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Abstract— Adaptive join algorithms have recently attracted a
lot of attention in emerging applications where data is provided
by autonomous data sources through heterogeneous network
environments. Their main advantage over traditional join tech-
niques is that they can start producing join results as soon as
the first input tuples are available, thus improving pipelining
by smoothing join result production and by masking source or
network delays. In this paper we propose Double Index NEsted-
loops Reactive join (DINER), a new adaptive join algorithm for
result rate maximization. DINER combines two key elements: an
intuitive flushing policy that aims to increase the productivity of
in-memory tuples in producing results during the online phase
of the join, and a novel re-entrant join technique that allows
the algorithm to rapidly switch between processing in-memory
and disk-resident tuples, thus better exploiting temporary delays
when new data is not available. Our experiments using real
and synthetic data sets demonstrate that DINER outperforms
previous adaptive join algorithms in producing result tuples at a
significantly higher rate, while making better use of the available
memory.

I. INTRODUCTION

Modern information processing is moving into a realm

where we often need to process data that is pushed or

pulled from autonomous data sources through heterogeneous

networks. Adaptive query processing has emerged as an an-

swer to the problems that arise because of the fluidity and

unpredictability of data arrivals in such environments [1]. An

important line of research in adaptive query processing has

been towards developing join algorithms that can produce

tuples “online”, from streaming, partially available input rela-

tions, or while waiting for one or both inputs [3], [6], [9], [12],

[14]. Such non-blocking join behavior can improve pipelining

by smoothing or “masking” varying data arrival rates and

can generate join results with high rates, thus improving

performance in a variety of query processing scenarios in

data integration, on-line aggregation and approximate query

answering systems.

Compared to traditional join algorithms (be they sort-, hash-

or nested loops-based [13]), adaptive joins are designed to deal

with some additional challenges: The input relations they use
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are provided by external network sources. The implication is

that they have little or no control in the order or rate of arrival

of tuples. Since the data source reply speed, streaming rate

and streaming order, as well as network traffic and congestion

levels, are unpredictable, traditional join algorithms are often

unsuitable or inefficient. For example, most traditional join

algorithms cannot produce results until one or both relations

are completely available. Waiting for one relation to arrive

completely to produce results is often unacceptable. Moreover,

and more importantly, in emerging data integration or online

aggregation environments, a key performance metric is rapid

availability of first results and a continuous rate of tuple

production.

Adaptive join algorithms were created in order to lift the

limitations of traditional join algorithms in such environments.

By being able to produce results whenever input tuples become

available, adaptive join algorithms overcome situations like

initial delay, slow data delivery or bursty arrival, which can

affect the efficiency of the join. All existing algorithms work

in three stages. During the Arriving phase, a newly arrived

tuple is stored in memory and it is matched against memory-

resident tuples belonging to the opposite relation. Since the

allocated memory for the join operation is limited and often

much smaller than the volume of the incoming data, this results

in tuple migration to disk. The decision on what to flush to disk

influences largely the number of results produced during the

Arriving phase. The Arriving phase is suspended when both

data sources are temporarily blocked and a Reactive phase

kicks in and starts joining part of the tuples that have been

flushed to disk. An important desideratum of this phase is

the prompt handover to the Arriving phase as soon as any

of the data sources restarts sending tuples. Each algorithm

has a handover delay which depends on the minimum unit

of work that needs to be completed before switching phases.

This delay has not received attention in the past, but we show

that it can easily lead to input buffer overflow, lost tuples and

hence incorrect results. When both sources complete the data

transmission, a Cleanup phase is activated and the tuples that

were not joined in the previous phases (due to flushing of

tuples to disk) are brought from disk and joined.

In this paper, we propose Double Index NEsted-loop Re-

active join (DINER), a new join algorithm for output rate

maximization in data processing over autonomous distributed



sources. DINER follows the same overall pattern of execution

as previous algorithms but incorporates a series of novel tech-

niques and ideas that make it faster, leaner (in memory use)

and more adaptive than its predecessors. The key difference

between DINER and existing algorithms is (1) an intuitive

flushing policy for the Arriving phase that aims at maximizing

the amount of overlap of the join attribute values between

tuples of the two relations and (2) a lightweight Reactive phase

that allows the algorithm to quickly move into processing

tuples that were flushed to disk when both data sources block.

The key idea of our flushing policy is to create and

adaptively maintain three non-overlapping value regions that

partition the join attribute domain, measure the “join benefit”

of each region at every flushing decision point, and flush tuples

from the region that doesn’t produce many join results in a

way that permits easy maintenance of the 3-way partition of

the values. As it will be explained, proper management of the

three partitions allows us to increase the number of tuples

with matching values on their join attribute from the two

relations, thus maximizing the output rate. When tuples are

flushed to disk they are organized into sorted blocks using

an efficient index structure, maintained separately for each

relation (thus the part “Double Index” in DINER). This opti-

mization results in faster processing of these tuples during the

Reactive and Cleanup phases. The Reactive phase of DINER
employs a symmetric nested loop join process, combined with

novel bookkeeping that allows the algorithm to react to the

unpredictability of the data sources. The fusion of the two

techniques allows DINER to make much more efficient use of

available main memory. We demonstrate in our experiments

that DINER has a higher rate of join result production and is

much more adaptive to changes in the environment, including

changes in the value distributions of the streamed tuples and

in their arrival rates.

An important feature of DINER is that it is the first adaptive,

completely unblocking join technique that supports range join

conditions. Range join queries are a very common class of

joins in a variety of applications, from traditional business

data processing to financial analysis applications and spatial

data processing. Progressive Merge Join [3] (PMJ), one of

the early adaptive algorithms, also supports range conditions,

but its blocking behavior makes it a poor solution given

the requirements of current data integration scenarios. Our

experiments indeed show that PMJ is outperformed byDINER.

The contributions of our paper are:

• We introduce DINER a novel adaptive join algorithm that

supports both equality and range join predicates. DINER

builds on a intuitive flushing policy that aims at maximizing

the productivity of tuples that are kept in memory.

• DINER is the first algorithm to address the need to quickly

respond to bursts of arriving data during the Reactive phase.

We propose a novel extension to nested loops join for process-

ing disk-resident tuples when both sources block, while being

able to swiftly respond to new data arrivals.

• We provide a thorough discussion on existing algorithms,

including identifying some important limitations, such as

increased memory consumption because of their inability to

quickly switch to the Arriving phase and not being responsive

enough when value distributions change.

• We provide an extensive experimental study, including per-

formance comparisons to existing adaptive join algorithms and

a sensitivity analysis. Our results demonstrate the superiority

of DINER in a variety of realistic scenarios. During the online

phase of the algorithm, DINER manages to produce up to

three times more results compared to previous techniques. The

performance gains of DINER are realized when using both

real and synthetic data and are increased when fewer resources

(memory) are given to the algorithm.

The rest of the paper is organized as follows. Section II

presents prior work in the area. In Section III we introduce

the DINER algorithm and discuss in detail its operations. In

Section IV we present our experiments, while in Section V

we draw concluding remarks.

II. RELATED WORK

Adaptive join algorithms were designed for producing re-

sults as fast as the input tuples become available and also

for overcoming the penalty induced when one or both data

sources experience delays. Existing work on adaptive join

techniques can be classified in two groups: hash-based [5],

[6], [9], [14], [12] and sort-based [3]. Examples of hash based

algorithms include DPHJ [6] and XJoin [14], the first of a

new generation of adaptive non-blocking join algorithms to

be proposed. XJoin was inspired by Symmetric Hash Join

(SHJ) [5], which represented the first step towards avoiding

the blocking behavior of the traditional hash-based algorithms.

SHJ required both relations to fit in memory, however XJoin

removes this restriction. The above mentioned algorithms were

proposed for data integration and online aggregation. Pipelined

hash join [15], developed concurrently with SHJ, is also an

extention of hash join and was proposed for pipelined query

plans in parallel main memory environment.

Algorithms based on sorting were generally blocking, since

the original sort merge join algorithm required an initial

sorting on both relations before the results could be obtained.

Although there were some improvements that attenuate the

blocking effect [10], the first efficient non-blocking sort-based

algorithm was Progressive Merge Join (PMJ) [3].

Hash Merge Join (HMJ) [9], based on XJoin and PMJ, is a

non-blocking algorithm which tries to combine the best parts

of its predecessors while avoiding their shortcomings. Finally,

Rate-based Progressive Join (RPJ) [12] is an improved version

of HMJ that is the first algorithm to make decisions, e.g., about

flushing to disk, based on the characteristics of the data.

In what follows we describe the main existing techniques

for adaptive join. For all hash-based algorithms, we assume

that each relation Ri, i = A, B is organized in npart buckets.

The presentation is roughly chronological.

XJoin. As with “traditional“ hash based algorithms, XJoin

organizes each input relation in an equal number of memory

and disk partitions or buckets, based on a hash function applied



on the join attribute. XJoin extends SHJ so that it can be

applied on larger data sets.

The XJoin algorithm operates in three phases. During the

first, arriving, phase, which runs for as long as either of the

data sources sends tuples, the algorithm joins the tuples from

the memory partitions. Each incoming tuple is stored in its

corresponding bucket and is joined with the matching tuples

from the opposite relation. When memory gets exhausted,

the partition with the greatest number of tuples is flushed

to disk. The tuples belonging to the bucket with the same

designation in the opposite relation remain on disk. When both

data sources are blocked, the first phase pauses and the second,

reactive, phase begins. The last, cleanup, phase starts when all

tuples from both data sources have completely arrived. It joins

the matching tuples that were missed during the previous two

phases.

In XJoin the reactive stage can run multiple times for

the same partition. Thus, a duplicate avoidance strategy is

necessary in order to detect already joined tuple pairs during

subsequent executions. XJoin adds two timestamps called

arrival timestamp (ATS) and departure timestamp (DTS) to

the tuple structure. The algorithm still has to detect the tuple

pairs joined during the reactive phase and avoid repeating

these joins. XJoin deals with these potential duplicates by

creating a timestamp list associated with each disk partition,

recording the time when the second phase was applied to the

partition. DINER borrows the general concept of timestamps

for duplicate avoidance from XJoin, and improves upon it. For

example, due to our use of block-ids and sorting, as described

in Section III-D, we can do away with the timestamp list.

Progressive Merge Join. PMJ is the adaptive non-blocking

version of the sort merge join algorithm. It splits the memory

into two partitions. As tuples arrive, they are inserted in their

memory partition. When the memory gets full, the partitions

are sorted on the join attribute and are joined using any

memory join algorithm. Thus, output tuples are obtained each

time the memory gets exhausted. Next, the partition pair (i.e.,

the bucket pairs that were simultaneously flushed each time the

memory was full) is copied on disk. After the data from both

sources completely arrives, the merging phase begins. The

algorithm defines a parameter F , the maximal fan-in, which

represents the maximum number of disk partitions that can be

merged in a single “turn”. F/2 groups of sorted partition pairs

are merged in the same fashion as in sort merge. In order to

avoid duplicates in the merging phase, a tuple joins with the

matching tuples of the opposite relation only if they belong to

a different partition pair.

Hash Merge Join. HMJ [9] is a hybrid query processing

algorithm combining ideas from XJoin and Progressive Merge

Join. HMJ has two phases, the hashing and the merging phase.

The hashing phase performs in the same way XJoin (and also

DPHJ [6]) perform, except that when memory gets full, a

flushing policy decides which pair of corresponding buckets

from the two relations is flushed on disk. The flushing policy

uses a heuristic that again does not take into account data

characteristics: it aims to free as much space as possible while

keeping the memory balanced between both relations. Keeping

the memory balanced helps to obtain a greater number of

results during the hashing phase. Unlike the other hash-

based algorithms, HMJ uses fewer disk buckets than memory

buckets: the hashing phase has better performance with more

buckets (and smaller bucket size), while the merging phase

performs better with fewer large disk buckets. Consecutive

memory buckets that are flushed go in the same disk bucket.

Every time HMJ flushes the current contents of a pair of

buckets, they are sorted and create a disk bucket “segment”;

this way the first step in a subsequent sort merge phase is

already performed.

When both data sources get blocked or after complete data

arrival, the merging phase kicks in. It essentially applies a sort-

merge algorithm where the sorted sublists (the “segments”)

are already created. The sort-merge algorithm is applied on

each disk bucket pair and it is identical to the merging phase

of PMJ. As described earlier, each disk bucket contains a

number of sorted segments, written on disk at each memory

flush, which represent the input of sort merge join. Duplicates

are avoided during the merging phase by ensuring that the

matching tuples belonging to the same sorted segment pair do

not join.

Rate-based Progressive Join. RPJ [12] is the most recent

and advanced adaptive join algorithm. It is the first algorithm

that tries to understand and exploit the connection between

the memory content and the algorithm output rate. During the

online phase it performs as HMJ. When memory is full, it tries

to estimate which tuples have the smallest chance to participate

in joins.

Its flushing policy is based on the estimation of parr
i [j], the

probability of a new incoming tuple to belong to relation Ri

and to be part of bucket j. Once all probabilities are computed,

the flushing policy is applied. Let parr
i [j] be the smallest

probability. In this case, nflush tuples belonging to bucket j of

the opposite relation are spilled. If the victim bucket does not

contain enough tuples, the next smallest probability is chosen,

etc. All the tuples that are flushed together from the same

relation and from the same bucket are sorted and they form a

sorted “segment” as in HMJ.

In case both relations are temporarily blocked, RPJ begins

its reactive phase, which “combines” the XJoin and HMJ

reactive phases. The tuples from one of the disk buckets of

either relation can join with the corresponding memory bucket

of the opposite relation, as in case of XJoin, or two pairs of

disk buckets can be brought in memory and joined as in case

of HMJ (and PMJ). The algorithm chooses the task that has

the highest output rate. During its cleanup phase RPJ joins the

disk buckets. The duplicate avoidance strategy is similar with

the one applied by XJoin.

The following important observation applies to the reactive

phase algorithm run by both HMJ and RPJ. When a “disk

to disk” process takes place, the algorithm checks for new

incoming tuples after a set of F segments belonging to each



Symbol Description (i ∈ {A, B})

G
en

er
al

Ri Input relation Ri

ti Tuple belonging to relation Ri

Indexi Index for relation Ri

Diski Disk partition containing flushed

tuples of relation Ri

UsedMemory Current amount of memory occupied

by tuples, indexes and statistics

MemThresh Maximum amount of available

memory to the algorithm

WaitThresh Maximum time to wait for new data

before switching to Reactive phase

S
ta

ti
st

ic
s

LastLwV ali Thresholds for values of join attribute

LastUpV ali in lower and upper regions of Ri

LwJoinsi Number of produced joins by tuples

MdJoinsi in the lower, middle and upper region,

UpJoinsi correspondingly, of Ri

LwTupsi Number of in-memory tuples in the

MdTupsi lower, middle and upper region,

UpTupsi correspondingly, of Ri

BfLwi Benefit of in-memory tuples in the

BfMdi lower, middle and upper region,

BfUpi correspondingly, of Ri

TABLE I

SYMBOLS USED IN OUR ALGORITHM

bucket pair are merged, where F is the fan-in parameter of

PMJ. The drawback is that after consecutive runs of this

phase over the same pair of disk buckets, the progressively

merged segments have larger and larger sizes and their merge

takes longer; meanwhile, incoming tuples are ignored. So the

algorithm stays in its reactive phase longer, possibly generating

additional join results, but at the price of requiring a much

larger input buffer to store incoming tuples, which otherwise

might have to be dropped, compromising the algorithm’s

correctness.

III. ALGORITHM DESCRIPTION

We now present our Double Index NEsted-loop Reactive

join (DINER) algorithm for computing the join result of

two finite relations RA and RB , which may be stored at

potentially different sites and are streamed to our local system.

Given the unpredictable behavior of the network, delays and

random temporary suspensions in data transmission may be

experienced. The goal of DINER is twofold. It first seeks

to correctly produce the join result, by quickly processing

arriving tuples, while avoiding operations that may jeopardize

the correctness of the output because of memory overflow.

Moreover, in the spirit of prior work [4], [9], [12] the DINER

algorithm seeks to increase the number of join tuples (or,

equivalently, the rate of produced results) generated during the

online phase of the join, i.e., during the (potentially long) time

it takes for the input relations to be streamed to our system. To

achieve these goals, DINER is highly adaptive to the (often

changing) value distributions of the relations, as well as to

potential network delays.

Table I summarizes the main notation used in the pre-

sentation of the DINER algorithm. Additional definitions are

presented in appropriate areas of the text.

A. Algorithm Overview

Algorithm Internals and Data Structures. Incoming tuples

from both relations share the available memory. A separate

index Indexi (i ∈ {A, B}) on the join attribute is maintained

for the memory resident part of each input relation. In our

implementation we utilize a Judy [2] structure, which is

maintained in memory. The Judy tree was selected as it

combines very small memory footprint with fast lookups and

the ability to have sorted access based on the index keys – any

main memory index structure with these space and data access

characteristics can be used, such as an in-memory B-tree. The

total amount of memory, denoted as UsedMemory, used by

our algorithm is upper-bounded by the value MemThresh.

The value of UsedMemory includes in its computation the

memory occupied by the input buffer (stage where incoming

tuples arrive), the in-memory tuples being processed by the

algorithm, the Judy indices and any additional data structures

utilized by DINER for maintaining statistics.

Finally, each relation is associated with a disk partition,

DiskA and DiskB , which stores the tuples from the relation

that do not fit in memory and have been flushed to disk. The

memory and disk blocks used by the DINER algorithm are

selected to be multiples of the operating system block size so

that the disk I/O operations can be performed efficiently.

Format of Stored Tuples. Each tuple inserted in memory

is augmented with an arriving timestamp (ATS). Each tu-

ple flushed to disk is further augmented with a departure

timestamp (DTS). As explained later in this section, these

timestamps are used in order to ensure that during the Reactive

and Cleanup phases every pair of tuples between the two

relations will be examined exactly once, thus ensuring the

correctness of the produced result.

Each tuple residing in main memory is also augmented with

a join bit.1 This bit is initially set to 0. Whenever an in-

memory tuple helps produce a join result, its join bit is set

to 1. As described in Section III-C, the join bits are utilized

by a process responsible for evicting tuples that do not produce

joins from some areas of the memory. The latter process seeks

to evict those tuples that have their join bit set to 0, while

clearing the join bit of the tuples that it examines. Those

tuples that have produced joins in the past will eventually

have their join bit cleared and get evicted at a subsequent

invocation of the process, if at some point they stop producing

join results. Thus, the join bit serves as a 1-bit approximation

to LRU, similarly to the clock algorithm for buffer page

replacement [11]. Maintaining a counter (instead of a single

join bit) for the number of joins that each tuple has produced

would have been more accurate. However, such an approach

would also consume more space. We decided to use the join

bit after experimentally evaluating both alternatives.

Phases of the Algorithm. The operation of DINER is divided

into three phases, termed in this paper as the Arriving, Reactive

and Cleanup phases. While each phase is discussed in more

1The join bit is actually part of the index entry for the tuple.



Algorithm 1 Arriving Phase

1: if RA and RB have been received completely then

2: Run Cleanup Phase

3: return

4: else if transmission of RA and RB is blocked more than WaitThresh then

5: Run Reactive Phase

6: else if ti ∈ Ri arrived (i ∈ {A, B}) then

7: Move ti from input buffer to DINER process space.

8: Augment ti with join bit and arrival timestamp ATS

9: j = {A, B} − i {Refers to “opposite” relation}
10: matchSet = set of matching tuples (found using Indexj ) from opposite

relation Rj

11: joinNum = |matchSet| (number of produced joins)

12: if joinNum > 0 then

13: Set the join bits of ti and of all tuples in matchSet
14: else

15: Clear the join bit of ti

16: end if

17: UpdateStatistics(ti , joinNum)

18: indexOverhead = Space required for indexing ti using Indexi

19: while UsedMemory+indexOverhead ≥ MemThresh do

20: Apply flushing policy (see Algorithm 3)

21: end while

22: Index ti using Indexi

23: Update UsedMemory
24: end if

25: goto 1

detail in what follows, we note here that the Arriving phase

covers operations of the algorithm while tuples arrive from

one or both sources, the Reactive phase is triggered when

both relations block and, finally, the Cleanup phase finalizes

the join operation when all data has arrived to our site.

B. Arriving Phase

Tuples arriving from each relation are initially stored in

memory and processed as described in Algorithm 1. The

Arriving phase of DINER runs as long as there are incoming

tuples from at least one relation. When a new tuple ti is

available, all matching tuples of the opposite relation that

reside in main memory are located and used to generate result

tuples as soon as the input data is available. When matching

tuples are located, the join bits of those tuples are set, along

with the join bit of the currently processed tuple (Line 13).

Then, some statistics need to be updated (Line 17). This

procedure will be described later in this section.

When the MemThresh is exhausted, the flushing pol-

icy (discussed in Section III-C) picks a victim relation and

memory-resident tuples from that relation are moved to disk

in order to free memory space (Lines 19-21). The number of

flushed tuples is chosen so as to fill a disk block. The flushing

policy may also be invoked when new tuples arrive and need

to be stored in the input buffer (Line 6). Since this part of

memory is included in the budget (MemThresh) given to the

DINER algorithm, we may have to flush other in-memory

tuples to open up some space for the new arrivals. This task

is executed asynchronously by a server process that also takes

care of the communication with the remote sources. Due to

space limitations, it is omitted from presentation.

If both relations block for more than WaitThresh msecs

(Lines 4-5) and, thus, no join results can be produced, then

the algorithm switches over to the Reactive phase, discussed

in Section III-D. Eventually, when both relations have been

received in their entirety (Line 2), the Cleanup phase of

Algorithm 2 UpdateStatistics

Require: ti (i ∈ {A, B}), numJoins
1: j = {A, B} − i {Refers to the opposite relation}
2: JoinAttr ← ti.JoinAttr
3: {Update statistics on corresponding region of relation Ri}
4: if JoinAttr ≥ LastUpV ali then

5: UpJoinsi ← UpJoinsi+ numJoins
6: UpTupsi ← UpTupsi + 1

7: else if JoinAttr ≤ LastLwV ali then

8: LwJoinsi ← LwJoinsi+ numJoins
9: LwTupsi ← LwTupsi + 1

10: else

11: MdJoinsi ←MdJoinsi+ numJoins
12: MdTupsi ←MdTupsi + 1

13: end if

14: {Update statistics of opposite relation}
15: if JoinAttr ≥ LastUpV alj then

16: UpJoinsj ← UpJoinsj+ numJoins
17: else if JoinAttr ≤ LastLwV alj then

18: LwJoinsj ← LwJoinsj+ numJoins
19: else

20: MdJoinsj ←MdJoinsj+ numJoins
21: end if

the algorithm, discussed in Section III-E, helps produce the

remaining results.

C. Flushing Policy and Statistics Maintenance

An overview of the algorithm implementing the flushing

policy of DINER is given in Algorithm 3. In what follows we

describe the main points of the flushing process.

Selection of Victim Relation. As in prior work, we try to

keep the memory balanced between the two relations. When

the memory becomes full, the relation with the highest number

of in-memory tuples is selected as the victim relation (Line 1).

Intuition. The algorithm should keep in main memory those

tuples that are most likely to produce results by joining with

subsequently arriving tuples from the other relation.

Unlike prior work that tries to model the distribution of

values of each relation [12], our premise is that real data

is often too complicated and cannot easily be captured by a

simple distribution, which we may need to predetermine and

then adjust its parameters. We have, thus, decided to devise a

technique that aims to maximize the number of joins produced

by the in-memory tuples of both relations by adjusting the

tuples that we flush from relation RA (RB), based on the range

of values of the join attribute that were recently obtained by

relation RB (RA), and the number of joins that these recent

tuples produced.

For example, if the values of the join attribute in the

incoming tuples from relation RA tend to be increasing and

these new tuples generate a lot of joins with relation RB , then

this is an indication that we should try to flush the tuples

from relation RB that have the smallest values on the join

attribute (of course, if their values are also smaller than those

of the tuples of RA) and vise versa. The net effect of this

intuitive policy is that memory will be predominately occupied

by tuples from both relations whose range of values on the join

attribute overlap. This will help increase the number of joins

produced in the online phase of the algorithm.

Simply flushing tuples from the two endpoints (higher and

lower values of the join attribute) does not always suffice, as

it could allow tuples with values of the join attribute close



Algorithm 3 Flushing Policy

1: Pick as victim the relation Ri (i ∈ {A, B}) with the most in-memory tuples

2: {Compute benefit of each region}
3: BfUpi=UpJoinsi/UpTupsi

4: BfLwi=LwJoinsi/LwTupsi

5: BfMdi=MdJoinsi/MdTupsi

6: {Tups Per Block denotes the number of tuples required to fill a disk block}
7: if BfUpi is the minimum benefit then

8: locate Tups Per Block tuples with the larger join attribute using Indexi

9: flush the block on Diski

10: update LastUpV ali so that the upper region is (about) a disk block

11: else if BfLwi is the minimum benefit then

12: locate Tups Per Block tuples with the smaller join attribute using Indexi

13: flush the block on Diski

14: update LastLwV ali so that the lower region is (about) a disk block

15: else

16: Using the Clock algorithm, visit the tuples from the middle area, using Indexi,

until Tups Per Block tuples are evicted.

17: end if

18: Update UpTupsi , LwTupsi, MdTupsi , when necessary

19: UpJoinsi ,LwJoinsi,MdJoinsi← 0

to its median to remain in main memory for a long time,

without taking into account their contribution in producing join

results. Thus, a technique that removes from main memory

such potentially “unproductive” tuples is essential.

Conceptual Tuple Regions. The DINER algorithm accounts

(and maintains statistics) for each relation for three conceptual

regions of the in-memory tuples: the lower, the middle and the

upper region. These regions are determined based on the value

of the join attribute for each tuple.

The three regions are separated by two conceptual bound-

aries: LastLwV ali and LastUpV ali for each relation Ri that

are dynamically adjusted during the operation of the DINER
algorithm. In particular, all the tuples of Ri in the lower

(upper) region have values of the join attribute smaller (larger)

or equal to the LastLwV ali (LastUpV ali) threshold. All the

remaining tuples are considered to belong in the middle in-

memory region of their relation.

Maintained Statistics. The DINER algorithm maintains sim-

ple statistics in the form of six counters (two counters for

each conceptual region) for each relation. These statistics are

updated during the Arriving phase as described in Algorithm 2.

We denote by UpJoinsi, LwJoinsi and MdJoinsi the num-

ber of join results that tuples in the upper, lower and middle

region, respectively, of relation Ri have helped produce. These

statistics are reset every time we flush tuples of relation Ri

to disk (Algorithm 3, Line 19). Moreover, we denote by

UpTupsi, LwTupsi and MdTupsi the number of in-memory

tuples of Ri that belong to the conceptual upper, lower and

middle region, respectively, of relation Ri. These numbers are

updated when the boundaries between the conceptual regions

change (Line 18).

Where to Flush From. Once a victim relation Ri has been

chosen, the victim region is determined based on a benefit

computation. We define the benefit BfLwi of the lower region

of Ri to be equal to:

BfLwi =
LwJoinsi

LwTuplesi

The corresponding benefit BfUpi and BfMdi for the upper

and middle regions of Ri are defined in a completely anal-

ogous manner (Lines 3-5). Given these (per space) benefits,

the DINER algorithm decides to flush tuples from the region

exhibiting the smallest benefit.

How to Flush from Each Region. When the DINER algo-

rithm determines that it should flush tuples from the lower

(upper) region, it starts by first flushing the tuples in that

region with the lowest (highest) values of the join attribute and

continues towards higher (lower) values until a disk block has

been filled (Lines 7-15). This process is expedited using the

index. After the disk flush, the index is used to quickly identify

the minimum LastLwV ali (maximum LastUpV ali) values

such that the lower (upper) region contains enough tuples to

fill a disk block. The new LastLwV ali and LastUpV ali
values will identify the boundaries of the three regions until

the next flush operation.

When flushing from the middle region (Line 16), we utilize

a technique analogous to the Clock [11] page replacement

algorithm. At the first invocation, the hand of the clock is

set to a random tuple of the middle region. At subsequent

invocations, the hand recalls its last position and continues

from there in a round-robin fashion. The hand continuously

visits tuples of the middle region and flushes those tuples that

have their join bit set to 0, while resetting the join bit of the

other visited tuples. The hand stops as soon as it has flushed

enough tuples in order to fill a disk block.

A special case occurs when the algorithm flushes data

from each relation for the very first time. In this case, the

LastLwV ali and LastUpV ali values have not been previ-

ously set. Thus, at the first time our algorithm (i) considers all

the tuples of each relation to belong to its middle region and

flushes from that area; and (ii) using the index, which can pro-

vide sorted access to the data, quickly identifies LastLwV ali
and LastUpV ali values such that each of the lower and upper

regions contain enough tuples to fill a disk block.

The expelled tuples from either relation are organized in

sorted blocks by accessing the memory using the victim’s

index. Thus, tuples that are flushed to disk in the same

operation are sorted based on the join attribute. This is done in

order to speed up the execution of the Reactive and Cleanup

phases of the algorithm, discussed later in this section.

Implementation Details. In situations where the data is ex-

tremely skewed, the middle region may get entirely squeezed.

In such rare cases we make sure that the LastLwV ali and

LastUpV ali values never create overlapping intervals for the

lower and upper regions (i.e., the invariant LastLwV ali <
LastUpV ali always holds). In such extremely skewed data

(i.e., all the data having the same key value), one region may

end up containing almost all of the tuples, thus raising the

possibility that a flushed region may actually contain fewer

tuples than the ones required to fill a disk block. In such

situations the DINER algorithm continues applying its flushing

policy to the region with the second (and possible even the

third) highest (per space) benefit until enough tuples have been

flushed to disk.

Importance of Upper, Middle and Lower Regions. While



 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0  10  20  30  40  50  60  70  80  90  100

N
u
m

b
e
r 

o
f 
O

u
tp

u
t 
T

u
p
le

s

Time (s)

DINER
Flush Middle

DINER no Middle

Fig. 1. Performance of Variants with a=0.0

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0  10  20  30  40  50  60  70  80  90  100

N
u
m

b
e
r 

o
f 
O

u
tp

u
t 
T

u
p
le

s

Time (s)

DINER
Flush Middle

DINER no Middle

Fig. 2. Performance of Variants with a=0.1

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0  10  20  30  40  50  60  70  80  90  100

N
u
m

b
e
r 

o
f 
O

u
tp

u
t 
T

u
p
le

s

Time (s)

DINER
Flush Middle

DINER no Middle

Fig. 3. Performance of Variants with a=0.2

in the experimental section we compare DINER to other state

of the art algorithms, we present here an experiment that

demonstrates the importance of maintaining the three regions

in our algorithm and the impact of our flushing policy. We

thus compare our DINER algorithm against two variants.

The DINER no Middle technique is identical to DINER, but

never flushes from the middle region. On the other hand, the

Flush Middle technique considers the entire memory to be a

single region and always flushes from that region. This case

is analogous to using the Clock algorithm.

We created a synthetic data set, where the data distribution

of the join attribute of both relations follows a normal dis-

tribution with a mean value equal to the middle value of the

domain (i.e., the most frequent value lies in the middle of the

domain). Thus, the values near the endpoints of the domain for

both relations are encountered with the smallest probabilities.

In Figures 1, 2 and 3 we show how our DINER algorithm

performs, in terms of the number of tuples produced during

the online phase, against the two tested variants, when in the

aforementioned data set we have also imposed an additional

condition: we prevent the most frequent values of the two

relations, those that lie within a fraction a of the distribution’s

variance from the mean value, to join. Thus, a = 0 corresponds

to the imposition of no additional condition on the join values,

while increasing values of a widen the area around the mean

where joins are not produced, even though tuples from both

relations exist in that area. Even though this condition is

imposed artificially, such situations, where the distributions of

data are similar or even the same but the most frequent values

aren’t exactly the same, and hence don’t join, can arise.

As expected, for a = 0 the correct decision is to flush

the tuples having join attribute values near the endpoints of

the domain. Thus, DINER performs identically to DINER

no Middle. While a increases, the performance of DINER
no Middle deteriorates (and may become worse than Flush

Middle), since it is now more efficient to flush from main

memory the tuples near the mean of the distribution that do not

join. The DINER algorithm, based on the benefit computation

over the three regions, clearly shows its superiority over the

two alternatives that only flush tuples from the end-points or

from the middle region, respectively.

D. Reactive Phase

The Reactive phase join algorithm, termed ReactiveNL, is a

nested loops-based algorithm that runs whenever both relations

Symbol Description

OuterSize Size of outer relation in blocks

InnerSize Size of inner relation in blocks

OuterMem #fetched disk blocks from outer

relation at each step

MaxOuterMem Maximum allowed value of OuterMem
JoinedOuter Last outer block that has joined

with inner relation up to JoinedInner
JoinedInner Last inner block that has joined

with outer relation up to JoinedOuter

CurrInner Inner block being joined with latest

chunk of OuterMem outer-blocks

MaxNewArr Maximum number of tuples

accumulated in the input buffer

before exiting Reactive Phase

TABLE II

NOTATION USED IN THE ReactiveNL ALGORITHM

are blocked. It performs joins between previously flushed data

from both relations that are kept in the disk partitions DiskA

and DiskB , respectively. This allows DINER to make progress

while no input is being delivered. The algorithm switches back

to the Arriving phase as soon as enough, but not too many,

input tuples have arrived, as is determined by the value of

input parameter MaxNewArr. The goal of ReactiveNL is to

perform as many joins between flushed-to-disk blocks of the

two relations as possible, while simplifying the bookkeeping

that is necessary when exiting and re-entering the Reactive

phase.

Algorithm ReactiveNL is presented in Algorithm 4. We

assume that each block of tuples flushed on disk is assigned

an increasing block-id, for the corresponding relation (i.e., the

first block of relation RA corresponds to block 1, the second to

block 2 etc). The notation used in the algorithm is available

in Table II. Figures 4 and 5 provide a helpful visualization

of the progress of the algorithm. Its operation based on the

following points.

Point 1. ReactiveNL initially selects one relation to behave

as the outer relation of the nested loop algorithm, while the

other relation initially behaves as the inner relation (Lines 1-

3). Notice that the “inner relation” (and the “outer”) for

the purposes of ReactiveNL consists of the blocks of the

corresponding relation that currently reside on disk, because

they were flushed during the Arriving phase.

Point 2. ReactiveNL tries to join successive batches of Out-

erMem blocks of the outer relation with all of the inner

relation, until the outer relation is exhausted (Lines 13-20).

The value of OuterMem is determined based on the maximum

number of blocks the algorithm can use (input parameter
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Algorithm 4 ReactiveNL
Require: MaxOuterMem, MaxNewArr
1: if First Algorithm Invocation then

2: Set Outer← smallest(DiskA ,DiskB )

3: Set Inner← largest(DiskA ,DiskB )

4: Set JoinedInner to size of Inner Relation

5: Set JoinedOuter to 0 and CurrInner to 1

6: end if{Else the old parameter values are used}
7: while unprocessed blocks exist do

8: while JoinedOuter<OuterSize do

9: {Load next chunk of outer blocks. CurrInner reveals whether some blocks

from the outer relation had started joining with the inner relation, but did not

complete this task.}
10: if CurrInner== 1 then

11: OuterMem= min(MaxOuterMem, OuterSize-JoinedOuter)
12: end if{Else keep its previous value}
13: Load OuterMem blocks from outer relation starting with block-id Joined-

Outer+1. If not sufficient space in memory, apply flushing policy to clear up

enough space.

14: while CurrInner≤JoinedInner do

15: Load CurrInner block of inner relation in memory and join with in-

memory outer blocks based on join attribute and non-overlapping ATS..DTS

timestamps

16: CurrInner←CurrInner+1

17: if Input buffer size greater than MaxNewArr then

18: Break;

19: end if

20: end while

21: if CurrInner>JoinedInner then

22: {Mark completed join of [1..JoinedOuter] and [1..JoinedInner] blocks}
23: JoinedOuter←JoinedOuter+OuterMem
24: CurrInner←1

25: end if

26: if Input buffer size greater than MaxNewArr then

27: {Switch back to Arriving Phase}
28: exit

29: end if

30: if JoinedOuter==OuterSize then

31: Change roles between inner and outer

32: end if

33: end while

34: end while

MaxOuterMem) and the size of the outer relation. However,

as DINER enters and exits the Reactive phase, the size of that

inner relation may change, as more blocks of that relation may

be flushed to disk. To make it easier to keep track of joined

blocks, we need to join each batch of OuterMem blocks of

the outer relation with the same, fixed number of blocks of

the inner relation – even if over time the total number of disk

blocks of the inner relation increases. One of the key ideas

of ReactiveNL is the following: at the first invocation of the

algorithm, we record the number of blocks of the inner relation

in JoinedInner (Line 4). From then on, all successive batches

of OuterMem blocks of the outer relation will only join with

the first JoinedInner blocks of the inner relation, until all the

available outer blocks are exhausted.

Point 3. When the outer relation is exhausted (Lines 30-32),

there may be more than JoinedInner blocks of the inner

relation on disk (those that arrived after the first round of

the nested loop join, when DINER goes back to the Arriving

phase). If that is the case, then these new blocks of the inner

relation need to join with all the blocks of the outer relation.

To achieve this with the minimum amount of bookkeeping,

it is easier to simply switch roles between relations, so that

the inner relation (that currently has new, unprocessed disk

blocks on disk) becomes the outer relation and vice versa (all

the counters change roles also, hence JoinedInner takes the

value of JoinedOuter etc, while CurrInner is set to point to

the first block of the new inner relation). Thus, an invariant

of the algorithm is that the tuples in the first JoinedOuter
blocks of the outer relation have joined with all the tuples in

the first JoinedInner blocks of the inner relation.

Point 4. To ensure prompt response to incoming tuples, and

to avoid overflowing the input buffer, after each block of the

inner relation is joined with the in-memory OuterMem blocks

of the outer relation, ReactiveNL examines the input buffer

and returns to the Arriving phase if more than MaxNewArr
tuples have arrived. (We do not want to switch between

operations for a single tuple, as this is costly). The input

buffer size is compared at Lines 17-19 and 26-28, and if

the algorithm exits, the variables JoinedOuter, JoinedInner

and CurrInner keep the state of the algorithm for its next

re-entry. At the next invocation of the algorithm, the join

continues by loading (Lines 9-13) the outer blocks with ids

in the range [JoinedOuter+1,JoinedOuter+OuterMem] and

by joining them with inner block CurrInner.

Point 5. As was discussed earlier, the flushing policy of

DINER spills on disk full blocks with their tuples sorted

on the join attribute. The ReactiveNL algorithm takes ad-

vantage of this data property and speeds up processing by

performing an in-memory sort merge join between the blocks.

During this process, it is important that we do not generate

duplicate joins between tuples touter and tinner that have

already joined during the Arriving phase. This is achieved

by proper use of the ATS and DTS timestamps. If the

time intervals [touter.ATS, touter.DTS] and [tinner.ATS,
tinner .DTS] overlap, this means that the two tuples co-

existed in memory during the Arriving phase and their join

is already obtained. Thus, such pairs of tuples are ignored by



the ReactiveNL algorithm (Line 15).

Discussion. The Reactive phase is triggered when both data

sources are blocked. Since network delays are unpredictable,

it is important that the join algorithm is able to quickly

switch back to the Arriving phase, once data starts flowing in

again, otherwise we risk overflowing the input buffer. Previous

adaptive algorithms [9], [12], which also include such a

Reactive phase, have some conceptual limitations, dictated by

a minimum amount of work that needs to be performed during

the Reactive phase, that prevent them from promptly reacting

to new arrivals. For example, as discussed in Section II, during

its Reactive phase, the RPJ algorithm works on progressively

larger partitions of data. Thus, a sudden burst of new tuples

while the algorithm is on its Reactive phase quickly leads to

large increases in input buffer size and buffer overflow, as

shown in the experiments presented in Section IV. One can

potentially modify the RPJ algorithm so that it aborts the work

performed during the Reactive phase or keeps enough state

information so that it can later resume its operations in case the

input buffer gets full, but both solutions have not been explored

in the literature and further complicate the implementation

of the algorithm. In comparison, keeping the state of the

ReactiveNL algorithm only requires three variables, due to

our novel adaptation of the traditional nested loops algorithm.

E. Cleanup Phase

The Cleanup phase starts once both relations have been re-

ceived in their entirety. It continues the work performed during

the Reactive phase by calling the ReactiveNL algorithm. In

this case, one block of memory is kept for the inner relation

and the rest of the blocks are allocated for the outer by properly

setting the OuterMem parameter.

IV. EXPERIMENTS

In this section, we present an extensive experimental study

of our proposed DINER algorithm. The objective of this

study is twofold. We first evaluate the performance of DINER

against the state of the art HMJ [9] and RPJ [12] algorithms

for a variety of both real-life and synthetic data sets. We also

ran experiments using the DPHJ and XJoin algorithms but they

are both dominated in performance by RPJ and/or HMJ. For

brevity and clarity in the figures, we have decided to include

their performance only in few of the figures presented in this

section and omit them for the rest. We also investigate the

impact that several parameters may have on the performance of

the DINER algorithm, through a detailed sensitivity analysis.

The main findings of our study include:

• A Faster Algorithm. DINER provides result tuples at a

significantly higher rate, up to 3 times in some cases, than

existing adaptive join algorithms during the online phase. This

also leads to a faster computation of the overall join result

when there are bursty tuple arrivals.

• A Leaner Algorithm. The DINER algorithm further im-

proves its relative performance to the compared algorithms

in terms of produced tuples during the online phase in more

constrained memory environments. This is mainly attributed

to our novel flushing policy.

• A More Adaptive Algorithm. The DINER algorithm has an

even larger performance advantage over existing algorithms,

when the values of the join attribute are streamed according

to a non stationary process. Moreover, it better adjusts its

execution when there are unpredictable delays in tuple arrivals,

to produce more result tuples during such delays.

• Suitable for Range Queries. The DINER algorithm can

also be applied to joins involving range conditions for the

join attribute. This is a unique characteristic when compared

to existing non-blocking algorithms, since they all operate by

hashing the tuples based on their join attribute values and

are, thus, only applicable to equijoins. PMJ [3] also supports

range queries but, as shown in our experimental section, it is

a generally poor choice since its performance is limited by its

blocking behavior.

Parameter Settings. The following settings are used during

the experimental section: The tuple size is set to 200 bytes

and the disk block size is set to 10KB. The inter-arrival delay

(i.e., the delay between two consecutive incoming tuples),

unless specified otherwise, is modelled using an exponential

distribution with parameter λ = 0.1.

The memory size allocated for all algorithms is 5% of

the total input size, unless otherwise specified. All incoming

unprocessed tuples are stored in the input buffer, whose size

is accounted for in the total memory made available to the

algorithms.

Real Data Sets. In our experimental evaluation we utilized

two real data sets. The Stock data set contains traces of

stock sales and purchases over a period of one day. From

this data set we extracted the transactions relating to the IPIX

and CSCO stocks.2 For each stock we generated one relation

based on the part of the stock traces involving buy orders,

and a second relation based on the part of the stock traces

that involve sells. The size of CSCO stream is 20,710 tuples

while the size of IPIX stream is 45,568 and the tuples are

equally split among the relations. The join attribute used was

the price of the transaction. We also used a Weather data set

containing meteorological measurements from two different

weather stations.3 We populated two relations, each from the

data provided by one station, and joined them on the value of

the air temperature attribute. Each relation in the Weather data

set contains 45,000 tuples.

Since the total completing time of the join for all algorithms

is comparable, in most of the cases the experiments show the

outcome for the online phase (i.e., until tuples are completely

received from the data sources).

All the experiments were performed on a machine running

Linux with an Intel processor clocked at 1.6 GHz and with

1 GB of memory. All algorithms were implemented in C++.

For RPJ, also implemented in C++, we used the code that the

authors of [12] have made available.

2From http://cs-people.bu.edu/jching/icde06/ExStockData.tar
3From http://www-k12.atmos.washington.edu/k12/grayskies/nw weather.html
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Fig. 6. CSCO data set
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Fig. 7. Weather data set
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A. Overall Performance Comparison

In the first set of experiments, we demonstrate DINER’s

superior performance over a variety of real and synthetic

data sets in an environment without network congestion or

unexpected source delays.

In Figures 6, 7 we plot the cumulative number of tuples

produced by the join algorithms over time, during the online

phase for the CSCO stock and the Weather data sets. We

observe that DINER has a much higher rate of tuples produced

that all other competitors. For the stock data, while RPJ is not

able to produce a lot of tuples initially, it manages to catch up

with XJoin at the end.

In Figure 8 we compare DINER to RPJ and HMJ on the

real data sets when we vary the amount of available memory

as a percentage of the total input size. The y axis represents

the tuples produced by RPJ and HMJ at the end of their online

phase, (i.e., until the two relations have arrived in full) as a per-

centage of the number of tuples produced by DINER over the

same time. The DINER algorithm significantly outperforms

RPJ and HMJ, producing up to 2.5 times more results than

the competitive techniques. The benefits of DINER are more

significant when the size of the available memory given to the

join algorithms is reduced.

In the next set of experiments we evaluate the performance

of the algorithms when synthetic data is used. In all runs,

each relation contains 100,000 tuples. In Figure 9, the values

of the join attribute follow a Zipf distribution in the interval

[1, 999] and the skew parameter is varied from 1 to 5, with the

leftmost value (i.e., value 1) exhibiting the highest probability

of occurrence in each case. We observe that the benefits of

DINER are even larger than in the real data.

In Figures 10 and 11 the join attribute follows the normal

distribution. In the first figure, the join attribute of the first

relation has a normal distribution with mean 500 and variance

50, while, the join attribute of the second relation is normally

distributed, with variance 50 and mean equal to 500 + x.

Thus, by increasing the value of x (x-axis) we increase the

degree of separation between the two distributions. For the

experiments in Figure 11 the first relation is the same as in

Figure 10, while the mean of the second relation is 500 but,

this time, the variance is modeled as 50 + x, where x is the

value on the x axis. We observe that the larger the divergence

between the two distributions, the larger the benefits of DINER

when compared to RPJ and HMJ. The increase in the benefit

is more evident when the mean value varies (Figure 10)

and is largely attributed to the flushing policy that cleans

up unproductive tuples between the mean values of the two

distributions (middle region). In contrast, for the experiment in

Figure 11, the distributions have the same mean value and most

of the flushed tuples come from the upper and lower regions of

DINER. These findings complement the results we presented

in Section III-C, which demonstrated that the advantages of

DINER stem from the synergy of these regions based on our

benefit computation.

The above experiments demonstrate that DINER adapts

better to different distributions of the join attribute, as shown

in Figures 9, 10 and 11.

Range Predicates. In Figure 12 we present experimental

results for range joins on the Stock and Weather data sets.

The streams for the two relations are formed as described

earlier, with the exception of the join conditions: A pair of

tuples from the Stock data set joins if their price difference is

smaller than 5 cents. For the Weather data set, each relation

contains environmental information from a specific location

and two tuples join if their temperature difference is smaller

than 5 degrees. The y axis of Figure 12 shows the fraction of

the overall result that was obtained during the online phase of

DINER and PMJ. The memory size is set at 5% of the total

input size. We note that RPJ and HMJ do not support such

join predicates, since they are hash-based.

B. Non Stationary Data Streaming Processes

The DINER algorithm adapts quickly to situations where

the value distribution of the join attribute changes over time.

We present two experiments that demonstrate DINER’s supe-

rior performance in such situations. In Figure 13 the input

relations are streamed partially sorted as follows: The fre-

quency of the join attribute is determined by a zipf distribution

with values between [1, 999] and skew 1. The data is sorted

and divided in a number of “intervals”, shown on the x axis.

The ordering of the intervals is permuted randomly and the

resulting relation is streamed. The benefits of DINER are

significant in all cases.

In the second experiment, shown in Figure 14, we divide the

total relation transmission time in 10 periods of 10sec each. In

each transmission period, the join attributes of both relations

are normally distributed, with variance equal to 15, but the

mean is shifted upwards from period to period. In particular,
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ent mean
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ent variance
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Fig. 12. Range Join Queries
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Fig. 13. Zipf distribution, partially
sorted data
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Fig. 16. CSCO stock data, delay
duration is a percentage of the “burst”
duration

the mean in period i is 75 + i ∗ shift, where shift is the

value on the x axis. We can observe that the DINER algorithm

produces up to 3 times more results during the online phase

than RPJ and HMJ, with its relative performance difference

increasing as the distribution changes more quickly.

C. Network/Source Delays

The settings explored so far involve environments where

tuples arrive regularly, without unexpected delays. In this

section we demonstrate that DINER is more adaptive to

unstable environments affecting the arriving behavior of the

streamed relations. DINER uses the delays in data arrival, by

joining tuples that were skipped due to flushes on disk, while

being able to hand over to the Arriving phase quickly, when

incoming tuples are accumulated in the input buffer.

In Figure 15, the streamed relations’ join attributes follow a

zipf distribution with a skew parameter of 1. The interarrival

time is modelled in the following way: Each incoming relation

contains 100,000 tuples and is divided in 10 “fragments”. Each

fragment is streamed using the usual exponential distribution

of inter-tuple delays with λ = 0.1. After each fragment is

transmitted, a delay equal to x% of its transmission time is

introduced (x is the parameter varied in the x axis of the

figure). If the delays of both relations happen to overlap to

some extent, all algorithms enter the Reactive phase, since

they all use the same triggering mechanism dictated by the

value of parameter WaitThresh, which was set to 25msecs.

For this experiments, DINER returns to the Arriving phase

when 1,000 input tuples have accumulated in the input buffer

(input parameter MaxNewArr in Algorithm 4). The value of

the input parameter MaxOuterMem in the same algorithm

was set to 19 blocks. The parameter F for RPJ discussed in

Section II was set to 10, as in the code provided by the authors

of [12] and for HMJ to 10, which had the best performance in

our experiments for HMJ. We observe that DINER generates

Inter-Arrival Delay

(% of transmission time)

Buffer Size 10 % 20 % 30 % 40 % 50 %

DINER Max 1030 1009 1008 1008 1004

DINER Avg 930 987 988 1001 1001

RPJ Max 40000 6548 6016 3422 2719

RPJ Avg 40000 3204 2880 1723 1377

HMJ Max 1443 423 2939 8269 7144

HMJ Avg 440 117 671 3356 2423

TABLE III

INPUT BUFFER SIZE FOR ZIPF DATA

DURING REACTIVE PHASE

Memory (% of input size)

Data Set 5 % 10 % 15 % 20 %

CSCO 28 % 43 % 49 % 58 %

IPIX 38 % 59 % 72 % 82 %

Weather 10 % 17% 24 % 29 %

TABLE IV

PERCENTAGE OF THE TOTAL

RESULT OBTAINED FOR DINER

DURING ONLINE PHASE FOR

DIFFERENT MEMORY SIZE

up to 1.83 times more results than RPJ when RPJ does not

overflow and up to 8.65 times more results than HMJ.

The value of the input parameter MaxNewArr is correlated

with the number of memory blocks that are used during the

intermediate phase. After the reactive phase is finished, the

memory allocated to this phase can be reused so that the

algorithm can efficiently deal with the tuples accumulated in

the input buffer and this observation justifies our choice for

the input buffer threshold.

We notice that for the smaller delay duration, the RPJ

algorithm overflows its input buffer and, thus, cannot complete

the join operation. In Table III we repeat the experiment

allowing the input buffer to grow beyond the memory limit

during the Reactive phase and present the maximum size of

the input buffer during the Reactive phase.

We also experimented with the IPIX and CSCO stock data.

The inter-tuple delay is set as in the previous experiment. The

results for the CSCO data are presented in Figure 16, which

show the percentage of tuples produced by RPJ and HMJ

compared to the tuples produced by DINER at the end of

the online phase. The graph for the IPIX data is qualitatively

similar and is omitted due to lack of space.

From the above experiments, the following conclusions can

be drawn:
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• DINER achieves a faster output rate in an environment of

changing data rates and delays.

• DINER uses much less memory, as depicted in Table III.

The reason for that is that it has a smaller “work unit” (a

single inner relation block) and is able to switch over to the

Arriving phase with less delay, without letting the input buffer

become full.

• Finally, notice that in the first experiment of Figure 15,

RPJ fails due to memory overflow. You can see in Table III

that the maximum input buffer size RPJ needs in this case is

40, 000, while the available memory is 10, 000 tuples. For less

available memory, HMJ fails also – the relevant experiment is

omitted due to lack of space.

D. Sensitivity Analysis

In the previous sections we have already discussed its per-

formance in the presence of smaller or larger network/source

delays, and in the presence of non-stationarity in the tuple

streaming process. Here we discuss DINER’s performance

when the available memory varies and also when the skew

of the distribution varies.

Table IV refers to the experiments for real data sets shown

in Figure 8, and shows the percentage of the total join result

obtained by DINER during the online phase. As we can see,

if enough memory is made available, (e.g., 20% of the total

input size), a very large percentage of the join tuples can

be produced online, but DINER manages to do a significant

amount of work even with memory as little as 5% of the input

size, which, for very large relation sizes, is more realistic.

We also evaluate the DINER algorithm when one relation

has a smaller size than the second. In Figure 17 the value of

the join attribute is zipf distributed in both relations. While one

relation has a constant number of tuples (100,000), the other

relation’s size varies according to the values on the x-axis. The

memory size is set to 10,000 tuples and the interarrival rate

is exponentially distributed with λ = 0.1. DINER is a nested

loop based algorithm and it shows superior performance as one

relation gets smaller since it is able to keep a higher percentage

of the smaller relation in memory.

We finally evaluated the sensitivity of the DINER algorithm

to the selected value of the MaxOuterMem parameter, which

controls the amount of memory (from the total budget) used

during the Reactive phase. We varied the value of MaxOuter-

Mem parameter from 9 to 59 blocks. The experiment, shown

in Fig. 18, showed that the performance of DINER is very

marginally affected by the amount of memory utilized during

the Reactive phase.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We propose DINER, a new adaptive join algorithm for max-

imizing the output rate of tuples, when both relations are being

streamed to our local site. The advantages of DINER stem

from (i) its intuitive flushing policy that maximizes the overlap

among the join attribute values between the two relations,

while flushing to disk tuples that do not contribute to the result

and (ii) a novel re-entrant algorithm for joining disk-resident

tuples that were previously flushed to disk. Moreover, DINER

can efficiently handle join predicates with range conditions,

a feature unique to our technique. Through our experimental

evaluation, we have demonstrated the advantages of DINER

over existing algorithms in a variety of real and synthetic data

sets, its resilience in the presence of varied data and network

characteristics and its robustness to parameter changes.

One of the plausible characteristics of DINER is that it

produces partial results early. It would thus be interesting to

extend it in a way that can also provide statistical guarantees

for online aggregation applications, similarly to [7], or to

investigate weighted schemes for applications when it is more

important to receive early partial results for specific areas of

the domain. We are currently investigating these issues.
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