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Abstract. In this paper we present algorithms for building and maintaining effi-
cient aggregation trees that provide the conduit to disseminate data required for
processing monitoring queries in a wireless sensor network. While prior tech-
niques base their operation on the assumption that the sensor nodes that collect
data relevant to a specified query need to include their measurements in the query
result at every query epoch, in many event monitoring applications such an as-
sumption is not valid. We introduce and formalize the notionof event monitoring
queries and demonstrate that they can capture a large class of monitoring applica-
tions. We then show techniques which, using a small set of intuitive statistics, can
compute aggregation trees that minimize important resources such as the number
of messages exchanged among the nodes or the overall energy consumption. Our
experiments demonstrate that our techniques can organize the data aggregation
process while utilizing significantly lower resources thanprior approaches.

1 Introduction

Many pervasive applications rely on sensory devices that are able to observe their en-
vironment and perform simple computational tasks. Driven by constant advances in
microelectronics and the economy of scale it is becoming increasingly clear that our
future will incorporate a plethora of such sensing devices that will participate and help
us in our daily activities. Even though each sensor node willbe rather limited in terms
of storage, processing and communication capabilities, they will be able to accomplish
complex tasks through intelligent collaboration.

Nevertheless, building a viable sensory infrastructure cannot be achieved through
mass production and deployment of such devices without addressing first the technical
challenges of managing such networks. In this paper we focuson developing the neces-
sary data aggregation infrastructure for supporting aggregate queries. For such applica-
tions, most recent proposals rely on building some type of ad-hoc interconnect for an-
swering a query such as theaggregation tree [16, 26]. This is a paradigm of in-network
processing that can be applied to non-aggregate queries as well [7]. In this paper we
concentrate on building and maintaining efficientaggregation trees that will provide
the conduit to disseminate all data required for processingaggregate queries, while
minimizing important resources such as the number of messages exchanged among the
nodes or the overall energy consumption.



While prior work [4, 23, 24] has also tackled similar problems, previous techniques
base their operation on the assumption that the sensor nodesthat collect data relevant
to the specified query need to include their measurements (and, thus, perform transmis-
sions) in the query result at every queryepoch. However, in many monitoring applica-
tions such an assumption is not valid. Monitoring nodes are often interested in obtaining
aggregate values only from sensor nodes that detect interesting events. In such appli-
cations, each sensor node is not forced to include its measurements in the aggregate
at each epoch, but rather such aquery participation is evaluated on a per epoch basis,
depending on its readings and the definition of interesting events. In this paper we term
the monitoring queries where the participation of a node is based on the detection of an
event of interest asevent monitoring queries (EMQs).

Our techniques base their operation on collecting simple statistics during the op-
eration of the sensor nodes. The collected statistics involve the number of events (or,
equivalently, their frequency) that each sensor detected in the recent past. Our algo-
rithms utilize these statistics as hints for the behavior ofeach sensor in the near future
and periodically reorganize the aggregation tree in order to minimize certain metrics of
interest, such as the overall number of transmissions or theoverall energy consumption
in the network. The formation of the aggregation tree is based on the aggregation and
local transmission of only a small set of values at each node termed ascost factors in
our framework. Using these cost factors each sensor selectsits parent node, through
which it will forward its results towards the base station, based on the estimated corre-
spondingattachment cost. In a nutshell, the attachment cost of a parent selection is the
increase in the objective function (i.e., the number of transmitted messages) resulting
from this selection. Given the estimates of attachment costs that our algorithms com-
pute, our work demonstrates that they are able to design significantly better aggregation
trees than existing techniques.
Our contributions are summarized as follows:

1. We formally introduce the notion of EMQs in sensor networks. EMQs are a su-
perset of existing monitoring queries, but are handled uniformly in our framework,
irrespectively of the minimization metric of interest.

2. We present detailed algorithms for minimizing importantmetrics such as the num-
ber of messages exchanged or the energy consumption during the execution of an
aggregate EMQ. The presented algorithms are based on the aggregation and trans-
mission of a small, and of constant size, set of statistics. We introduce our algo-
rithms along with a succinct mathematical justification.

3. We present a detailed experimental evaluation of our algorithms. Our results demon-
strate that our techniques can achieve a significant reduction in the number of trans-
mitted messages, or the overall energy consumption, compared to alternative algo-
rithms.

2 Related Work

The database community has long been the advocate of using anembedded database
management system for data acquisition in sensor networks [16, 26]. The use of a



Aggregate Query

SELECT AggrFun(s.value)
FROM Sensors s
WHERE inclusionConditions(s) = true
SAMPLE PERIOD e FOR t

Table 1.An Aggregate Query over the Values Collected by Sensor Nodes.

declarative SQL-like query interface allows rapid development of applications in such
systems without the need to manage hand-coded programs at each sensor node [17].

In the database community different types of popular queries have been discussed,
such as aggregate [5, 6, 16, 21, 19], join [2], model-based [9, 14] and select-all queries [7,
22]. Tracking queries that seek to determine the spatial extent of a particular phe-
nomenon have also been considered [10, 25]. In [16] the nodesare first organized in a
tree topology, termed the aggregation tree. During query execution, each epoch is subdi-
vided into intervals and parent nodes in the aggregation tree listen for messages contain-
ing partial aggregates from their children nodes during pre-defined time-slots. Another
notable method for synchronizing the transmission periodsof nodes is the recently pro-
posed wave scheduling approach of [8]. The work in [28] describes a framework that
profiles recent data acquisition activity by the nodes and computes their waking window
though an in-network execution of the critical path method.This technique is comple-
mentary to our work, as they help identify a proper scheduling for data transmission by
the nodes, while our methods focus on optimizing the routingtopology.

Many of the low-level networking details have already been discussed in the net-
working community and, thus, can be utilized in our framework. As an example, nodes
in unattended wireless networks must be able to self-configure [3] and discover their
surrounding nodes [11]. Prior work on computing energy-efficient data routing paths
(such as the aggregation tree) [13, 23, 24] have tackled similar problems, but these tech-
niques base their operation on the assumption that the sensor nodes that collect data
relevant to the specified query need to include their measurements in the query result at
every query epoch. However, this assumption does not hold inevent monitoring queries
that are the scope of our framework. In the other end of the spectrum, the work in [15]
and [12] discuss join and aggregation queries involving rare events. Thus, they follow
an alternative path, which is to construct the data collection network on-the-fly when
such events occur. However, this practice in unsuitable forout setting involving sensor
nodes with both low and high participation frequencies, since it would incur a high over-
head for frequently maintaining the collection network. Furthermore, the work in [12]
assumes the existence of a high speed connection for all nodes at the boundaries of the
network, through which the data that reaches the boundary nodes can be communicated.

3 Motivational Example

In Table 1 we present examples of the two main classes of monitoring queries in sensor
networks. We borrow the syntax of TinyOS [16] to denote the epoch duration (e) and the
lifetime of the query (t). The predicateinclusionConditions has been added in order to



specify which sensor nodes will participate in the query evaluation per epoch. At each
query epoch, all the sensor nodes that include their collected data in the query result are
termed in our framework asepoch participating nodes. For queries that wish to collect
data from all the sensor nodes at each epoch, the above predicate always evaluates to
true.

When a monitoring query specifies inclusion predicates, these may contain either
static or dynamic predicates (or both) regarding the sensornodes. Examples of static
predicates may involve, but are not limited to, the collection of measurements from:
(i) Sensors with specific identifiers; (ii) Immobile sensorsin a specific area; or (iii)
Sensors monitoring a specific quantity, in cases of sensor networks with diverse types
of sensor nodes that monitor different quantities. Static predicates are very useful in
a variety of applications and have received the focus of the bulk of past research [16,
26]. Inclusion conditions that contain only static predicates result in a fixed subset of
the sensor nodes participating in the query output at each epoch. This allows for simple
data dissemination and collection protocols based on fixed aggregation trees that need
to be altered only when either node or communication failures exist.

However, there exists a large class of monitoring queries that cannot be expressed
using static inclusion conditions. Examples include vehicle tracking and equipment
monitoring applications where inclusion predicates need to be conditioned on readings
taken by the sensor nodes such as noise levels or temperaturereadings. In its most sim-
ple form a dynamic inclusion predicate may be a condition of the form “current reading
> threshold”. More complex forms may require the evaluation of a user defined func-
tion over a history of accumulated readings. In the case of approximate evaluation of
queries over the sensor data [6, 18, 21], the inclusion predicate is satisfied when the cur-
rent sensor reading deviates by more than a given threshold from the last transmitted
value. We call such predicates, whose evaluation depends also on the readings taken
by the nodes, as dynamic predicates as they specify which nodes should include their
response in the query evaluation at each epoch (i.e., nodes whose values exceed a given
threshold, or deviate significantly from previous readings). We term those monitoring
queries that contain dynamic predicates asevent monitoring queries (EMQs).

Given a monitoring query, existing techniques seek to develop aggregation trees
that specify the way that the data is forwarded from the sensor nodes to theRoot node.
Periodically these aggregation trees may be reorganized inorder to adapt to evolving
data characteristics [21].

An important characteristic of EMQs, which is not taken intoaccount by existing
algorithms that design aggregation trees, is that each sensor node may participate in the
query evaluation, by including its reading in the query result, only a limited number
of times, based on how often the inclusion conditions are satisfied. We can thus asso-
ciate anepoch participation frequency Pi with each sensor nodeSi, which specifies the
fraction of epochs that this node participated in the query result in the recent past.

4 Problem Formulation

Our current framework supports distributive (i.e., COUNT,SUM, MAX, MIN) and
algebraic (i.e., SUM) queries involves aggregate functions over the measurements col-



lected by the participating sensor nodes. A good classification of aggregate functions
is presented in [16], depending on the amount and type of state required in non-leaf
nodes in order for them to calculate the aggregate result forthe partition of descendant,
in the aggregation tree, participating sensors. In our future work we plan to extend our
framework to support all types of aggregate and non-aggregate queries.

4.1 Problem Definition

In this paper we seek to develop dissemination protocols fordistributive and algebraic
EMQs. The goal is, given the type of query at question, to design the aggregation tree
so as to minimize either:

1. The number of transmitted messages in the network.
2. The overall energy consumption in the network.

Our algorithms do not make any assumptions about the placement of the sensor
nodes, their characteristics or their radio models. However, in order to simplify the
presentation, in our discussion we will focus on networks where any communication
between pairs of sensor nodes is either bidirectional or impossible.

4.2 Energy Consumption Cost Model

A sensor node consumes energy at all stages of its operation.However, this energy
consumption is minimal when the sensor is in a sleep mode. Furthermore, the energy
drain due to computations may, in some applications, be significant, but it is typically
much smaller than the cost of communication [17]. Due to thisfact and because our
algorithms do not require any significant computational effort by the sensor nodes, we
ignore in the cost model the power consumption when the sensor node is idle and the
consumption due to computations. We will thus focus on capturing the energy drain
due to data communication in data driven applications. Moreparticular, we need to
estimate the energy consumption of a nodeSi when either transmitting, receiving or
idle listening for data. The notation that will be used in ourdiscussion here, and later
in the description of our algorithms, is presented in Table 3. Additional definitions and
explanations are presented in appropriate areas of the text.

We first describe the cost model used to estimate the energy consumption of a node
Si during the data transmission of|aggr| > 0 bits of data to nodeSj , which lies in
distancedisti,j from Si. The energy cost can be estimated using a linear model [20] as:

Etri,j
= SCi + (H + |aggr|) × (ETXi

+ ERFi
× dist2i,j),

where: (i)SCi denotes the energy startup cost for the data transmission ofSi. This cost
depends on the radio used by the sensor node; (ii)H denotes the size of the packet’s
header; (iii)ETXi

denotes the per bit power dissipation of the transmitter electronics;
and (iv)ERFi

denotes the per bit and squared distance power delivered by the power
amplifier. This power depends on the maximum desired communication range and, thus,
from the distance of the nodes with whichSi desires to communicate. Thus, the addi-
tional energy consumption required to augment an existing packet fromSi to Sj with
additional|aggr| bits can be calculated as:DEtri,j

= |aggr|×(ETXi
+ERFi

×dist2i,j).



Symbol Typical Value

SC 1µJ

ETX 50nJ/bit

ERF 100pJ/bit/m2

ERX 50nJ/bit

Table 2. Typical Radio
Parameters.

Symbol Description

Root The node that initiates a query and which collects the relevant data
of the sensor nodes

Si Thei-th sensor node
Pi The epoch participation frequency ofSi

Di The minimum distance, in number of hops, ofSi from theRoot
|aggr| The size of the aggregate values transmitted by a node
Etri,j

Energy spent bySi to transmit a new packet of|aggr| bits toSj

DEtri,j
Energy spent bySi to transmit additional|aggr| bits toSj

(on an existing packet).
ACi,j Attachment cost ofSi to a candidate parentSj

CFi Cost factor utilized by neighboring nodes ofSi when
estimating their attachment cost toSi

Table 3.Symbols Used in our Algorithm

When a sensor nodeSi receivesH+bj bits from nodeSj , then the energy consumed
by Si is given by:Ereci

= ERXi
× (H + bj), where the value ofERXi

depends on
the radio model. Some typical values [20] ofSC, ETX , ERX andERF are presented
in Table 2.

The energy consumed by a sensor node when idle listening for data is significant and
often comparable to the energy of receiving data. For example, in the popular MICA2
nodes the ratios for radio power draw during idle-listening, receiving of a message and
transmission are 1:1:1.41 at 433MHz with RF signal power of 1mW in transmission
mode [27]. Thus, due to the similar energy consumption by a sensor while either re-
ceiving or idle listening for data, our algorithms focus on the energy drain during the
transmission of data.

5 Algorithm Overview

We now present our algorithms for creating and maintaining an aggregation tree that
minimizes the desired metric (number of messages or energy consumption) for alge-
braic or distributive aggregate EMQs. Our algorithms are based on a top-down forma-
tion of the aggregation tree. The intuition behind such an approach is that the epoch
participation frequency of each node in the aggregation tree influences the transmission
frequency of only nodes that lie in its path to theRoot. We thus demonstrate in this
section that estimating the magnitude of this influence can be easily achieved by a top-
down construction of the aggregation tree, while requiringthe transmission of only a
small set of statistics.

5.1 Construction/Update of the Aggregation Tree

The algorithm is initiated with the query propagation phaseand periodically, when the
aggregation tree is scheduled for reorganization. The query is propagated from the base
station through the network using a flooding algorithm. In densely populated sensor
networks, a nodeSi may receive the announcement of the query from several of its



neighbors. As in [16, 26] the node will select one of these nodes as itsparent node.
The chosen parent will be the one that exhibits the lowestattachment cost, meaning the
lowest expected increase in the objective minimization function. For example, if our
objective is to minimize the total number of transmitted messages, then the selection
will be the node that is expected to result in the lowest increase in the number of trans-
mitted messages in theentire path from that sensor until theRoot node (and similarly
for the rest of the minimization metrics). At this point we simply note that in order for
other nodes to compute their attachment cost, nodeSi transmits a small set of statistics
Statsi and defer their exact definition for Section 5.2.

The result of this process is an aggregation tree towards thebase station that initiated
the flooding process. A key point in our framework is that the preliminary selection of a
parent node may be revised in a second step where each node evaluates the cost of using
one of its sibling nodes as an alternative parent. Due to the nature of the query propa-
gation, and given simple synchronization protocols, such as those specified in [16], the
nodes lyingk hops from theRoot node will receive the query announcement before
the nodes that lie one hop further from theRoot node. LetRecSk denote the set of
nodes that receive the query announcement for the first time during thek-th step of the
query propagation phase.

At stepk of the query propagation phase, after the preliminary parent selection has
been performed, each nodeSi in setRecSk, needs to consider whether it is preferable to
alter its current selection and choose as its parent asibling node within setRecSk−Si.4

Each node calculates a new set of statisticsStatsi, based on its preliminary parent
selection, and transmits aninvitation, which also includes the node’s newly calculated
Statsi values, that other nodes inRecSk (and only these nodes) may accept. Of course,
we need to be careful at this point and make sure that at least one node withinRecSk

will not accept any invitation, as this would create a disconnected network and prevent
nodes fromRecSk to forward their results to nodes belonging inRecSk−1. We will
achieve this by imposing a simple set of rules regarding whenan invitation may be
accepted by a sensor node.

Let CandPari denote the set of nodes inRecSk that transmitted an invitation that
Si received. LetSm be the preliminary parent node ofSi, as decided during query
propagation. Amongst the nodes inCandPari, nodeSi considers the nodeSp such as
the attachment costACi,p is minimized. If ties occur, then these are broken using the
node identifiers (i.e., prefer the node with the highest id).5 ThenSp is selected as the
parent ofSi instead of the preliminary choice Sm only if all of the following conditions
apply:

• ACi,p < ACi,m. This conditions ensures thatSp seems as a better candidate parent
than the current selectionSm.

4 Please note that at this step any initially selected parent of a sibling node that lies within the
transmission range ofSi has already been examined in the preliminary parent selection phase
and does not need to be considered.

5 Alternative choices are equally plausible. For example, prefer the nodes with the highest/lowest
identifiers depending on whether this is an odd/even invocation of the aggregation tree forma-
tion algorithm.



• ACi,p ≤ ACp,i. This conditions ensures that it is better to selectSp as the parent of
Si, than to selectSi as the parent ofSp.

• If ACi,p = ACp,i, then the identifier ofSp is also larger than the identifier ofSi. This
condition is useful in order to allow nodes to forward messages through neighbor
nodes inRecSk and also helps break ties amongst nodes and to prevent the creation
of loops.

The aggregation tree may periodically get updated because of a significant change
in the data distribution. Such updates are triggered by the base station using the same
protocol used in the initial creation. In this case, the nodes compute and transmit their
computed statistics in the same manner, but do not need to propagate the query itself.

5.2 Calculating the Attachment Cost

Determining the candidate parent with the lowest attachment cost is not an easy deci-
sion, as it depends on several parameters. For example, it ishard to quantify the result-
ing transmission probability ofSj , if a nodeSi decides to selectSj as its parent node.
In general, the transmission frequency ofSj (please note that this is different than the
epoch participation frequency of the node) may end up being as high asmin{Pi+Pj , 1}
(when nodes transmit on different epochs) and as low asPj (when transmissions happen
on the same epochs andPi ≤ Pj). A commonly used technique that we have adopted
in our work is to consider that the epoch participation by each node is determined by
independent events. Using this independence assumption, nodeSj will end up transmit-
ting with a probabilityPi + Pj −PiPj , an increase ofPi(1−Pj) overPj . Similarly, if
Sj−1 is the parent ofSj , this increase will also result in an increase in the transmission
frequency ofSj−1 byPi(1−Pj)(1−Pj−1), etc. In our following discussion, for ease of
presentation, when considering the attachment cost ofSi to a nodeSj , we will assume
that the nodes in the path fromSj to theRoot node are the nodesSj−1, Sj−2, . . . , S1.

Minimizing the Number of Transmissions The attachment cost ofSi when selecting
Sj as its parent node can be calculated by the increase in the transmission frequency of
each link fromSi to theRoot node as:

ACi,j = Pi + Pi(1 − Pj) + Pi(1 − Pj)(1 − Pj−1) + . . .

A significant problem concerning the above estimation ofACi,j is that its value depends
on the epoch participation frequencies of all the nodes in the path ofSj to theRoot
node. Since the number of these values depends on the actual distance, in number of
hops, ofSj to theRoot node, such a solution does not scale in large sensor networks.

Fortunately, there exists an alternative formula to calculate the above attachment
cost. Our technique is based on a recursive calculation based on a singlecost factor
CFi at each nodeSi. In our example discussed above, the values ofCFi andACi,j can
be easily calculated as:

CFi = (1 − Pi) × (1 + CFj)

ACi,j = Pi × (1 + CFj)



One can verify that expanding the above recursive formula and setting as the boundary
condition that theCF value of theRoot node is zero gives the desired result. Thus,
only the cost factor, which is a single statistic, is needed at each nodeSj in order for all
the other nodes to be able to estimate their attachment cost to Sj .

Minimizing Total Energy Consumption, Distributive and Alg ebraic Aggregates
This case is very similar to the case described above. When considering the attach-
ment cost ofSi to a candidate parentSj , we note that additional energy is consumed by
nodes in the path ofSj to theRoot node only if a new transmission takes place. This
is because each node aggregates the partial results transmitted by its children nodes
and transmits a new single partial aggregate for its sub-tree [16]. Thus, the size of the
transmitted data is independent of the number of nodes in thesubtree, and only the
frequency of transmission may get affected. LetEtri,j

denote the energy consumption
whenSi transmits a message toSj consisting of a header and the desired aggregate
value(s) - based on whether this is a distributive or an algebraic aggregate function. The
energy consumption follows the cost model presented in Section 4.2, where theERFi

value may depend on the distance betweenSi andSj (thus, the two indices used above).
Using the above notation, and similarly to the previous discussion, the attachment cost
ACi,j is calculated as:

ACi,j = Pi × Etri,j
+ Pi × (1 − Pj) × Etrj,j−1

+

Pi × (1 − Pj) × (1 − Pj−1) × Etrj−1,j−2
+ . . .

= Pi × (Etri,j
+ CFj), where

CFi = (1 − Pi) × (Etri,j
+ CFj)

If one wishes to take the receiving cost of messages into account, all that is required is
to replace in the above formulas the symbols of the formEtrk,p

with (Etrk,p
+ Erecp

),
since each message transmitted bySk to Sp will consume energy during its reception
by Sp.

A final and important note that we need to make at this point involves the estimation
of the attachment cost when seeking to minimize the overall energy consumption in all
the types of queries discussed in this paper. When each sensor nodeSi examines the
invitations of neighboring nodes (and only in this step) andestimates the attachment
cost to any nodeSj , in our implementation it utilizes the sameERF value in order to
determine the value ofEtri,j

, independently on the distance ofSi to Sj. This is done
so that the value ofEtri,j

is the same for all candidate parents ofSi, as desired by the
proof of Theorem 1 in order to guarantee the lack of loops in the formed aggregation
tree.

Theorem 1 For sensor networks that satisfy the connectivity requirements of Section 4.1
our algorithm always creates a connected routing path that avoids loops.

Proof:
We only sketch the proof here. It is obvious that any node thatwill receive the

query announcement will select some node as its parent node.We first demonstrate that



no loops can be introduced and prove this by contradiction. Assume that the parent
relationships in the created loop are as follows:S1 → S2 → . . . Sp → S1. Let Di be
the distance (in number of hops) of nodeSi from theRoot. Since each node can select
as its parent node a node with equal or lowerD value, the existence of a path from
S1 to S2 means thatD2 ≤ D1 and the existence of a path fromS2 to S1 means that
D1 ≤ D2. Therefore,D1 = D2.

The attachment costACi,j calculated using the aforementioned statistics is of the
form: Pi × (ai + CFj), whereai is a constant for each nodeSi. Considering thatS1

selectedS2 as its parent and notSp, we get:AC1,2 ≤ AC1,p =⇒ CF2 ≤ CFp. By
creating such inequalities between the current parent and child of each node, summing
these up (please note that because one of the nodes in the loopwill exhibit the highest
identifier, for at least one of the above inequalities the equality is not possible), we get
that: CF1 + . . . + CFp < CF1 + . . . + CFp. We therefore reached a contradiction,
which means that our algorithm cannot create any loops.

An interesting observation that we have not mentioned so farinvolves the nodes
with zero epoch participation frequencies. For these nodes, the computed attachment
costs to any neighboring node will also be zero. In such caseswe select the candidate
parent which produces the lowest value for the attachment cost if we ignore the node’s
epoch participation frequency. This decision is expected to minimize the attachment
cost, if the sensor at some point starts observing events.

Minimizing Other Metrics. Our techniques can be easily adapted to incorporate ad-
ditional minimization metrics. For example, the formulas for minimizing the number
of transmitted bits can be derived using the formulas for theenergy minimization for
the corresponding type of query. In these formulas one simply has to substitute the
termEtri,j

with the size of a packet (including the packet’s header) andto substitute
the termDEtri,j

with the size of each transmitted aggregate value (thus, ignoring the
header size). In the case where the goal is to maximize the minimum energy amongst the
sensor nodes, the attachment cost can be derived from the minimum energy, amongst
the nodes in a sensor’s path to theRoot node, raised to−1 (since our algorithms select
the candidate parent with theminimum attachment cost).

6 Experiments

We developed a simulator for testing the algorithms proposed in this paper under vari-
ous conditions. In our discussion we term our algorithm for minimizing the number of
transmissions asMinMesg, and our algorithm for minimizing the overall energy con-
sumption asMinEnergy. Our techniques are compared against two intuitive algorithms.
In theMinHops algorithm, each sensor node that receives the query announcement ran-
domly selects as its parent node a sensor amongst those with the minimum distance,
in number of hops, from theRoot node [16]. In theMinCost algorithm, each sensor
seeks to minimize the sum of the squared distances amongst the sensors in its path to the
Root node, when selecting its parent node. Since the energy consumed by the power



 0

 500

 1000

 1500

 2000

 2500

 3000

36-M
inM

esg
36-M

inE
nergy-A

ggr
36-M

inH
ops

36-M
inC

ost
144-M

inM
esg

144-M
inE

nergy-A
ggr

144-M
inH

ops
144-M

inC
ost

324-M
inM

esg
324-M

inE
nergy-A

ggr
324-M

inH
ops

324-M
inC

ost
576-M

inM
esg

576-M
inE

nergy-A
ggr

576-M
inH

ops
576-M

inC
ost

900-M
inM

esg
900-M

inE
nergy-A

ggr
900-M

inH
ops

900-M
inC

ost

M
es

sa
ge

s 
(x

10
00

)

#Sensors - Algorithm

Routing Overhead
Mandatory Cost

Min Overhead
Max Overhead

Fig. 1. Messages and Average Message Overhead for
Synthetic Data Set.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

M
e
s
s
a
g
e
s
 
(
x
1
0
0
0
)

Participation Frequency

MinCost
MinHops

MinEnergy
MinMesg

Fig. 2. Transmissions Varying the
Epoch Participation Frequency

amplifier in many radio models depends on the square of the communication range, the
MinCost algorithm aims at selecting paths with low communication cost.

In all sets of experiments we place the sensor nodes on randomlocations over a
rectangular area. The radio parameters were set accordingly to the values in Table 2.
The message header was set to 32 bits, similarly to the size ofeach statistic and half the
size of each aggregate value. In all figures we account for theoverhead of transmitting
statistics and invitation messages during the creation of the aggregation tree in our algo-
rithms. All numbers presented are averages from a set of five independent experiments
with different random seeds.

6.1 Experiments with Synthetic Data Sets

We initially placed 36 sensor nodes in a 300x300 area, and then scaled up to the point
of having 900 sensors. We set the maximum broadcast range of each sensor to 90m.
In all cases theRoot node was placed on the lower left part of the sensor field. We
set the epoch participation frequency of the sensor nodes with the maximum distance,
in hop count, from theRoot to 1. Unless specified otherwise, with probability 8%
some interior node assumed an epoch participation frequency of 1, while the epoch
participation frequency of the remaining interior nodes was set to 5%.

We first evaluated a SUM aggregate query over the values of epoch participating
sensor nodes using all algorithms. We present the total number of transmissions for
each algorithm and number of sensors in Figure 1. The corresponding average energy
consumption by the sensor nodes for each case is presented inTable 4.

As we can see, ourMinMesg algorithm achieves a significant reduction in the num-
ber of transmitted messages compared to the MinHops and MinCost algorithms. The
increase in messages induced by theMinHops andMinCost algorithms compared to our
approach is up to 86% and 120%, respectively, with an averageincrease of 66% and
93%, respectively. However, since these gains depend on thenumber of transmissions
that epoch-participating nodes perform, it is perhaps moreinteresting to measure the



Aggregate SUM Query
SensorsMinMesg MinEnergyMinHops MinCost

36 94.38 87.20 166.12 125.78
144 72.84 67.56 140.81 117.18
324 66.06 61.83 141.46 103.22
576 62.52 58.73 133.71 101.84
900 61.29 56.68 127.79 99.93

± 7.51% 10.94% 5.66% 6.8%
Table 4. Average Power Consumption (in mJ)
for Synthetic Dataset with Error Bounds

# SensorsMinMesg MinEnergyMinHops MinCost

150 75.65 67.64 94.33 75.51
600 61.19 51.10 84.67 58.74
1350 58.87 47.86 85.89 55.48

± 9.58% 5.5% 15.01% 17.77%
Table 5. Average Power Consumption (in mJ)
for SchoolBuses Dataset with Error Bounds
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Fig. 4.Transmissions - SchoolBuses data

routing overhead of each technique. We define the routing overhead of each algorithm
as the relative increase in the number of transmissions whencompared to the number
of epoch participations by the sensor nodes. Note that the latter number is amandatory
cost that represents the transmissions in the network if each sensor could communicate
directly with theRoot node. For example, if the total number of epoch participations
by the sensor nodes was 1000, but the overall number of transmissions was 1700, then
the routing overhead would have been equal to(1700 − 1000)/1000 = 70%. As we
observe from Figure 1, ourMinMesg algorithm often results in 3 times smaller routing
overhead compared to the alternative algorithms considered. We also observe that the
MinEnergy algorithm in the aggregate case produced resultsvery close to the ones of
MinMesg. A main difference between these two algorithms is that amongst candidate
parents with similar cost factors, the MinEnergy algorithmis less likely to select a dis-
tant neighbor than the MinMesg algorithm, which only considers epoch participation
frequencies. This is a trend that we observed in all our experiments. The MinEnergy
algorithm performs very well in this experiment. Compared to the MinHops algorithm,
it achieves up to a 2-fold reduction in the power drain. Compared to the MinCost algo-
rithm the energy savings are smaller but still significant (i.e., up to 76%).

We expect that the more the epoch participation frequenciesof sensor nodes in-
crease, the less likely that out techniques will be able to provide substantial savings
compared to the MinHops and MinCost algorithms. In Figure 2 we repeat the aggregate
query of Figure 1 at the sensor network with 324 nodes, but vary the epoch participa-
tion frequencyPi of those nodes that do not make a transmission at each epoch (i.e., of



those nodes withPi < 1). While Figure 2 validates our intuition, it also demonstrates
that significant savings can be achieved even when sensor nodes have largePi values
(i.e.,Pi ≥ 0.5).

6.2 Experiments with Real Data Sets

We also experimented with the following two real data sets. TheTrucks data set con-
tains trajectories of 276 moving trucks [1]. Similarly, theSchoolBusesdata set contains
trajectories of 145 moving schoolbuses [1]. For each data set we initially overlaid a sen-
sor network of 150 nodes over the monitored area. We set the broadcast range such that
interior sensor nodes could communicate with at least 5 moresensor nodes. Moreover,
each sensor could detect objects within a circle centered atthe node and with radius
equal to 60% of the broadcast range. We then scaled the data set up to a network of
1350 sensors, while keeping the sensing range steady. In Figures 3 and 4 we depict the
total number of transmissions by all algorithms for the Trucks and SchoolBuses data
sets, correspondingly, when computing the SUM of the numberof detected objects. In
our scenario, nodes that do not observe an event make a transmission only if they need
to propagate measurements/aggregates by descendant nodes. We present the average
energy consumption of the sensor nodes in the same experiment for the SchoolBuses
data set in Table 5. As it is evident, our algorithms achieve significant savings in both
metrics. For example, the MinCost algorithm, which exhibits lower power consumption
than the MinHops algorithm, still drains about 15% more energy than our MinEnergy
algorithm. Moreover, both our MinMesg and MinEnergy algorithms significantly re-
duce the amount of transmitted messages by up to 31% and 53% when compared to the
MinHops and MinCost algorithms, respectively.

7 Conclusions

In this paper we presented algorithms for building and maintaining efficient aggregation
trees in support of event monitoring queries in wireless sensor networks. We demon-
strated that is it possible to create efficient aggregation trees that minimize important
network resources using a small set of statistics that are communicated in a localized
manner during the construction of the tree. Furthermore, our techniques utilize a novel
2-step refinement process that significantly increases the quality of the created trees. In
our future work, we plan to extend our framework to also support holistic aggregates
and SELECT * queries, as well as extend our framework for a multi-query setting.
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