
Processing Event-Monitoring Queries in Sensor

Networks
Vassilis Stoumpos #*, Antonios Deligiannakis #2, Yannis Kotidis *3, Alex Delis 04

#Department of Informatics, University of Athens
Athens, Greece

Istoumpos@di.uoa.gr 2adeli@di.uoa.gr 4ad@di.uoa.gr

*Department of Informatics, Athens University of Economics and Business
Athens, Greece

3kotidis@aueb.gr

Abstract- In this paper we present algorithms for building
and maintaining efficient collection trees that provide the conduit
to disseminate data required for processing monitoring queries
in a wireless sensor network. We introduce and formalize the
notion of event monitoring queries and demonstrate that they can
capture a large class of monitoring applications. We then show
techniques which, using a small set of intuitive statistics, can
compute collection trees that minimize important resources such
as the number of messages exchanged among the nodes or the
overall energy consumption. Our experiments demonstrate that
our techniques can organize the data collection process while
utilizing significantly lower resources than prior approaches.

I. INTRODUCTION
Many pervasive applications rely on sensory devices that are

able to observe their environment and perform simple compu-
tational tasks. Driven by constant advances in microelectronics
and the economy of scale it is becoming increasingly clear
that our future will incorporate a plethora of such sensing
devices that will participate and help us in our daily activities.
Even though each sensor node will be rather limited in terms
of storage, processing and communication capabilities, they
will be able to accomplish complex tasks through intelligent
collaboration.

It is generally agreed that one cannot simply move the
readings necessary for processing an application request out
of a large-scale sensor network and then perform the required
processing in a designated node such as a base station.
Wireless sensor nodes have limited energy capacity and such
an approach will not only result in overburdening their ra-
dio links, but will also quickly drain their energy as radio
transmission is by far the most important factor in energy
consumption [5]. Thus, most recent proposals rely on building
some type of ad-hoc interconnect for answering a query
such as the aggregation tree [4], [8]. This is a paradigm of
in-network processing that can be applied to non-aggregate
queries as well [3]. In this paper we concentrate on building
and maintaining efficient data collection trees that will provide
the conduit to disseminate all data required for processing
many concurrent queries in a sensor network.

While prior work [2], [6], [7] has also tackled similar
problems, previous techniques base their operation on the

assumption that the sensor nodes that collect data relevant to
the specified query need to include their measurements (and,
thus, perform transmissions) in the query result at every query
epoch. However, in many monitoring applications such an
assumption is not valid. Monitoring nodes are often interested
in obtaining either the actual readings, or their aggregate
values, from sensor nodes that detect interesting events. The
detection of such events can often be identified by the readings
of each sensor node. For example, in vehicle tracking and
monitoring applications high noise levels may indicate the
proximity of a vehicle. In all of these scenarios, each sensor
node is not forced to include its measurements in the query
output at each epoch, but rather such a query participation is
evaluated on a per epoch basis, depending on its readings and
the definition of interesting events. In this paper we term the
monitoring queries where the participation of a node is based
on the detection of an event of interest as event monitoring
queries (EMQs). It is important to note that typical monitoring
queries, considered in the bulk of research so far, are a subclass
of EMQs, as the former correspond to the case where the
participation of sensor nodes in the query result at each epoch
is fixed (either true, or not) throughout the query execution.

II. MOTIVATION

An important characteristic of EMQs, which is not taken
into account by existing algorithms that design collection
trees, is that each sensor node may participate in the query
evaluation, by including its reading in the query result, only a
limited number of times, based on how often the inclusion
conditions are satisfied. We can thus associate an epoch
participation frequency Pi with each sensor node Si, which
specifies the fraction of epochs that this node participated in
the query result in the recent past.

A. Intuition
Given estimates of the epoch participation frequencies, one

can design significantly more efficient collection trees than
prior approaches. Consider the sample scenario depicted in
Figure l(a). In this figure, 36 sensor nodes are placed in a
grid. The sensor identifiers appear next to each sensor node.

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1436 ICDE 2008

35 29 23 17 11 5

34 28 22 16 10 4

33 27 21 15 9 3

32 26 20 14 8 2

31 25 19 13 7 1

30 24 18 12 6 0

100 100 100 100 100 100

4 7 1 4 9 100

3 100 5 18 6 100

2 3 3 1 3 100

100 5

15 4

(a)

100

100

(b) (c)

o 100 100 100 100 100

100 8 3 8 100

4 0 4 21 5 100

100/9 1 100

6 0 / 0 t 6 100

100 100 10 11 2 100

(d)
Fig. 1. (a) Identifiers of sensors in grid arrangement; (b) Estimated number of participations in query result in 100 epochs; (c) Collection tree for MinHops
algorithm. Cost = 2579 transmissions; (d) Collection tree for our algorithm. Cost = 1839 transmissions.

We also distinguish the Root node at the lower left corner, a
monitoring node that performs queries over the data collected
by the sensor nodes. In our sample network we assume
that each sensor node can communicate with its immediate
horizontal, vertical or diagonal neighbors, while only node
S30 can communicate with the Root node. In Figure l(b)
we depict sample estimates for the number of times each
sensor node will participate in the query result within the
next 100 epochs. Thus, the epoch participation frequencies
for all the sensor nodes, can be derived by dividing these
values by 100. In the above scenario, given the presented
epoch participation frequencies, two interior nodes along with
all the boundary nodes on the upper and rightmost edges of
the network always detect events, while the remaining interior
nodes detect events with a lower probability, whose average
value is about 5%. For the aforementioned sample scenario,
in Figure l(c) we depict a sample collection tree chosen by
an algorithm, termed as MinHops that seeks to minimize the
number of hops that each node's data needs to traverse until it
reaches the Root node. Next to each node we depict the actual
number of transmissions that each node performed within
these 100 epochs. Similarly, in Figure l(d) we present the
collection tree that our algorithms created for the evaluation
of the SUM aggregate. A significant observation is that our
algorithm seeks to forward the query results from nodes with
high epoch participation frequencies through a limited number
of interior nodes, compared to the MinHops algorithm. One
can easily establish the significant reduction in the number of
transmissions that our algorithm achieved (1839 vs 2579 or,
equivalently, a 40% reduction).
A first observation is that our algorithm seeks to forward

the query results from nodes with high epoch participation
frequencies through a limited number of interior nodes, com-
pared to the MinHops algorithm. Moreover, we note that our
algorithm does not necessarily route its messages through
the neighboring node with the highest epoch participation
frequency. For example, node Sg has chosen to forward its
results through node S14 and not through nodes S15 or S8,
even though P14 = 1% is lower than both P15 = 18% and
P8 = 3%. We note that what is important when forming

the collection tree is the estimated impact that each of the
algorithm's decisions has on the desired minimization metric.
For example, when selecting a parent node in the collection
tree, the impact may involve (depending on the minimization
metric) the estimated increase in the transmitted messages in
the path from the parent node towards the Root node. Given
this brief explanation, we note in our example that node S14
is an immediate neighbor of Sl9, a node with a high epoch
participation frequency. Thus, since the nodes in the path of
Sl9 to the Root node will probably be forced in making
several transmissions, due to the events transmitted by Si9,
the additional messages transmitted by having Sg select S14
as its parent node will mostly influence the path between S14
and Sl9. Such an observation cannot be made for S15 or S8,
since they lie one hop further from a node with a high epoch
participation frequency.

B. Algorithm Idea
The algorithm is initiated with the query propagation phase.

The query is propagated from the base station through the
network using a flooding algorithm. In densely populated
sensor networks, a node Si may receive the announcement of
the query from several of its neighbors and selects one of these
nodes as its parent node. The chosen parent will be the one
that exhibits the lowest attachment cost, meaning the lowest
expected increase in the objective minimization function. For
example, if our objective is to minimize the total number of
transmitted messages, then the selection will be the node that
is expected to result in the lowest increase in the number of
transmitted messages in the entire path from that sensor until
the Root node (and similarly for the rest of the minimization
metrics). The result of this process is a collection tree towards
the base station. A key point in our framework is that the
preliminary selection of a parent node may be revised in a
second step where each node evaluates the cost of using one
of its sibling nodes as an alternative parent.

III. EXPERIMENTS
We developed a simulator for testing the algorithms pro-

posed in this paper under various conditions. In our discus-
sion we term our algorithm for minimizing the number of

1437

Sensors || Aggregate SUM Query
Sensors MinMesg MinEnergy MinHops MinCost

36 109.339 109.341 161.278 136.354
144 70.129 68.971 139.821 121.640
324 71.662 68.703 146.425 106.416
576 65.921 64.717 127.315 104.156
900 67.107 64.077 128.299 102.708

Non-Aggregate "SELECT *" Query
Sensors MinMesg MinEnergy MinHops MinCost

36 381.483 292.231 335.920 303.270
144 515.215 344.489 390.806 344.213
324 687.083 444.157 523.670 448.816
576 624.817 457.788 547.147 471.845
900 756.902 549.262 640.830 559.183

TABLE I
AVERAGE POWER CONSUMPTION (IN MJ) FOR SYNTHETIC DATASET

transmissions as MinMesg, and our algorithm for minimizing
the overall energy consumption as MinEnergy. Our techniques
are compared against two intuitive algorithms. In the MinHops
algorithm, each sensor node that receives the query announce-
ment randomly selects as its parent node a sensor amongst
those with the minimum distance, in number of hops, from
the Root node [4]. In the MinCost algorithm, each sensor
seeks to minimize the sum of the squared distances amongst
the sensors in its path to the Root node, when selecting its
parent node i.e. selects paths with low communication cost.
We initially experimented with synthetic datasets: we placed

36 sensor nodes in a 300x300 area, and then scaled up to the
point of having 900 sensors. The maximum broadcast range
was set to 90m and the Root node was placed on the lower
left part of the sensor field. We set the epoch participation
frequency of the sensor nodes with the maximum distance, in
hop count, from the Root to 1; with probability 8% some
interior node assumed an epoch participation frequency of 1,
while the epoch participation frequency of the remaining inte-
rior nodes was set to 5%. We evaluated a SUM aggregate and
a "SELECT *" non-aggregate query over the values of epoch
participating sensor nodes using all algorithms and found that
the MinEnergy algorithm built very different collection trees
for the two types of queries. Our MinMesg algorithm achieves
a significant reduction in the number of transmitted messages
which compared to the MinHops and MinCost algorithms is
up to 64% and 105%, respectively, with an average gain of
48% and 94%, respectively. The corresponding average energy
consumption by the sensor nodes for each case is presented
in Table I. The MinEnergy algorithm performs very well in
both aggregate and non-aggregate queries. Compared to the
MinHops algorithm, it achieves up to a 2-fold reduction in
the power drain for aggregate queries and up to 19% for non-
aggregate queries. Compared to the MinCost algorithm the
energy savings are smaller but still significant (i.e., up to 79%
in the aggregate query). The MinMesg algorithm is obviously
a very poor choice, with respect to the energy consumption,
for non-aggregate queries.
We also present results for the Trucks data set that contains

trajectories of 276 moving trucks [1]. For this data set we
initially overlaid a sensor network of 150 nodes over the
monitored area. We set the broadcast range such that interior

Mesages (xkfOO)

Fig. 2. Transmissions - Trucks data

sensor nodes could communicate with at least 5 more sensor
nodes. Moreover, each sensor could detect objects within a
circle centered at the node and with radius equal to 60% of the
broadcast range. We then scaled the data set up to a network
of 1350 sensors, while keeping the sensing range steady. In
Figure 2 we depict the total number of transmissions by all
algorithms for computing the SUM of the number of detected
objects in the Trucks data set. In our scenario, nodes that do
not observe an event make a transmission only if they need
to propagate measurements/aggregates by descendant nodes.
We found our algorithms to achieve significant savings in both
metrics: the MinCost algorithm, which exhibits lower power
consumption than the MinHops algorithm, still drains 50%
more energy than our MinEnergy algorithm. Moreover, both
our MinMesg and MinEnergy algorithms significantly reduce
transmitted messages by up to 42% and 73% when compared
to the MinHops and MinCost algorithms, respectively.

IV. CONCLUSIONS

The focus of this work is on building and maintaining
efficient collection trees in support of event monitoring queries
in wireless sensor networks. Our experimental evaluation
demonstrates that is it possible to create efficient collection
trees that minimize important network resources using a small
set of statistics that are communicated in a localized manner
during the construction of the tree topology. Our algorithms
can handle a mix of event monitoring queries (EMQs) includ-
ing aggregate and non-aggregate queries.

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

Rtree Pportal. http://www.rtreeportal.org.
Jae-Hwan Chang and Leandros Tassiulas. Energy Conserving Routing in
Wireless Ad-hoc Networks. In INFOCOM, 2000.
A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Dissemination of
Compressed Historical Information in Sensor Networks. VLDB Journal,
16(4), 2007.
S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A Tiny
Aggregation Service for ad hoc Sensor Networks. In OSDI Conf, 2002.
S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design
of an Acquisitional Query processor for Sensor Networks. In ACM
SIGMOD, 2003.
S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in mobile
ad hoc networks. In MobiCom, 1998.
N. Trigoni, Y. Yao, A.J. Demers, J. Gehrke, and R. Rajaraman. Multi-
query Optimization for Sensor Networks. In DCOSS, 2005.
Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. SIGMOD Record, 31(3):9-18, 2002.

1438

