows the exact value of the global statistics vector ~e′

(Algorithm 2, Line 5), and can simply check whether the
similarity function at the estimate vector ~e and ~e′ are bi-
chromatic. If so (Lines 10-12), then a global violation has
occurred, and the base station will be notified by Si.

• Lines 20-26: If Si acts second, Sj has no local violation,
but Si detects a local violation (using Algorithm 3). Then,
Si will transmit its vector of measurements and will wait
to receive the corresponding vector from Sj , in order to
update its estimate vector.

• Lines 27-31: If Si acts first, Si detects no local violation,
but Sj (which in this case acts second) detects a local
violation. This case is identical to the first case that we
described in this list.

The Autobalance Mode of Operation. In the Simple mode
operation either both nodes will not detect any local violation
and will remain silent, or they will both transmit their local
measurement vectors to the other node. The latter is a signifi-
cant drawback of the Simple mode, which we aim to improve
upon with our Autobalance mode.

In order to ensure accurate monitoring, the geometric ap-
proach requires that (i) both nodes always use the same
estimate vector, and (ii) the average of the drift vectors is
equal to the global statistic vector (i.e., the true average of the
local statistics vectors).

In the Autobalance mode, the first node (in the pair) that
detects a local violation:
• Modifies its estimate vector to ~e + 1

2∆~v
• Transmits its measurement vector (after the transmission,

∆~v = 0).
• Awaits for a potential message from the other node. If

a message is received, it updates its estimate vector by
incorporating half of the delta vector that it calculates for
the pairing node.

On the other hand, the node that first receives a message,
uses the following steps:
• Checks if the new global estimate vector is monochromatic

with the estimate vector.
• Updates (note: the update must be done after the previous

check) its estimate vector by incorporating half of the delta
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Fig. 3. Depicting the shaded areas where the global statistic vector may
lie such that the L∞, L2 and L1 distance between the two sensor nodes is
not above the threshold T, for 2-dimensional vectors of measurements. The
shaded areas are also convex in any dimension for these similarity measures.

vector that it calculates for the pairing node.
• If the first step signaled a global violation, the node notifies

the base station, sets the estimate vector to the global statis-
tics vector that it computed, and transmits its measurement
vector to the pairing node. Otherwise, it continues using
the estimate vector that it computed in the second step.

The above procedure is similar in principle to the techniques
developed in [22], where a slack vector may be added to all
the computed drift vectors, with the requirement that the slack
vectors cancel out. It is simple to verify that our procedure
distributes the delta vector of the node with the violation to
both nodes (both nodes modify their estimate vector and, thus,
their drift vector by half of this delta, while the transmitting
node also zeroes its delta vector), thus resulting in zero overall
change in the computation. To understand why this is the case,
assume that Si detected the local violation. Then the overall
change in the drift vector of Si is, − 1

2∆~vi (the node zeroes its
delta vector after the transmission, but half of that vector has
been added to the estimate vector), while the overall change
in the drift vector of Sj is 1

2∆~vi (due to the modification of
the estimate vector). Thus, the sum of the drift vectors before
and after the autobalance operation remains the same.

In the Autobalance mode, the node that first receives a
message during an epoch does not necessarily transmits its
own measurement vector, unless it detects a global violation.
We, thus, expect the Autobalance mode to significantly reduce
the number of transmitted messages. However, since only the
second message may be pruned in each epoch, this reduction
may not exceed 50%, when compared to the Simple mode.

Exploiting the Convexity of Safe Zones. For the L∞, L1 and
L2 similarity functions, we may further reduce the number
of transmitted messages, by exploiting the notions of Safe
Zones (SZ) [14] and the convexity of the Safe Zones for the
aforementioned similarity functions.

According to [14], “a node’s SZ consists of the set of
vectors which satisfy the local constraints, and as long as the
vectors remain in their SZs, no communication is required”.
Based on the above definition, for the L∞, L1 and L2

similarity functions we can define the gray safe zones that are
depicted, for W = 2, in Figure 3. In higher dimensions, the
corresponding safe zones are a hypercube (for L∞), a sphere

(for L2) and the intersection of hyperplanes (for L1). We note
that the safe zones that we depict are convex. Thus, as long as
the estimate vector and the drift vectors remain within the safe
zones, then the global statistics vector (which is the average of
the drift vectors) will also lie inside the safe zone. Exploiting
this fact, we may modify Algorithm 3 in the following way:
If f(~e) ≤ T , then simply check if f(~u) ≤ T (i.e., do not find
the maximum value within a sphere) in order to test whether a
local violation exists. In the case where f(~e) > T , the existing
technique depicted in Lines 1-2 of Algorithm 3 is followed.
We denote as Convex the variation of the Simple mode that
exploits the convexity of safe zones for L∞, L1 and L2. We
denote as Convex Autobalance the corresponding variation of
the Autobalance mode.

B. Neighbors in Direct Communication.

In the case where all the neighbors of Si are in direct
communication with Si, then any message transmission by Si,
regarding its measurements vector, can be performed using
broadcast communication. Due to space constraints, we do
not enumerate all possible combinations of the broadcast
communication with the Simple, Convex, Autobalance and
Convex Autobalance modes, but rather focus on the most
efficient one, namely the Proactive Broadcast Convex mode.
This mode is based on the Convex Autobalance mode.

In this mode, the nodes within each CN must be ordered,
so that each node knows who acts before it, or not. Let us
consider the operation of node Si:
• Si waits for messages from nodes that act before it.
• For each received message, Si updates its estimate vector

(due to autobalancing) with the corresponding neighbor,
and checks if a global violation regarding that neighbor
occurs. If yes, then Si will later broadcast its measurement
vector, so we skip the next step.

• Si examines if a local violation exists regarding itself and
nodes that act after Si. Si marks all such nodes with which
it observes a local violation.

• If either of the steps 2,3 necessitate a transmission, Si

broadcasts its measurement vector. Si will update (due to
autobalancing) its estimate vector for all nodes: (i) that act
after it, and (ii) for which a global violation was detected in
Step 1. Please note that in this case Si proactively modifies
its estimate vector for nodes that act after it, even if it does
not detect a local violation for their similarity.

• Si then awaits messages regarding potential violations. It
ignores received messages from any node Sj that act after
Si and which did not have a global violation with Si (i.e.,
the received message was due to a violation that Sj had
with another node). The latter is easy for Si to determine,
based on the received measurements vector from Sj .

C. Handling Minimum Support Queries

In the case of queries involving a required minimum support
(i.e., number of nodes with similar measurements), the base
station wants to be notified about any sensor node that did not



have (did have) the required minimum support at the previ-
ous epoch, but reaches (drops below) the required minimum
support at the current epoch. However, this problem is trivial
to handle in our framework, since each node Si will only
transmit a message to the base station at the end of the epoch
(i.e., after the monitoring process for all neighbors has been
completed for this epoch) if its current support follows the
previous condition. Please recall that each node knows with
absolute certainty whether its desired distance from any node
in its CN is above/below the required threshold.

We actually expect minimum support queries to be more
bandwidth efficient, since our initial algorithms notified the
base station each time that their similarity status with any
node in CN was modified. However, as we demonstrate in
our experimental evaluation, the overall bandwidth savings are
restricted by the fact that the vast majority of the transmitted
messages are between pairs of nodes tested for similarity.
Thus, even though the transmissions to the base station are
reduced, these transmissions were relatively few, to begin with.

D. A Note on Message Losses

All the presented algorithms assume, similarly to previous
work that uses the geometric approach, the reliable delivery of
messages. However, in sensor network applications messages
are often lost due to conflicts. We now discuss the conse-
quences of message loss when using the geometric approach.

In case a message involving the notification to the base
station is lost, the base station is not aware whether two nodes
are similar or not. In the case of minimum support queries,
the base station will not know whether a node’s measurements
have reached the required minimum support or not. This issue
will be resolved in the next notification transmitted by the
same node to the base station.

In versions of our algorithms that do not include the
Autobalance mode, each node that first makes a transmission
due to a local violation expects a reply. Thus, if a message
is lost, the node will not receive a reply, will recognize this
message loss and may resend its message, thus resolving this
issue. On the other hand, in versions of our algorithms that
include the Autobalance mode, it is possible that a node that
exhibits a local violation and transmits a message will not
receive a reply. In such a case, the node will not know whether
this occurred because of a message loss, or because of a
successful balancing operation at the pairing node (unless we
use acknowledgments). In this case, the 100% guarantees of
our algorithms are no longer valid, as the two corresponding
pairing nodes will end up using different estimate vectors. Let
us now consider when this problem will be resolved. Let X
denote the node in the pair whose transmitted message was not
received. The problem will only be resolved in either (i) the
next epoch that X exhibits a local violation (when monitoring
the same pair-wise similarity), if the message of X is not lost
again, or (ii) the next epoch that the pairing node first detects
a local violation and X detects a threshold violation, as X
will then transmit its measurements vector to its pairing node.

E. Handling the Addition and Removal of Nodes

When nodes are added/removed from the network (for
example, due to node failures), then each sensor simply
needs to monitor its similarity to more/fewer sensor nodes.
In most cases, this does not require any additional effort by
the remaining sensor nodes. In the case of minimum support
queries, the removal of sensor nodes may cause some nodes
to notify the base station, as their minimum support may drop
below the required threshold. The only minor complication
that arises involves the broadcast case described in VI-B:
any new node added in the network, after determining its
comparison neighborhood CNi, will have to pick/determine
its order (when to act) within CNi, so that it knows which
other sensors act before/after it.

VII. EXPERIMENTS

In our experiments we utilized two real world data sets. The
first data set, termed Intel Lab Data, includes temperature,
humidity and light measurements collected by motes in the
Intel Research, Berkeley Lab 2. We selected the measurements
of the following nodes (in the specified order) that lie in nearby
lab locations: 38, 39, 40, 41, 43, 37, 35, 36. In experiments
where we vary the number of used nodes, any experiment
containing K nodes, contains measurements from the K first
nodes in the above list, for 30000 epochs. The second data
set, termed as Weather Data, includes air temperature, relative
humidity and solar irradiance measurements from the station in
the University of Washington and for the year 20023. We used
these measurements to generate readings for up to 9 motes for
a period of 2000 epochs. To avoid presenting experiments for
the same quantity in both data sets, in the Intel Lab data set we
present the results for the temperature and light data, while in
the Weather data we present the results for the humidity and
the solar irradiance data. Our simulator was written in Java.

Techniques and Parameter Settings. We compare the perfor-
mance of our Simple, Convex, Autobalance, Convex Autobal-
ance and Proactive Broadcast Convex techniques in different
data sets, when we vary several parameters, such as the used
threshold, the similarity function, the minimum support, the
dimensionality of the measurements vector, or the number
of the sensor nodes. In order to be able to test the Convex
alternatives, we focused on the L∞, L1 and L2 similarity func-
tions. Moreover, these functions have a closed form solution
that helps us determine in a simple way their minimum and
maximum values within any sphere.

We also consider in our discussion (but do not depict in our
graphs due to its high bandwidth consumption compared to
our techniques), a baseline method, termed NAIVE, in which
the sensor nodes transmit their measurement vectors to the
base station at each epoch. To favor this NAIVE algorithm,
we generated clusters of k sensor nodes (the default value
of k was 5), all in direct communication to each other and
to the base station. Even though the competitive algorithm

2Data available at: http://db.csail.mit.edu/labdata/labdata.html
3Data available at: http://wwwk12.atmos.washington.edu/k12/grayskies
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Fig. 7. Weather: #Messages vs
Threshold, Solar Irradiance, L1

0 5 10 15 20 25

Similarity Threshold

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

#
 T

ra
n
sm

it
te

d
 M

es
sa

g
es

Simple

Convex
Autobalance
Convex Autobalance
Proactive Broadcast Convex

          Intel Labs Data, Temperature
 #Nodes in Cluster = 5, Epochs = 30000
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Fig. 10. Weather: #Messages vs
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Fig. 11. Weather: #Messages vs
Threshold, Solar Irradiance, L∞

is termed as NAIVE, the setup that was provided favors
it extremely, since at each epoch each node transmits its
measurements vector over a single hop. Please also note that,
as mentioned in Section II, recent approaches [6], [8] require
each node to perform a transmission at each epoch and, thus,
cannot perform better than our baseline NAIVE algorithm.
Contrary to the NAIVE algorithm, our algorithms transmit to
the base station only when a global violation is detected. Thus,
our algorithms, contrary to NAIVE, would not be severely
impacted in cases where the base station is several hops away
from the sensor nodes. Table II depicts the default values used
for our parameters.

A. Varying the Monitored Function

In Figures 4-7 we demonstrate the total number of transmit-
ted messages of our techniques in our data sets when varying
the used threshold, with the L1 similarity function. The cluster
contained 5 nodes, which means that the total number of
transmitted messages for NAIVE (not depicted) was 150,000
in the Intel Lab data, and 10,000 in the Weather data. We
make two interesting observations:
• Our techniques can provide significant bandwidth savings
compared to NAIVE. For example, by using a modest 5-degree
threshold for L1 in Figure 4, the Simple mode reduces the

number of messages by a factor of 3.3 (compared to NAIVE),
while our Broadcast mode achieves about a 10 fold reduction.
When considering these improvements, recall that we have
selected a setup that significantly favors the NAIVE algorithm.
• In the controlled environment of the Intel Lab, the max-
imum number of transmitted messages occurs in very small
threshold values, which implies small differences on the sensor
measurement vectors. This is encouraging, as it seems less
likely that one would pick such low threshold values in order
to test whether the readings of some sensors are “abnormal”.
On the other hand, the Weather data set contains measurements
from outdoor sensors, thus resulting in significant differences
between their measurements. This explains why the maximum
number of transmitted messages in the Weather data set is at
higher threshold values. Please note that using the geometric
approach, a node is less likely to have a local violation if its
estimate point is far away from the threshold surface, inde-

TABLE II
PARAMETERS AND DEFAULT VALUES

Parameter Default Value
k: cluster size 5
W: vector dimensionality 3
minSupp: minimum Support unspecified
#epochs Intel Lab: 30000, Weather:2000
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pendently on which side of the surface (above, or below the
threshold) it belongs to. Thus, with very low (high) threshold
values, nodes often construct monochromatic spheres with
values entirely above (below) the desired threshold, which,
in turn, results in fewer local violations.

In Figures 8-11 we depict the performance (for the same
data sets) when using the L∞ similarity function. The per-
formance is similar to the L1 case, with L∞, on one hand,
generating more messages in very small threshold values but,
on the other hand, exhibiting a very rapid decrease in the
transmitted messages as the threshold increases.

B. Minimum Support Queries

We now investigate whether the benefits of our algorithms
improve even more when we specify a desired minimum
support value. In Section VI-C we argued why this may be
the case. In Figures 12 and 13 we depict the number of global
violations (please note the difference, compared to all the
other depicted figures) for our Proactive Broadcast Convex
mode of operation and for the Intel Lab/Temperature and
Weather/Humidity data, respectively. We make three important
observations:
• The number of global violations in the modes of operation
that are not depicted are similar, for the same values of the
threshold and the minimum support. Since these alternative
modes of operation modify their estimate vectors in different
ways (i.e., more or less aggressively), the number of global
violations cannot be exactly the same. Thus, since the number
of violations is about the same in all modes of operation, the
benefits of the techniques (compared to each other) stem from
reducing the communication within each pair of nodes.
• The number of global violations is only a small fraction of
the total number of transmitted messages. Thus, our techniques
are less sensitive than NAIVE when the base station is placed
further away from the cluster.
• Specifying a minimum support reduces the number of
violations in all cases. We need to note that the pair-wise
communication is not impacted (only the notification of the
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base stations is impacted), which implies that the overall
decrease in the transmitted messages is modest.

C. Varying the Dimensionality W

In Figures 14 and 15 we depict the number of transmitted
messages for our Proactive Broadcast Convex mode of opera-
tion under the L2 distance, and for the Intel Lab/Temperature
and Weather/Humidity data, respectively, when varying the
dimensionality of the measurement vector. In this case, the
L2 function accumulates the sum of more terms. It is, thus,
expected that the shape of the graphs will gradually shift
towards higher threshold values (for example, assuming the
same absolute vector elements in all dimensions, the L2

function increases with the number of dimensions).

D. Varying the Cluster Size

We now investigate how our techniques are influenced when
increasing the cluster size. For a cluster with k nodes,

(
k
2

)
similarity relations need to be monitored. Thus, we expect
an increase in the number of transmitted messages as the
size of the cluster increases. Please note that the NAIVE
technique scales linearly with the cluster size (i.e., for a
cluster of 8 nodes in the Intel Lab data, 240, 000 messages



are required). Figures 16-17 depict the scalability for the Intel
Labs/Temperature data, and for our Convex Autobalance and
Proactive Broadcast Convex modes of operation. Even when
increasing the cluster size, our techniques maintain important
savings over the NAIVE approach, with the Proactive Broad-
cast Convex mode being able to scale better.

VIII. CONCLUSIONS

In this paper we proposed a novel framework for outlier
detection in sensor networks, based on the geometric approach.
We demonstrated that several common similarity functions
used for outlier detection can be transformed and expressed in
a way that allows the applicability of the geometric approach.
We then proposed a general framework for outlier detection
and suggested multiple modes of operation for the sensor
nodes. Appropriate optimizations, such as the Autobalance
mode, the exploitation of the convexity of safe zones, and
the potential for broadcast communication were also discussed
and evaluated. Furthermore, our framework can easily be used
for minimum support queries. Perhaps most importantly, our
framework allows each sensor node to accurately monitor
its similarity to other nodes, while resulting in bandwidth
consumption that is merely a fraction of the communication
cost that a centralized approach would require.

For our future work, we will investigate how additional
similarity functions can be incorporated in our framework.
Moreover, for some similarity functions it may be hard for
the sensor node to accurately find the maximum/minimum
value within the local sphere that it constructs. In such cases,
examining the value of the function over a set of points
belonging to a grid (which lies within the sphere) is a feasible
alternative, but may not always result in perfect accuracy.
Perhaps, a more promising direction involves asking the base
station (which may have additional computational resources)
to compute, when possible, an appropriate convex safe zone,
which the sensors will then utilize. We plan to explore these
directions in the future.
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