
Outlier-Aware Data Aggregation in Sensor Networks
Antonios Deligiannakis #1, Vassilis Stoumpos #2, Yannis Kotidis ', Vasilis Vassalos ', Alex Delis #5

#Department of Informatics, University of Athens
Athens, Greece

Iadeli@di.uoa.gr 2stoumpos@di.uoa.gr 5ad@di.uoa.gr
*Department of Informatics, Athens University of Economics and Business

Athens, Greece
3kotidis@aueb.gr 4vassalos@aueb.gr

Abstract- In this paper we discuss a robust aggregation
framework that can detect spurious measurements and refrain
from incorporating them in the computed aggregate values.
Our framework can consider different definitions of an outlier
node, based on a specified minimum support. Our experimental
evaluation demonstrates the benefits of our approach.

I. INTRODUCTION
Recent advances in remote sensing equipment, computing

hardware and communication technology have made the cre-
ation and deployment of large scale sensor networks easier
and cheaper. Their uses in monitoring natural or artificial
conditions and processes in diverse physical environments -

such as battlefield surveillance, wildlife monitoring, health-
care, traffic monitoring, agriculture, production monitoring -

have subsequently multiplied. A lot of recent research has
focused on the problem of efficiently processing declarative
queries in such networks. The majority of these efforts focuses
on answering aggregate queries, which are of great importance
to surveillance applications [1], [2] and on enabling in-network
processing by combining individual sensor readings as they are
communicated towards a base station through an aggregation
tree. An equally important line of research addresses the issue
of data cleaning of sensor readings [3], [4]. A measurement
obtained by a node is only an approximation of the physical
quantity observed and is constrained in accuracy and precision
by the characteristics of the sensing device. Sensors are also
often exposed to severe conditions that adversely affect their
sensing devices, thus resulting in readings of low quality.
Moreover, sensor nodes often provide imprecise individual
readings after a failure, i.e., they tend to fail dirty [3]. Thus,
data processing applications using sensor networks must deal
with information that is at times unreliable and unpredictable.
The goal of our techniques is to provide a resilient query

processing platform for aggregate queries over a network
consisting of cheap, wireless sensor nodes that are prone
to dirty data. This requires identifying potentially multiple
"abnormal" readings produced by sensor nodes and removing
them from the computation of the aggregate function. In order
for our techniques to scale to large sensor networks, our
proposed algorithms should follow the in-network paradigm.

In this work, we introduce a query execution model that,
together with the aggregates, also recognizes and reports to the
user a concise set of readings that are believed to be outliers,

along with a set of characteristic values, i.e., witnesses, that
have been used to derive the requested aggregates. It is impor-
tant that the user/application is able to control the amount of
support required on the readings of a node by other nodes in
the network. Furthermore, while the computation of outliers
is carried out as a side process during query aggregation,
we need to be able to derive proper routing paths, based on
simple statistics collected during the query processing. These
statistics would be utilized in order to periodicaly reorganize
the aggregation tree and reduce bandwidth as well as energy
consumption.

II. OUTLIER-AwARE DATA AGGREGATION

Similarly to [5], we consider aggregate queries of the form:

SELECT AggrFun(s.value)
FROM Sensors s
WHERE cond
SAMPLE PERIOD e FOR t

where AggrFun( is a distributive or algebraic function such
as MAX,MIN,COUNT,SUM,AVG. It is easy to extend our
work to capture GROUP BY queries as well. The period (e)
in the above query is the epoch duration and determines
the frequency at which data is acquired from the sensors.
Parameter (t) specifies the life span of the query.

In this paper we extend the in-network computation frame-
work, and define as an outlier a node that can be witnessed by
fewer than MinSupport other nodes. The witness test can be
performed through a variety of similarity tests, as described
in Section III. Each transmitted witness and outlier value does
not necessarily reach the Root node that poses the query.
These values may be witnessed at some intermediate nodes
and removed from the transmitted data. This is the intuition
of our algorithm for periodically reorganizing the aggregation
tree. If we monitor how often the witness test between pairs
of sensor nodes succeeds, then each node can select a parent
in the aggregation tree through which it expects to find the
most witnesses and relatively nearby, in number of hops.

Consider for example a query that computes the average
temperature in the area covered by the sensornet depicted
in Figure 1 and that the desired minimum support is 2. For
simplicity we assume that the aggregate is collected at node
Sl, which acts as the base station in our example. We use xi

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1448 ICDE 2008



S10 / =

4PA S2/_.990

S4

S5 A

S6 / Si

_ 8

Fig. 1. Sample Aggregation Tree

to denote the temperature readings provided by node Si. The
aggregation tree is also depicted in the figure. A typical way
of computing the average value from the temperature readings
is for each node to compute the SUM and COUNT functions
in its subtree and propagate them to its own parent [5], [6].

In the Figure, nodes S6, S7 and S8 can observe an open
fire and, therefore, their readings are expected to be a lot
higher (and fluctuate more) than, for example, those of node
S2. When node S3 receives the values of its children nodes,
the readings of node S6 appear to be suspicious, since no
other node in that subtree is aware of the fire. If we decide to
reject the reading of S6 (for instance using majority voting),
the monitoring application will lose a crucial observation.
Techniques based on smoothing [3], [7] will also obscure the
outcome, especially if a lot more nodes are rooted at node S3.

In our framework, we tentatively put the reading of node
S6 in the list of outliers 03 communicated by node S3 to its
parent node in the tree S2. Now let us concentrate on node S2.
This node will receive from the left subtree a pair of aggregate
values (X3+X4+X5, 3) from node S3, an outlier list containing
only the value X6, and a witness list containing one of the
values X3, X4 or x5 (depending on which node was selected
as the witness). The right-subtree contains nodes S7 and S8.
Their readings are similar, but these nodes reach only a support
of 1, which is less than the desired minimum support of 2.
Thus, S7 includes the readings of S7 and S8 in the outlier
list transmitted to node S2. At this point, at node S2, the
nodes S6, S7 and S8 can reach the required support in order
to be included in the partial aggregate. Moreover, one of these
nodes, will be selected to become a witness in S2. Finally, we
note that the sensor nodes Sg and Slo represent the case of
two node that fail dirty. These nodes start reporting abnormal
high readings that cannot be justified by any of its neighbors
or the values that are provided in the witness list. If the query
had specified a minimum support of 1, these two nodes could
at some epochs witness each other and, thus, end up including
their readings in the reported aggregate. However, this cannot
occur in our example with the minimum support value of 2.
We also can see from Figure 1 that an alternative organiza-

tion of the aggregation tree where both S6 and S8 had selected

S7 as their parent node could lead to bandwidth savings at
nodes S3 and S7. In particular, node S3 will not have to
transmit an outlier to node S2. Moreover, we note that in
node S7 these three sensors could gain enough support to be
included in the computed aggregate and have all three of them
replaced by a single witness.

III. SIMILARITY TESTING BETWEEN NODES

Our algorithm frequently tests whether the recent measure-
ments of two sensor nodes are similar. If this is the case, then
each sensor can witness the measurements of the other sensor.
We will reference this similarity test in this paper as a witness
test. In our work we have explored the following alternatives:
* Correlation Coefficient: If we consider the readings Xk,
xl of sensor nodes Sk, Sl respectively as random variables,
the correlation coefficient rk,l is defined as:

rk,l =COV(Xk, Xl)
(JXk (7X1

E(XkXl)- E(k)E(xr)
V/E(xk) -E2(Xk) VE(X12) -E2 (Xl)

where cov(), or and E() stand for the covariance, standard
deviation and expected value respectively. The correlation
coefficient takes values in the interval [-1,1]. Given a threshold
0 provided by the application and communicated to the nodes
during the query initialization, the witness test succeeds when
rk,l > 0.
* Extended Jaccard Coefficient: If we consider the readings
Xk, Xl of sensor nodes Sk, Sl respectively as vectors and
denote their dot product as Xk Xl, the extended Jaccard
coefficient Jk,l is defined as:

Xk Xl
Jk,1 llXk l2 + lXllll - Xk

.

Xl

Again, given a threshold 0 provided by the application and
communicated to the nodes during the query initialization, the
witness test succeeds when 'k,1 > 0.
* Regression-Based Approximation: If we consider the
readings Xk, Xl of sensor nodes Sk, Si respectively as random
variables, we may apply approximation techniques to identify
the error of approximating xl given Xk. For example, the work
in [8], [9] proposed using a linear regression model for this
approximation. Using such a technique, we may determine
that the witness test will succeed if the reconstruction max-
imum/absolute relative error for xl is below an application-
defined threshold (i.e., 2%).

Since the similarity tests cannot be performed simply based
on the last received measurement of the sensor nodes, but
also require the knowledge of measurements from the recent
past, our algorithm maintains in a small cache the latest
measurements received by descendant sensor nodes.

IV. REORGANIZATION OF THE AGGREGATION TREE

A poor initial construction of the aggregatuion tree could
lead to many nodes finding similar measurements (i.e., sup-
port) by other sensors only at the Root node, or at nodes
near the Root. This would essentially result in a computation
with bandwidth requirements close to those of a SELECT *

1449



+06 - b1p

+06 Rb1p

~+06- Robust-supp3R.b-t-pp2
06GGREGATION

of ) 100 20)0 30 04)0c
Epoch

AGGREGATION
Robut-suppl

- Robut-supp3

70

E-'60
50
40

130 _
_ - AGGREGATION

120 _ Robust-supp3
Robust-supp210 _- Robust-suppl

10

20 t

100 200 300 400 500 600

Epoch

Fig. 2. Bandwidth consumption in synthetic Fig. 3. Computed MAX Temperature, Intel data Fig. 4. Computed MAX Temperature, Intel data
dataset (per 100 epochs) with noise, Correlation Coefficient with noise, Extended Jaccard Coefficient

query. One the other hand, it would seem plausible to route
the witnesses and outliers towards the direction where they
are expected to be "matched" (witnessed) more quickly by the
most outliers or witnesses, received through other parts of the
aggregation tree. In our framework we periodically reorganize
the aggregation tree by utilizing statistics of the form "how
many times a node Si has witnessed another node Sj" in the
previous epochs.

V. EXPERIMENTS

We developed a simulator for testing the algorithms pro-

posed in this paper under various conditions. In all experiments
the locations of the sensor nodes were dispersed at random
locations over a rectangular area. For the first experiment,
we generated a large sensor network of 400 sensor nodes and
defined 5 classes of data to control the behavior of the sensors.

The readings of nodes that belong to the same class make
random walks with different steps, and at the same direction.
Each node initially belongs to the default class 0. We then
generated 4 events at random locations and assigned all nodes
within distance 30 from the centers of the events to belong
to the same class (classes 1 to 4). In Figure 2 we show the
resulting bandwidth consumption for a minimum support of
1,2 and 3. The aggregation tree reorganization is performed
every 100 epochs and its overhead is included in the graphs
(we account for this cost only in our method). In the Figures
we can see that the aggregation tree gradually improves, as

more statistics are collected. Compared to our techniques, the
SELECT * case, were evaluation of outliers is performed at
the base station, results in up to 7.4 times more transmitted
bits and energy consumption.
We also obtained temperature measurements from 48 motes

in the Intel Labs data set [10]. In that data set, one of the sensor

nodes fails dirty at some point, increasing its temperature
until it reaches 122 degrees. In this experiment, we increase

the complexity of the data set by: (1) Specifying for each
sensor a 6% probability that it will fail-dirty at some point;
(2) Each node with probability 0.5% at each epoch obtains a

spurious measurement, which we model as a random reading
between 0 and 100 degrees. In Figures 3 we show the resulting
reported aggregate for this very challenging data set. As we

can see, the aggregate computed by pure in-network aggre-

gation quickly becomes meaningless. Our technique with a

minimum support of 1 and a witness threshold of 0.7 provides
significant improvements, but is still characterized by too many
spikes. However, the robust aggregate obtained by a minimum
support of 3 (depicted with the blue line) is significantly more
accurate and manages to eliminate the spurious readings and
the readings of nodes that fail-dirty in all but a few cases. We
also examined an alternative technique were we perform the
witness test by using the extended Jaccard coefficient [11].
Because the extended Jaccard coefficient is sensitive to the
relative difference in the magnitude of the values, in Figure 4
we notice that it performs significantly better, as the readings
of nodes that fail-dirty and have reached a large value cannot
witness those of functional nodes.

VI. CONCLUSIONS
In this paper we presented a robust aggregation framework

that can tolerate outlier readings that often arise in sensor

network applications. We discussed different definitions of
an outlier node, based on a specified minimum support, and
considered techniques that alter the aggregation tree in order
to minimize the bandwidth and energy drain during the query

evaluation.

REFERENCES
[1] A. Deligiannakis, Y Kotidis, and N. Roussopoulos, "Processing Ap-

proximate Aggregate Queries in Wireless Sensor Networks," Information
Systems, vol. 31, no. 8, pp. 770-792, 2006.

[2] A. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis, "Balancing
Energy Efficiency and Quality of Aggregate Data in Sensor Networks,"
VLDB Journal, 2004.

[3] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom, "Declar-
ative Support for Sensor Data Cleaning," in Pervasive, 2006.

[4] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos, "Online Outlier Detection in Sensor Data Using Non-
Parametric Models," in VLDB, 2006.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, "Tag: A
Tiny Aggregation Service for ad hoc Sensor Networks," in OSDI, 2002.

[6] Y. Yao and J. Gehrke, "The Cougar Approach to In-Network Query
Processing in Sensor Networks," SIGMOD Record, vol. 31, no. 3, 2002.

[7] S. Jeffery, M. Garofalakis, and M. Franklin, "Adaptive Cleaning for
RFID Data Streams," in VLDB, 2006.

[8] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, "Compressing
Historical Information in Sensor Networks," in ACM SIGMOD, 2004.

[9] Y. Kotidis, "Snapshot Queries: Towards Data-Centric Sensor Networks."
in ICDE, 2005.

[10] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
"Model-Driven Data Acquisition in Sensor Networks," in VLDB, 2004.

[11] X. Xiao, W. Peng, C. Hung, and W. Lee, "Using SensorRanks for In-
Network Detection of Faulty Readings in Wireless Sensor Networks."
in MobiDE, 2007.

1450

l.le-~

Ie-

9e-~

2 8e-~

7e-
Z

i9 6e-

F- 3e-~

ol '0 100 200 300 400 500 600

I,
11-Ij -I-

--- 2.1-
I


