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Abstract. In this paper we present algorithms for building and mairitayj effi-
cient aggregation trees that provide the conduit to dissaetaidata required for
processing monitoring queries in a wireless sensor netwattkile prior tech-
nigues base their operation on the assumption that the rseades that collect
data relevant to a specified query need to include their nneamnts in the query
result at every query epoch, in many event monitoring appbas such an as-
sumption is not valid. We introduce and formalize the notibevent monitoring
gueries and demonstrate that they can capture a large €lmemiaoring applica-
tions. We then show techniques which, using a small set ofting statistics, can
compute aggregation trees that minimize important regsusach as the number
of messages exchanged among the nodes or the overall emegyneption. Our
experiments demonstrate that our techniques can orgdmzéata aggregation
process while utilizing significantly lower resources tipaior approaches.

1 Introduction

Many pervasive applications rely on sensory devices ttethte to observe their en-
vironment and perform simple computational tasks. Drivgrcbnstant advances in
microelectronics and the economy of scale it is becomingea&ingly clear that our
future will incorporate a plethora of such sensing devibes will participate and help
us in our daily activities. Even though each sensor nodebeiltather limited in terms
of storage, processing and communication capabilitiey, will be able to accomplish
complex tasks through intelligent collaboration.

Nevertheless, building a viable sensory infrastructurenochbe achieved through
mass production and deployment of such devices withoutesddrg first the technical
challenges of managing such networks. In this paper we focueveloping the neces-
sary data aggregation infrastructure for supporting agageequeries. For such applica-
tions, most recent proposals rely on building some type di@linterconnect for an-
swering a query such as thggregationtree [16, 26]. This is a paradigm of in-network
processing that can be applied to non-aggregate querieglafriv In this paper we
concentrate on building and maintaining efficieggregation trees that will provide
the conduit to disseminate all data required for procesaggregate queries, while
minimizing important resources such as the number of messaxrhanged among the
nodes or the overall energy consumption.



While prior work [4, 23, 24] has also tackled similar probmrevious techniques
base their operation on the assumption that the sensor tivatesollect data relevant
to the specified query need to include their measuremerds itaus, perform transmis-
sions) in the query result at every quegoch. However, in many monitoring applica-
tions such an assumption is not valid. Monitoring nodes &temanterested in obtaining
aggregate values only from sensor nodes that detect ititayevents. In such appli-
cations, each sensor node is not forced to include its meamnts in the aggregate
at each epoch, but rather suclyery participation is evaluated on a per epoch basis,
depending on its readings and the definition of interestuggnts. In this paper we term
the monitoring queries where the participation of a nodeiseh on the detection of an
event of interest agvent monitoring queries (EMQs).

Our techniques base their operation on collecting simglssics during the op-
eration of the sensor nodes. The collected statistics vevible number of events (or,
equivalently, their frequency) that each sensor detectetie recent past. Our algo-
rithms utilize these statistics as hints for the behavicgaxth sensor in the near future
and periodically reorganize the aggregation tree in orerihimize certain metrics of
interest, such as the overall number of transmissions arvheall energy consumption
in the network. The formation of the aggregation tree is Basethe aggregation and
local transmission of only a small set of values at each nedadd asost factorsin
our framework. Using these cost factors each sensor seteqiarent node, through
which it will forward its results towards the base statioaséd on the estimated corre-
spondingattachment cost. In a nutshell, the attachment cost of a parent selectidreis t
increase in the objective function (i.e., the number of $raitted messages) resulting
from this selection. Given the estimates of attachmentscistt our algorithms com-
pute, our work demonstrates that they are able to desigifisaymtly better aggregation
trees than existing techniques.

Our contributions are summarized as follows:

1. We formally introduce the notion of EMQs in sensor netvgokMQs are a su-
perset of existing monitoring queries, but are handledaumnify in our framework,
irrespectively of the minimization metric of interest.

2. We present detailed algorithms for minimizing importargtrics such as the num-
ber of messages exchanged or the energy consumption dhdrexécution of an
aggregate EMQ. The presented algorithms are based on thegadjgn and trans-
mission of a small, and of constant size, set of statistios.ivfoduce our algo-
rithms along with a succinct mathematical justification.

3. We present a detailed experimental evaluation of ourlgos. Our results demon-
strate that our techniques can achieve a significant remtuictihe number of trans-
mitted messages, or the overall energy consumption, caedparalternative algo-
rithms.

2 Related Work

The database community has long been the advocate of usiembedded database
management system for data acquisition in sensor netwd&6]. The use of a



| Aggregate Query |
SELECT AggrFun(s.value)
FROM Sensorss

WHERE inclusionConditions(s) = triie
SAMPLE PERIOD e FOR t
Table 1. An Aggregate Query over the Values Collected by Sensor Nodes

declarative SQL-like query interface allows rapid deveh@mt of applications in such
systems without the need to manage hand-coded programsheseasor node [17].

In the database community different types of popular gsdrave been discussed,
such as aggregate [5, 6, 16, 21, 19], join [2], model-basg¥Pand select-all queries[7,
22]. Tracking queries that seek to determine the spati@nextf a particular phe-
nomenon have also been considered [10, 25]. In [16] the naxdelrst organized in a
tree topology, termed the aggregation tree. During quegg@tion, each epoch is subdi-
vided into intervals and parent nodes in the aggregatieristen for messages contain-
ing partial aggregates from their children nodes duringgetned time-slots. Another
notable method for synchronizing the transmission perida®des is the recently pro-
posed wave scheduling approach of [8]. The work in [28] dbssra framework that
profiles recent data acquisition activity by the nodes amdmges their waking window
though an in-network execution of the critical path methbls technique is comple-
mentary to our work, as they help identify a proper schedufion data transmission by
the nodes, while our methods focus on optimizing the routpplogy.

Many of the low-level networking details have already be&twkssed in the net-
working community and, thus, can be utilized in our framewés an example, nodes
in unattended wireless networks must be able to self-coriff] and discover their
surrounding nodes [11]. Prior work on computing energyeiffit data routing paths
(such as the aggregation tree) [13, 23, 24] have tackledisiprioblems, but these tech-
niques base their operation on the assumption that the sendes that collect data
relevant to the specified query need to include their measemés in the query result at
every query epoch. However, this assumption does not hadant monitoring queries
that are the scope of our framework. In the other end of thetspa, the work in [15]
and [12] discuss join and aggregation queries involving events. Thus, they follow
an alternative path, which is to construct the data cobectietwork on-the-fly when
such events occur. However, this practice in unsuitablefidsetting involving sensor
nodes with both low and high participation frequencies;sihwould incur a high over-
head for frequently maintaining the collection networkrtRermore, the work in [12]
assumes the existence of a high speed connection for alsratdlee boundaries of the
network, through which the data that reaches the boundalyacan be communicated.

3 Motivational Example

In Table 1 we present examples of the two main classes of pramgtqueries in sensor
networks. We borrow the syntax of TinyOS [16] to denote theokduration (e) and the
lifetime of the query (t). The predicataclusionConditions has been added in order to



specify which sensor nodes will participate in the queryetion per epoch. At each
query epoch, all the sensor nodes that include their celiegaita in the query result are
termed in our framework agpoch participating nodes. For queries that wish to collect
data from all the sensor nodes at each epoch, the above ateedigvays evaluates to
true.

When a monitoring query specifies inclusion predicatesedhmay contain either
static or dynamic predicates (or both) regarding the sensdes. Examples of static
predicates may involve, but are not limited to, the colleetof measurements from:
(i) Sensors with specific identifiers; (i) Immobile sensarsa specific area; or (iii)
Sensors monitoring a specific quantity, in cases of sendwmonles with diverse types
of sensor nodes that monitor different quantities. Statédjzates are very useful in
a variety of applications and have received the focus of thk bf past research [16,
26]. Inclusion conditions that contain only static predésaresult in a fixed subset of
the sensor nodes participating in the query output at eanthef his allows for simple
data dissemination and collection protocols based on figgdegation trees that need
to be altered only when either node or communication fad@ast.

However, there exists a large class of monitoring queriasd¢annot be expressed
using static inclusion conditions. Examples include vighicacking and equipment
monitoring applications where inclusion predicates nedaktconditioned on readings
taken by the sensor nodes such as noise levels or tempearddiags. In its most sim-
ple form a dynamic inclusion predicate may be a conditiomefform “current reading
> threshold”. More complex forms may require the evaluatiba aser defined func-
tion over a history of accumulated readings. In the case pfagimate evaluation of
queries over the sensor data [6, 18, 21], the inclusion pagelis satisfied when the cur-
rent sensor reading deviates by more than a given threstmid the last transmitted
value. We call such predicates, whose evaluation depesdsoal the readings taken
by the nodes, as dynamic predicates as they specify whicasngltbuld include their
response in the query evaluation at each epoch (i.e., nddesewalues exceed a given
threshold, or deviate significantly from previous read)nfée term those monitoring
queries that contain dynamic predicategast monitoring queries (EMQS).

Given a monitoring query, existing techniques seek to agvatigregation trees
that specify the way that the data is forwarded from the semsdes to thé&koot node.
Periodically these aggregation trees may be reorganizeddier to adapt to evolving
data characteristics [21].

An important characteristic of EMQs, which is not taken iatttount by existing
algorithms that design aggregation trees, is that eaclosande may participate in the
query evaluation, by including its reading in the query tesanly a limited number
of times, based on how often the inclusion conditions ansfgd. We can thus asso-
ciate arepoch participation frequency P; with each sensor nodg, which specifies the
fraction of epochs that this node participated in the quesylt in the recent past.

4 Problem Formulation

Our current framework supports distributive (i.e., COUNSM, MAX, MIN) and
algebraic (i.e., SUM) queries involves aggregate functiover the measurements col-



lected by the participating sensor nodes. A good classiicaif aggregate functions
is presented in [16], depending on the amount and type of séajuired in non-leaf
nodes in order for them to calculate the aggregate resuthépartition of descendant,
in the aggregation tree, participating sensors. In ouréuivork we plan to extend our
framework to support all types of aggregate and non-agtgepeeries.

4.1 Problem Definition

In this paper we seek to develop dissemination protocoldigiributive and algebraic
EMQs. The goal is, given the type of query at question, togtetie aggregation tree
S0 as to minimize either:

1. The number of transmitted messages in the network.
2. The overall energy consumption in the network.

Our algorithms do not make any assumptions about the platteoighe sensor
nodes, their characteristics or their radio models. Howeweorder to simplify the
presentation, in our discussion we will focus on network&mehany communication
between pairs of sensor nodes is either bidirectional obssible.

4.2 Energy Consumption Cost Model

A sensor node consumes energy at all stages of its oper&tmmever, this energy
consumption is minimal when the sensor is in a sleep modeh&umore, the energy
drain due to computations may, in some applications, bafgignt, but it is typically
much smaller than the cost of communication [17]. Due to thit and because our
algorithms do not require any significant computationabefby the sensor nodes, we
ignore in the cost model the power consumption when the serste is idle and the
consumption due to computations. We will thus focus on capguthe energy drain
due to data communication in data driven applications. Mm#icular, we need to
estimate the energy consumption of a ndtjavhen either transmitting, receiving or
idle listening for data. The notation that will be used in digcussion here, and later
in the description of our algorithms, is presented in Tabladitional definitions and
explanations are presented in appropriate areas of the text

We first describe the cost model used to estimate the energuomption of a node
S; during the data transmission @fggr| > 0 bits of data to node;, which lies in
distancelist; ; from S;. The energy cost can be estimated using a linear model [20] as

Eyy,, = SC;+ (H + |aggr|) x (Erx, + Err, x dist} ),

where: ()SC; denotes the energy startup cost for the data transmissign dhis cost
depends on the radio used by the sensor nodef(ifenotes the size of the packet’'s
header; (iii) Erx, denotes the per bit power dissipation of the transmittestedeics;
and (iv) Err, denotes the per bit and squared distance power delivereaebyawer
amplifier. This power depends on the maximum desired comeation range and, thus,
from the distance of the nodes with whigh desires to communicate. Thus, the addi-
tional energy consumption required to augment an existaaket fromS; to S; with
additionallaggr| bits can be calculated aB.E,, ; = |aggr|x (Erx, +Err, xdist; ;).



[Symbol[[Description

Root | The node that initiates a query and which collects the reledats
of the sensor nodes

[Symbol[| Typical Value| Si Thei-th sensor‘n‘ode_
5C = P; The epoch participation frequency 8f
L D; The minimum distance, in number of hops,%ffrom theRoot

FErx 50’N,J/b’it
Err |[100pJ/bit/m?
Erx 50n.J/bit
Table 2. Typical Radio
Parameters.

laggr| | The size of the aggregate values transmitted by a node
FEir, ; ||Energy spent by; to transmit a new packet ¢iggr| bits to S;
DEyy, ;||Energy spent bys; to transmit additionalaggr| bits to S;
(on an existing packet).
AC;,; ||Attachment cost of; to a candidate pareist;
CF; Cost factor utilized by neighboring nodes®fwhen
estimating their attachment cost$o

Table 3. Symbols Used in our Algorithm

When a sensor nods; receivedi +-b; bits from nodeS;, then the energy consumed
by S; is given by:E,.., = Erx, x (H + b;), where the value oFrx, depends on
the radio model. Some typical values [20]9€, ETx, Frx and Err are presented
in Table 2.

The energy consumed by a sensor node when idle listeningfaiisisignificant and
often comparable to the energy of receiving data. For exaniplthe popular MICA2
nodes the ratios for radio power draw during idle-listenimgeiving of a message and
transmission are 1:1:1.41 at 433MHz with RF signal powerrmfALin transmission
mode [27]. Thus, due to the similar energy consumption bynsaewhile either re-
ceiving or idle listening for data, our algorithms focus twe £nergy drain during the
transmission of data.

5 Algorithm Overview

We now present our algorithms for creating and maintainimg@gregation tree that
minimizes the desired metric (number of messages or enengguenption) for alge-
braic or distributive aggregate EMQs. Our algorithms argebeon a top-down forma-
tion of the aggregation tree. The intuition behind such aoregch is that the epoch
participation frequency of each node in the aggregatianitrBuences the transmission
frequency of only nodes that lie in its path to tReot . We thus demonstrate in this
section that estimating the magnitude of this influence eeasily achieved by a top-
down construction of the aggregation tree, while requitimg transmission of only a
small set of statistics.

5.1 Construction/Update of the Aggregation Tree

The algorithm is initiated with the query propagation phased periodically, when the
aggregation tree is scheduled for reorganization. Theygagropagated from the base
station through the network using a flooding algorithm. Imsiy populated sensor
networks, a node&; may receive the announcement of the query from several of its



neighbors. As in [16, 26] the node will select one of theseeasoas itsparent node.
The chosen parent will be the one that exhibits the low#athment cost, meaning the
lowest expected increase in the objective minimizatiorcfiom. For example, if our
objective is to minimize the total number of transmitted sagges, then the selection
will be the node that is expected to result in the lowest iasesin the number of trans-
mitted messages in themtire path from that sensor until tHeoot node (and similarly
for the rest of the minimization metrics). At this point wengily note that in order for
other nodes to compute their attachment cost, riydeansmits a small set of statistics
Stats; and defer their exact definition for Section 5.2.

The result of this process is an aggregation tree towardsabe station that initiated
the flooding process. A key point in our framework is that theliminary selection of a
parent node may be revised in a second step where each ndulatesadhe cost of using
one of its sibling nodes as an alternative parent. Due to &étwre of the query propa-
gation, and given simple synchronization protocols, siucthase specified in [16], the
nodes lyingk hops from theRoot node will receive the query announcement before
the nodes that lie one hop further from tReot node. LetRecS; denote the set of
nodes that receive the query announcement for the first tuimiagithek-th step of the
query propagation phase.

At stepk of the query propagation phase, after the preliminary gaelection has
been performed, each nofgin setRecS, needs to consider whether it is preferable to
alter its current selection and choose as its pareifliing node within setRecSj, — S;.*
Each node calculates a new set of statisb¢ats;, based on its preliminary parent
selection, and transmits anvitation, which also includes the node’s newly calculated
Stats; values, that other nodes RecSj, (and only these nodes) may accept. Of course,
we need to be careful at this point and make sure that at le@shade withinRec.Sy,
will not accept any invitation, as this would create a disgested network and prevent
nodes fromRecS}, to forward their results to nodes belongingfecSy_1. We will
achieve this by imposing a simple set of rules regarding wdremvitation may be
accepted by a sensor node.

Let CandPar; denote the set of nodes iRecS;, that transmitted an invitation that
S, received. LetS,, be the preliminary parent node 6f, as decided during query
propagation. Amongst the nodesGiundPar;, nodeS; considers the nodg, such as
the attachment costC; ,, is minimized. If ties occur, then these are broken using the
node identifiers (i.e., prefer the node with the highesti@pen S, is selected as the
parent ofS; instead of the preliminary choice S,,, only if all of the following conditions

apply:

o AC;, < AC; . This conditions ensures thé}, seems as a better candidate parent
than the current selectio$i,,.

4 Please note that at this step any initially selected parkatsibling node that lies within the
transmission range &; has already been examined in the preliminary parent sefeptiase
and does not need to be considered.

5 Alternative choices are equally plausible. For examplefgithe nodes with the highest/lowest
identifiers depending on whether this is an odd/even invocaif the aggregation tree forma-
tion algorithm.



o AC; ), < AC, ;. This conditions ensures that it is better to selgchs the parent of
S;, than to selecs; as the parent af),.

o If AC; , = AC, ;, then the identifier of,, is also larger than the identifier 5. This
condition is useful in order to allow nodes to forward messathrough neighbor
nodes inRecSy and also helps break ties amongst nodes and to prevent @it@are
of loops.

The aggregation tree may periodically get updated becdussignificant change
in the data distribution. Such updates are triggered by #se Istation using the same
protocol used in the initial creation. In this case, the roctempute and transmit their
computed statistics in the same manner, but do not need pagate the query itself.

5.2 Calculating the Attachment Cost

Determining the candidate parent with the lowest attachroest is not an easy deci-
sion, as it depends on several parameters. For examplégdtdsto quantify the result-
ing transmission probability of;, if a nodesS; decides to seled; as its parent node.
In general, the transmission frequencySyf(please note that this is different than the
epoch participation frequency of the node) may end up bedigh asnin{ P,+ P;, 1}
(when nodes transmit on different epochs) and as lof®; dg/hen transmissions happen
on the same epochs ail < P;). A commonly used technique that we have adopted
in our work is to consider that the epoch participation byheacde is determined by
independent events. Using this independence assumptdash will end up transmit-
ting with a probability?; + P; — P; P;, an increase oP; (1 — P;) over P;. Similarly, if
S,;_1 is the parent of}, this increase will also result in an increase in the trassion
frequency ofS;_, by P;(1—P;)(1— P;_1), etc. In our following discussion, for ease of
presentation, when considering the attachment coS td a nodeS;, we will assume
that the nodes in the path frof} to theRoot node are the nodes;_q, S;_»,...,51.

Minimizing the Number of Transmissions The attachment cost &f; when selecting
S; as its parent node can be calculated by the increase in thamission frequency of
each link fromS; to theRoot node as:

AC; ;=P +P(1-Pj))+P(1—-P;)(1—Pj_1)+...

A significant problem concerning the above estimatiod 6§ ; is that its value depends

on the epoch participation frequencies of all the nodes enpiéth ofS; to the Root

node. Since the number of these values depends on the aidtzada, in number of

hops, ofS; to theRoot node, such a solution does not scale in large sensor networks
Fortunately, there exists an alternative formula to cal@ithe above attachment

cost. Our technique is based on a recursive calculationdb@isea singlecost factor

CF; at each nodé;. In our example discussed above, the valugs bf and AC; ; can

be easily calculated as:

CF;=(1—-P)x (1+CF)
AC;; = P, x (1+ CF))



One can verify that expanding the above recursive formulbsatting as the boundary
condition that the”' F' value of theRoot node is zero gives the desired result. Thus,
only the cost factor, which is a single statistic, is needexhah node; in order for all
the other nodes to be able to estimate their attachment@sst t

Minimizing Total Energy Consumption, Distributive and Alg ebraic Aggregates
This case is very similar to the case described above. Whesidgring the attach-
ment cost ofS; to a candidate parest;, we note that additional energy is consumed by
nodes in the path of; to theRoot node only if a new transmission takes place. This
is because each node aggregates the partial results tteetbioy its children nodes
and transmits a new single partial aggregate for its sub{ft®]. Thus, the size of the
transmitted data is independent of the number of nodes irsubé&ree, and only the
frequency of transmission may get affected. Egt, ; denote the energy consumption
when §; transmits a message ) consisting of a header and the desired aggregate
value(s) - based on whether this is a distributive or an akjelaggregate function. The
energy consumption follows the cost model presented ini@edt2, where the&Zr,
value may depend on the distance betwggandS; (thus, the two indices used above).
Using the above notation, and similarly to the previousus@n, the attachment cost
AC; ; is calculated as:

AC’W- =P, x Etri,j + P; x (1 - P]) X Etr]‘,jfl +
Pix (L=PF) x (1 =Pj1) X By oy + -
= P x (B, ; + CFy), where
CF; = (1 - R) x (EtTi,j + CFJ')

If one wishes to take the receiving cost of messages intouatcall that is required is
to replace in the above formulas the symbols of the fékm , with (Ey., , + Erec,),
since each message transmitteddyto .S, will consume energy during its reception
by Sp.

A final and important note that we need to make at this poirdlires the estimation
of the attachment cost when seeking to minimize the ovenaltgy consumption in all
the types of queries discussed in this paper. When eachrseode.S; examines the
invitations of neighboring nodes (and only in this step) astimates the attachment
cost to any nod&;, in our implementation it utilizes the sani&z» value in order to
determine the value o, ;, independently on the distance 8f to S;. This is done
so that the value of;,., ; is the same for all candidate parentsSyf as desired by the
proof of Theorem 1 in order to guarantee the lack of loops enfirmed aggregation
tree.

Theorem 1 For sensor networksthat satisfy the connectivity requirements of Section 4.1
our algorithm always creates a connected routing path that avoids loops.

Proof:
We only sketch the proof here. It is obvious that any node Wilitreceive the
query announcement will select some node as its parent Mdelfirst demonstrate that



no loops can be introduced and prove this by contradicti@sufe that the parent
relationships in the created loop are as follodis:— S, — ...S, — S;. Let D; be
the distance (in number of hops) of noslefrom theRoot . Since each node can select
as its parent node a node with equal or lowiewvalue, the existence of a path from
S1 to S; means thatD, < D; and the existence of a path frofs to S; means that
D; < D,. Therefore,D; = D,.

The attachment costC; ; calculated using the aforementioned statistics is of the
form: P; x (a; + C'Fj), whereq; is a constant for each nodg. Considering thab;
selectedS; as its parent and ndf,, we get:AC, » < AC,, = CF, < CF,. By
creating such inequalities between the current parent hildlaf each node, summing
these up (please note that because one of the nodes in thevilbeghibit the highest
identifier, for at least one of the above inequalities theadityuis not possible), we get
that: CFy + ...+ CF, < CFy + ... + CF,. We therefore reached a contradiction,
which means that our algorithm cannot create any loops.

An interesting observation that we have not mentioned sanfarives the nodes
with zero epoch participation frequencies. For these natiescomputed attachment
costs to any neighboring node will also be zero. In such caseselect the candidate
parent which produces the lowest value for the attachmesttitave ignore the node’s
epoch participation frequency. This decision is expectethinimize the attachment
cost, if the sensor at some point starts observing events.

Minimizing Other Metrics. Our techniques can be easily adapted to incorporate ad-
ditional minimization metrics. For example, the formulas fminimizing the number

of transmitted bits can be derived using the formulas forethergy minimization for

the corresponding type of query. In these formulas one sirhpk to substitute the
term Ey,., . with the size of a packet (including the packet’s header) tanglibstitute

the termDE;,., ; with the size of each transmitted aggregate value (thusyigg the
header size). In the case where the goal is to maximize thielmim energy amongst the
sensor nodes, the attachment cost can be derived from theuammenergy, amongst
the nodes in a sensor’s path to fReot node, raised te-1 (since our algorithms select

the candidate parent with ttmanimum attachment cost).

6 Experiments

We developed a simulator for testing the algorithms progasé¢his paper under vari-
ous conditions. In our discussion we term our algorithm farimizing the number of
transmissions ablinMesg, and our algorithm for minimizing the overall energy con-
sumption adMinEnergy. Our techniques are compared against two intuitive allgorit

In the MinHops algorithm, each sensor node that receives the query anament ran-
domly selects as its parent node a sensor amongst thoseheitihihimum distance,
in number of hops, from thRoot node [16]. In theMinCost algorithm, each sensor
seeks to minimize the sum of the squared distances amolegstisors in its path to the
Root node, when selecting its parent node. Since the energy nwtsby the power
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amplifier in many radio models depends on the square of thereoritation range, the
MinCost algorithm aims at selecting paths with low communicatiostco

In all sets of experiments we place the sensor nodes on ratmations over a
rectangular area. The radio parameters were set accordmtiie values in Table 2.
The message header was set to 32 bits, similarly to the sizaobf statistic and half the
size of each aggregate value. In all figures we account foowbehead of transmitting
statistics and invitation messages during the creationefggregation tree in our algo-
rithms. All numbers presented are averages from a set ofrfoepiendent experiments
with different random seeds.

6.1 Experiments with Synthetic Data Sets

We initially placed 36 sensor nodes in a 300x300 area, amdgbaled up to the point
of having 900 sensors. We set the maximum broadcast rangachfsensor to 90m.
In all cases th&koot node was placed on the lower left part of the sensor field. We
set the epoch participation frequency of the sensor nodisstie maximum distance,
in hop count, from theRoot to 1. Unless specified otherwise, with probability 8%
some interior node assumed an epoch participation frequeint, while the epoch
participation frequency of the remaining interior nodessat to 5%.

We first evaluated a SUM aggregate query over the values afreparticipating
sensor nodes using all algorithms. We present the total rumibtransmissions for
each algorithm and number of sensors in Figure 1. The canepg average energy
consumption by the sensor nodes for each case is preserfadla4.

As we can see, olMinMesg algorithm achieves a significant reduction in the num-
ber of transmitted messages compared to the MinHops and dding&gorithms. The
increase in messages induced byMiaHopsandMinCost algorithms compared to our
approach is up to 86% and 120%, respectively, with an avaragease of 66% and
93%, respectively. However, since these gains depend omuttder of transmissions
that epoch-participating nodes perform, it is perhaps nmteresting to measure the



Aggregate SUM Query

SensorgMinMesgMinEnergyMinHops MinCost i i _ i
5 5436 750 | 6612 125 a [# SensorEMinMesgMinEnergy MinHops MinCosf
144 || 72.84 | 6756 | 140.81| 117.1 |20 | 75.65 | 67.64 | 94.33 | 7551
324 || 66.06 | 61.83 | 141.46| 103.22 163?50 gé-g i%-;g gg'g; gg'zg
576 62.52 58.73 133.71| 101.84 . . . .
900 || 61.29 | 56.68 | 127.79] 9993 | * [ 958% ]

[+ | 751% | 10.94% | 5.66% |
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Fig. 3. Transmissions - Trucks data

Fig. 4. Transmissions - SchoolBuses data

routing overhead of each technique. We define the routing overhead of eachigigo
as the relative increase in the number of transmissions wheipared to the number
of epoch participations by the sensor nodes. Note that ttex lrumber is anandatory
cost that represents the transmissions in the network if sagsor could communicate
directly with theRoot node. For example, if the total number of epoch participegio
by the sensor nodes was 1000, but the overall number of tiasiems was 1700, then
the routing overhead would have been equalttd0 — 1000)/1000 = 70%. As we
observe from Figure 1, oMinMesg algorithm often results in 3 times smaller routing
overhead compared to the alternative algorithms consid&ve also observe that the
MinEnergy algorithm in the aggregate case produced regetisclose to the ones of
MinMesg. A main difference between these two algorithm$i& famongst candidate
parents with similar cost factors, the MinEnergy algoritisrfess likely to select a dis-
tant neighbor than the MinMesg algorithm, which only coes&depoch participation
frequencies. This is a trend that we observed in all our éxyats. The MinEnergy
algorithm performs very well in this experiment. Comparethie MinHops algorithm,
it achieves up to a 2-fold reduction in the power drain. Coregdo the MinCost algo-
rithm the energy savings are smaller but still significamt. (iup to 76%).

We expect that the more the epoch participation frequerafiegnsor nodes in-
crease, the less likely that out techniques will be able twige substantial savings
compared to the MinHops and MinCost algorithms. In Figuree2@peat the aggregate
query of Figure 1 at the sensor network with 324 nodes, but tree epoch participa-
tion frequencyP; of those nodes that do not make a transmission at each epeglofi



those nodes witlP; < 1). While Figure 2 validates our intuition, it also demontsa
that significant savings can be achieved even when sensesri@aye large’; values
(i.e., P, > 0.5).

6.2 Experiments with Real Data Sets

We also experimented with the following two real data setwe Trucks data set con-
tains trajectories of 276 moving trucks [1]. Similarly, tBehoolBuseslata set contains
trajectories of 145 moving schoolbuses [1]. For each ddtaeséitially overlaid a sen-
sor network of 150 nodes over the monitored area. We set tealbast range such that
interior sensor nodes could communicate with at least 5 reemsor nodes. Moreover,
each sensor could detect objects within a circle centeréldeabode and with radius
equal to 60% of the broadcast range. We then scaled the datip $e a network of
1350 sensors, while keeping the sensing range steady. indsi@ and 4 we depict the
total number of transmissions by all algorithms for the kauand SchoolBuses data
sets, correspondingly, when computing the SUM of the nurobdetected objects. In
our scenario, nodes that do not observe an event make a iss@monly if they need
to propagate measurements/aggregates by descendant Wedpsesent the average
energy consumption of the sensor nodes in the same expéariarehe SchoolBuses
data set in Table 5. As it is evident, our algorithms achiegaificant savings in both
metrics. For example, the MinCost algorithm, which exlsilaiver power consumption
than the MinHops algorithm, still drains about 15% more ggéhan our MinEnergy
algorithm. Moreover, both our MinMesg and MinEnergy al¢foms significantly re-
duce the amount of transmitted messages by up to 31% and 58¥cempared to the
MinHops and MinCost algorithms, respectively.

7 Conclusions

In this paper we presented algorithms for building and nadirig efficient aggregation
trees in support of event monitoring queries in wirelesssenetworks. We demon-
strated that is it possible to create efficient aggregatieestthat minimize important
network resources using a small set of statistics that areramicated in a localized
manner during the construction of the tree. Furthermoretexhniques utilize a novel
2-step refinement process that significantly increasestthlityjof the created trees. In
our future work, we plan to extend our framework to also suppolistic aggregates
and SELECT * queries, as well as extend our framework for aimulery setting.
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