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ABSTRACT
The FERARI project aims to develop a highly scalable dis-
tributed streaming architecture supporting complex event
processing in a communication-efficient manner. Two key
requirements for our system are that its architecture is not
tied to the underlying streaming platform used in its imple-
mentation and that it allows the easy definition of commu-
nication-efficient methods for monitoring a global condition
over a distributed set of states. In this paper we present
the architecture of our system and explain how these key re-
quirements are met. Concerning the actual implementation
of our system in a scalable distributed streaming platform,
it is reasonable not to re-invent the wheel but to use one
of the actual Big Data Streaming platforms as a starting
point. For this reason, we evaluate some popular platforms
and discuss whether they meet our requirements.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

1. INTRODUCTION
In recent years, an area with great future potential for Big
Data is machine-to-machine interaction (M2M), and the In-
ternet of Things. Examples of relevant applications include
smart energy grids, car-to-car communication, mobile net-
work quality monitoring, optimizing operation of large and
complex systems, fault detection in clouds, automated nego-
tiation systems – all these have been identified as important
hot use cases for Big Data.
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Current Big Data technologies, developed for systems that
process and analyze human generated data such streams,
managing social networks at Facebook, or indexing web pages
at Google, seem inadequate for processing of such M2M ap-
plications. In order to understand this, note that the data
volumes generated from M2M interaction surpass by far the
amount of data generated by humans. M2M data is typi-
cally required to be processed in real-time as it is produced,
it is predominantly transient (does not need to be and is too
large to be stored for future reference), and is typically much
more structured in nature than human-generated data.

Due to the sheer size of M2M data, approaches that seek
to centralize this data are not an option, as they (i) would
require enormous infrastructures both for storage, as well as
for the required bandwidth for transmitting this data, (ii)
would impose unnecessary latency due to the data shuffling
possible, and (iii) do not consider the characteristics and
limitations of the data sources of M2M data - sensors are
often the sources of M2M data and constant communication
of sensor readings would quickly drain the energy of sen-
sor nodes. It is thus important to be able to process M2M
data and to detect important events without centralizing
the collected data, but rather doing as much processing and
filtering of the data at the nodes that produce it.

The project Flexible Event pRocessing for big dAta aRchI-
tectures (FERARI) aims at developing a highly scalable dis-
tributed streaming architecture supporting complex event
processing (CEP) in a communication-efficient manner. While
most CEP systems are built on the premise that primitive
events are obtained and transmitted by the remote data
sources based on their own data, a key element of the FER-
ARI architecture will include the development of communi-
cation efficient distributed methods for also detecting events,
expressed over the data of multiple nodes, in a distributed
manner. We consider the important case of complex events
that can be expressed as a monitoring task that alerts when-
ever a complex function, expressed over the data of multi-
ple nodes, has exceeded a threshold. In order to make the
complex event processing feasible, a key component is to
perform in-situ processing at the nodes generating the data,
thus avoiding continuously pushing related data or events
to our CEP engine. A key component that we will utilize
for such distributed monitoring tasks is the recently devel-
oped [10, 11, 12, 13, 8, 7, 9] geometric approach. The details
of this geometric approach are presented in Section 2.



We present the general architecture of FERARI and argue
that a flexible CEP system for M2M data should not be
tied to a specific implementation using existing stream pro-
cessing systems as its infrastructure. To develop a generic
architecture, in Section 3 we specify the essential building
blocks that it must contain and then consider which of some
existing big data streaming platforms seems more appropri-
ate for our actual implementation. Given our architecture,
in Section 4 we explain how an important part of this archi-
tecture, namely the distributed detection of events using the
geometric approach, can be developed in an existing open
source platform, such as Apache Storm, and explain how
some distributed monitoring tasks (that may use the geo-
metric approach, or not) fit within our architecture.

2. BASICS - THE GEOMETRIC APPROACH
We now describe in more detail the geometric approach for
function monitoring over a distributed system of n sites.
Figure 1 demonstrates the basic ideas of the geometric ap-
proach that we discuss in this section.

Each site Si maintains a local d-dimensional vector, termed
as the local statistics vector, with the j-th (j = 1 . . . d) ele-
ment of the local statistics vector of Si denoted as ~vj,i. All
sites contain a vector of the same dimensionality (i.e., num-
ber of elements). The global statistics vector ~v is computed
as the average1 amongst all local statistics vectors. Thus,
the j-th component of the global statistics vector, denoted
as ~vj is computed as: ~vj = 1

n

∑n
i=1 ~vj,i.

For the framework to be applicable, any supported monitor-
ing function f : Rd → R must be expressed over the global
statistics vector ~v (thus, over the average of all local statis-
tics vectors). An important feature is the wide applicability
of the geometric approach, as the threshold function can in
general be non-linear. Given a threshold T, the framework
in [10, 11, 12, 13, 8, 7, 9] can safely determine whether
f(~v) > T .

The geometric approach decomposes the monitoring task
into a set of constraints (one per site) that each site can
monitor locally. To achieve this, during the operation of the
algorithm, each site Si maintains (i) the estimate vector ~e,
which is equal to the global statistics vector ~v computed by
the local statistics vectors transmitted by sites at certain
times, and (ii) a delta vector ∆~vi, denoting the difference of
the current local statistics vector from the last local statistic
vector that Si has transmitted. Based on these two quanti-
ties, Si calculates its drift vector ~ui = ~e + ∆~vi. Additional
optimization have been developed in the framework, such as
the ability to balance only a portion of the network in case
of violations. In that case, an additional slack vector needs
to be maintained and added in the calculation of the drift
vector.

The domain space Rd represents the potential locations of
the global statistics vector at any time. Let all points in Rd

where f(~v) <= T be colored by the same color (i.e., white
in Figure 1), while the remaining points be colored by a dif-
ferent color (i.e., green in Figure 1). Because the sites do

1The same framework also applies when the global statis-
tics vector is calculated as a weighted average of the local
statistics vectors.
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Figure 1: Local constraints using the Geometric Ap-
proach. Each node constructs a sphere with diame-
ter the drift vector ~u of the node and the estimate
vector ~e. The global statistics vector ~v is guaranteed
to lie in the convex hull of ~e, ~u1, ~u2, ~u3, ~u4. The union
of the local spheres covers the convex hull.

not perform transmissions at each time period, the current
global statistics vector ~v is not known to the sites. How-
ever, what is guaranteed is that ~v will always lie within the
convex hull Conv(~u1, . . . , ~un) of the drift vectors and, thus,
within the convex hull Conv(~e, ~u1, . . . , ~un) of the drift vec-
tors and the estimate vector. Thus, if Conv(~e, ~u1, . . . , ~un)
is monochromatic (i.e., either entirely below/equal to the
threshold, or entirely above to the threshold), then all sites
are certain about the color of the function f(), since this
will coincide with the color of f(~e). Of course, each node
cannot compute Conv(~e, ~u1, . . . , ~un), since it is not aware
of the current drift vectors of other sites. However, an im-
portant observation [11] is that if each site monitors the
sphere B(~e, ~ui) constructed with diameter the estimate vec-
tor and its own drift vector, then the union of these spheres
covers the convex hull. Thus, it suffices for each node to
simply monitor whether its sphere is monochromatic. If all
the spheres are monochromatic, then the convex hull is also
monochromatic and, thus, f(~v) has the same color as f(~e).
Otherwise, nodes transmit their local statistics vectors, and
a new estimate vector is computed and made known to all
nodes.

Using Safe-Zones. The more recent work of [8, 7, 9] sim-
plifies the local tests performed by nodes by having each
node test whether its drift vector [8, 9] or its local statistics
vector [7] lies within a convex region. This test is very effi-
cient and only depends on the complexity of the bounding
convex region. For example, the work in [9] demonstrates
how this convex region can be determined by the intersec-
tion of hyperplanes. In that case, the local test of each node
simply checks that a tested vector lies on the “correct” side
of these hyperplanes.

3. PROPOSED ARCHITECTURE
To build a flexible event processing application, we assemble
an appropriate algorithmic approach and a stream process-
ing platform. The approach we use to create this assembly is
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Figure 2: FERARI architecture overview.

described in Section 3.1. We show how the application can
be organized such that the application core can be made
independent from the execution environment. Additionally,
several open source projects are working on scalable dis-
tributed streaming platforms. It is therefore reasonable not
to start from the beginning. To identify a good starting
point, we compare the current systems in Section 3.2.

3.1 Architecture Components
We design the FERARI architecture to allow the fast devel-
opment of distributed flexible event processing applications.
To achieve this, it is required that we can create new func-
tionality on the basis of existing ones, and that we can ex-
change parts of the system without affecting other parts. A
common approach in software development for this require-
ment is to decompose the complex system into smaller units,
called components or modules. Each of the components has
clearly defined bounds and a dedicated functionality. Addi-
tionally, the interaction between the components is defined
in terms of interfaces. We use this approach and derive ap-
propriate components and interfaces. An overview of the
proposed FERARI architecture is depicted in Figure 2.

We now describe the components and the decisions, that
lead to our choices. It is important to keep the architecture
as generic as possible, as we need to execute applications in
different runtime environments. As a runtime we consider a
distributed system, that provides the actual execution con-
text for the application. This may be a simulator, a dis-
tributed stream processing framework or even a distributed
physical sensor network. Especially for in-situ processing
there needs to be an adaptation optimized for the applica-
tion’s concrete environment. For that reason, we start the
decomposition of the application by isolating its algorithm
from the application’s part that depends on a specific ex-
ecution environment. The first part we call application al-
gorithm and the latter application runtime adaptation. The
division now makes the application algorithm independent
from the selected runtime platform and can, therefore, be re-
used in different execution environments. This decoupling
from the runtime now raises the demand to define abstract
versions of mechanisms used by our distributed algorithms.

The distributed algorithms in our current set of example
applications need access to communication primitives and
a distributed state. The concrete mechanisms for both de-
pend on the selected runtime adaptation, which is not ac-
cessible by the application algorithm. To enable this access,
we introduce a set of FERARI interfaces. We develop the
FERARI system using an agile process, therefore we cre-
ated the interfaces that we need for the geometric approach.
We want to monitor a global condition over a function, us-
ing the derived local conditions (c.f. Section 2). The local
and global condition are based on a local and a global state
respectively. These two parts of the state are represented
by the interface for distributed state. Additionally, the co-
ordinator needs to send information to the local node and
vice versa. Primitives for sending messages in each of theses
directions are provided by the other interface. The appli-
cation algorithm can now be created using this interfaces.
On side of the application runtime adaptation, we need to
provide the concrete implementation for the mechanism ex-
posed by the interfaces. All of the execution environments
use different types of abstractions, interfaces and nomencla-
ture. Additionally, it is a very demanding task to create
a efficient runtime adaptation for an arbitrary set of possi-
ble applications. Following an agile development principle,
we instead solve the more viable task of creating templates
for common application types. These FERARI templates
allow the re-use of runtime adaptations for different appli-
cations. They can provide a mapping of common patterns
onto the runtime implementation. Beyond this, some appli-
cations may require access to special features of a runtime
system. This may for instance be optimized network oper-
ations. Especially in the case of in situ processing, access
to these features is important to create an efficient runtime
adaptation. Therefore we provide access to these features
by exposing the native API of the execution engine.

It is possible to create applications using just the FERARI
interfaces and a runtime adaptation, and we give an example
for this in Section 4.1. Nevertheless, writing the application
code using these interfaces requires skills in distributed pro-
gramming and especially knowledge about communication
efficient algorithms. Therefore, we plan to provide a set of
ready to use blocks that can be called from the application
code directly, the FERARI Building Blocks. As a first ex-
ample of these blocks, we describe the current status of the
distributed stream monitoring block in Section 4. An out-
look for the other planned blocks is given in our concluding
remarks (Section 5).

3.2 Candidate Streaming Platforms
As we identified in Section 3.1, it is important to decou-
ple the application algorithm and the execution runtime.
We will now focus on candidate platforms within the exist-
ing open source streaming platform implementations. The
FERARI architecture itself will be available under a liberate
open source license, the Apache license. For that reason, we
consider only platform candidates that are compatible with
this license. Since there are a lot of streaming platform can-
didates, we focus on some popular ones, Storm, Trident,
Spark Streaming and Akka. We require a system that can
be scaled to handle the streams of data for huge volume
and high velocity. In current stream processing platforms,
this is achieved by horizontally scaling out, which means



additional processing nodes are added to increase the ca-
pacity. An effect of horizontal scaling is that the increased
amount of nodes also increases the probability of nodes fail-
ures. Therefore, the platform needs to provide mechanisms
to deal with system components failing. In Section 2 we ex-
plained how the geometric approach divides the monitoring
task to a local (checking for local violations) and a global
part (synchronization and determining if there is a global
violation/event). These two parts interact with each other
in adaptation cycles. The ability to support such cycles is
a key requirement for the platform that we choose. Addi-
tionally, our application scenarios include monitoring tasks.
In this application area it is important to create immedi-
ate reaction, for instance raise an alarm as soon as possible.
The requirement for the platform is, therefore, that it allows
processing with low latency. Another important aspect of
this application scenario is that potential alarms must not
be omitted. The processing of an input event may either
be guaranteed by the underlying platform (i.e., by ensuring
that messages are not lost), or it may be a concern of the
application. We now evaluate our candidates with respect
to the properties, possibility of adaptation cycles, latency
of processing and guarantees for processing provided by the
platform.

Apache Storm [3] initially was developed at Twitter, got
open-sourced in 2011 and is now an Apache top level project.
Processing in Storm is organized by a graph, the Storm
topology. Input stream data items enter the topology by
spouts and are called tuples in Storm terminology. Each of
these tuples is processed by Storm bolt, one at a time. The
approach of processing a single tuple at a time allows for
low latency processing. A storm bolt can execute arbitrary
Java code, and it emits new tuples as processing results.
These result tuples are then processed by the next bolts
in the topology. A storm topology can contain cycles, and
therefore allows for the adaptation cycles that we need. The
Storm system recovers from node failures, by restarting the
broken processing task at a different place. In case of fail-
ures, all state associated with a crashed tasks is lost. Storm
provides two types of processing guarantees, best effort and
at least once processing semantics. More on Storm’s imple-
mentation can be found in [14].

Trident is not an independent system - it is an abstraction
layer on top of Storm. It extends Storm by introducing
exactly-once execution semantics and a model for consistent
states. To achieve this, it switches from processing each
tuple individually to processing small amounts of tuples, the
mini batches, together. In general, mini batching increases
the time that elapses between the entering of a new tuple
in the system and the result being available. Further, the
processing topology in Trident is required to be a cycle-free
graph, which conflicts with the adaptation loop requirement
that we have.

Another development independent from Storm is the dis-
tributed processing framework Akka [1]. The organization
of the processing units follows the actor model. The actors
interact with each other by message passing and especially
cyclic connections can be constructed. There are no guaran-
tees on delivery or processing of messages - they are handled
at best effort. Each single message is processed individually,

Storm Trident Akka Spark
Cycles yes no yes no
Processing
Guarantees

best effort
and at least
once

exactly
once

best ef-
fort

exactly
once

Processing
Granularity

single tuple mini
batch

single
message

mini
batch

Figure 3: Properties of candidate distributed stream
porcessing platforms

therefore achieving low latency.

Apache Spark Streaming [2] is an extension of the recently
developed Spark processing system. Spark is a batch pro-
cessing system designed for caching intermediate results.
The streaming variant organizes the processing of the stream
in mini batches. Each operation on these batches is guaran-
teed to be performed exactly once. There is no way known
to the authors for constructing loops in the processing op-
erations.

A summary of the supported features of the evaluated plat-
forms is provided in Table 3. Our analysis reveals that Storm
provides most of the features we need for our system. Akka
remains to be an interesting candidate, if the targeted appli-
cation does not require at least once processing guarantees.

4. DISTRIBUTED STREAM MONITORING
We now focus on the important Distributed Stream Mon-
itoring building block and explain how distributed moni-
toring functions can be incorporated in our framework. As
we have mentioned, we are interested in detecting events,
which are emitted when a function, computed over the data
of different distributed nodes, has crossed a specific global
threshold. We give a basic example, counting the number of
distinct items in streams, to show the usage of the FERARI
interfaces in Section 4.1. This basic example does not yet
make use of the geometric approach. Since it is desirable to
allow code reusability for different monitoring functions, we
then present how declared distributed monitored functions
can be implemented using a hierarchy that we define. Our
function hierarchy alleviates the development of many im-
portant details of the geometric method, requiring minimal
new code for each new monitoring function, while at the
same time providing support for both the original geomet-
ric approach, as presented in [10, 11, 12, 13], as well as the
more recent Safe-Zone [8, 7, 9] approach, which improves
upon the original approach. In Section 4.2 we present our
function hierarchy that allows for easily defining and incor-
porating new functions for distributed monitoring. Please
note that both methods presented in Sections 4.1.1. and
4.2.1 do not depend on the underlying execution environ-
ment (i.e., Storm, SPARK etc). We show in Sections 4.1.2
and 4.1.3 respectively, how they can be be mapped to the
FERARI architecture.

4.1 Monitoring Global Threshold with Count
Distinct

4.1.1 Application Algorithm
Counting the number of distinct elements in streams of data
is a common pattern in various types of applications. For



Function
+monitoringVariables : FunctionState
+nodeData: NodeState[*]

+F(X:Real[*]): Real
+hasLocalViolation(NodeID:Integer): Boolean
+deleteNode(NodeID:Integer): Boolean
+update(NodeID:Integer,Tuple:Tuple): void

SafeZoneFunction

+safeZones: ConvexRegion[*]

+hasLocalViolation(NodeID:Integer): Boolean
+computeSafeZones(): void

BallFunction

+hasLocalViolation(NodeID:Integer): Boolean

ConvexRegion

+powers: Real[*]
+factors: Real[*]

+hasSafeZoneViolation(estimate:Real[*],drift:Real[*],inequality :String): Boolean

VarianceBall

+F(Real[*]): Real

VarianceSafeZone

+F(Real[*]): Real
+computeSafeZones(): void

FunctionState
+threshold: Real
+inequality: String = (">", "<", ">=", "<=")
+estimate: Real[*]

+setEstimate(newEstimate:Real[*]): void

NodeState
+lsv: Real[*]
+dv: Real[*]
+drift: Real[*]
+lastSent: Real[*]
+lastValues: Tuple[*]
+lsvSise: Integer

+ updateLSV(): void
+update(Tuple): void
+updateLastSent(): void
+updateDV(): void
+setDriftVector(): void

VarianceBNodeState

+updateLsv(): void

VarianceSZNodeState

+updateLsv(): void

Figure 4: Function Class Hierarchy.

instance, in a mobile fraud detection scenario, it is impor-
tant to keep track of the number of different locations a
mobile device is used within a certain period of time. If
a device changes too many times, this could be an indica-
tion of fraudulent usage. Another example for the same
counting pattern, originating from a different scenario is to
determine the popularity of an artist. For instance a ser-
vice like last.fm2 may monitor streams of events, in which
each of the events in a stream corresponds to a user listening
to a song. The popularity of an artist is measured by the
number of distinct users listening to songs of the artist. To
discover artists getting popular, it is relevant to know when
an artists exceeded a certain global threshold, the count of
distinct listeners.

An data sample of such events was collected by the author
of [4] and is now publicly available at the webpage3. We
will use these data and describe, how the pattern of count-
ing distinct elements in streams of data can be instantiated
using the proposed FERARI architecture. There are two
application dependent blocks we need to fill, the application
algorithm and the runtime adaption. Concerning the ap-
plication algorithm, it is common practice in the streaming
scenario to approximate the count of distinct items by ap-
plying sketching techniques. One type of such sketches are
linear sketches, which fit our needs in this example. The
details of the sketching algorithm can be found for instance
in [5]. The sketch is a compact synopsis of our data that can
be communicated more efficiently between the local nodes
and the coordinator. For each artist we maintain a sketch
to count the distinct at each of the distributed processing
units. Such a sketch is communicated with the global co-
ordinator only if it is required, i.e. if the count of distinct
users has increased by some percentage or by a fixed amount.
The coordinator, than also updates it’s global sketch for this

2http://www.last.fm/
3http://www.dtic.upf.edu/~ocelma/
MusicRecommendationDataset/lastfm-1K.html
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artist appropriately. Additionally, the coordinator detects
whether the global threshold has been crossed. In the case
of a global threshold violation, the coordinator takes appro-
priate actions, for instance raises the information about the
new popular artist and interacts with the local processing
units to make them reset the counters.

4.1.2 Mapping to the FERARI Architecture
This algorithm can now be created using the FERARI in-
terfaces. The local part implements the LocalState inter-
face, with two methods update and handleFromCoordina-

tor. The update method is called on incoming data and
provides new the listen events. HandleFromCoordinatorl

is used to reset the local counters as indicated by the co-
ordinator. Further, increased counts are reported to the
coordinator, via the sendToCoordinator method. For the
global part, the coordinator, the equally named interface
CoordinatorState is implemented. Here, we use the up-
date method to receive the notifications of increased counts.
As already mentioned, the coordinator resets counters in
regular intervals and notifies the local units by the send-



ToLocal method. Note that the application algorithm now
is formulated using FERARI interfaces and does not depen-
dend on the runtime. The application algorithm can now be
executed using an appropriate runtime system as proposed
in Section 3. We choose the Storm runtime for our example
and setup the topology as follows:

• A spout inserts the listen events as Storm tuples to the
topology.

• At random choice the tuples reach one of the Local-

Bolts.

• The LocalBolts are connected with the Coordinator-

Bolt by a named channel, a Storm stream. This con-
nection is achieved using a Storm global grouping.
Vice versa, the Coordinator uses another stream to
the LocalBolts, which is translated to a Storm all

grouping in the topology.

The Storm runtime adaption for this example, now maps
sendToLocal and sendToGlobal to emitting tuples on the
dedicated channels for each of the operations. The process-
ing in the LocalBolt decides on basis of the channel name,
if the update method or the handleFromCoordinator is in-
voked. In this example the coordinator only receives tu-
ples containing the updated sketches from the LocalBolts,
therefore the mapping to the processing hook is unique. The
complete view on the FERARI interfaces and the link to the
runtime adaption is given in Figure 5.

We now describe our more general solution to define moni-
toring tasks exploiting the geometric approach.

4.2 Monitoring Global Function Thresholds
4.2.1 Application Algorithm

In Figure 4 we present the function hierarchy that we have
developed in order to facilitate writing of applications that
make use of the geometric approach. The abstract class
Function represents the core elements that the geometric
approach contains. In this class, the abstract method F

must be provided for all developed functions and simply
returns the value of the function, computed over a multi-
dimensional point in the input domain. When an instance
of a function is created, this is done by also specifying two
important parameters: a threshold value and a parameter
inequality, which may obtain one of four possible values
“>”, “<”, “<=”, “>=”. A distributed event is then detected
when the condition f(v) inequality threshold becomes true.
For example, when inequality = ‘‘ >”, an event is detected
when f(v) > threshold. Once an event is detected, it re-
mains valid for the entire time until another global violation
occurs, meaning that the monitored condition has stopped
being true.

In order to minimize the implementation overhead when
adding new monitoring functions, a significant part of the
functionality of the geometric approach has been implemented
in our architecture, either at the most general Function

class, or at the two abstract classes BallFunction and Safe-

ZoneFunction. Starting from most general Function class,
we notice that it contains contains two types of variables.

The monitoringVariables parameter contains information
related to the function input parameters (threshold, in-

equality) and the estimate vector estimate. The nodeData
parameter contains information for one or more nodes. This
is general enough to accommodate implementations over dis-
tributed systems such as Storm, where each processing node
(i.e., bolts in Storm) may receive and process data for mul-
tiple nodes. For each node, we maintain:

• The most recently received data (lastValues variable
in the NodeState class). The addition of this data
is done through the update method. All stored tuples
are accompanied by the corresponding timestamp that
specifies when they were produced.

• The current local statistics vector (lsv) of the node.
This is calculated, if recent data arrives by the FER-
ARI interface update method of the node, through the
abstract method updateLSV. For each new declared
function, this method must be defined in a subclass
of NodeState. The parameter lsvSize specifies the
dimension of the lsv vector.

• Parameters relevant to the geometric approach, such
as the drift vector drift, the delta vector dv from the
last transmission of this node, a vector lastSent con-
taining the last transmitted lsv vector, and the cor-
responding methods that update the values of these
parameters. The transmission is achieved by using the
FERARI interface sendToCoordinator.

Besides the abstract F method that has already been men-
tioned, the class Function also contains some additional
methods. The abstract hasLocalViolation method answers
whether a local violation has occurred using the geometric
approach. In case a violation has occurred, it communicates
using the FERARI interface method sendToCoordinator.
The hasLocalViolation method is defined in a different way
for the two subclasses of Function.

The BallFunction and SafeZoneFunction classes contain
important functionality regarding the detection of events.
The hasLocalViolation method is implemented in both the
BallFunction, as well in the SafeZoneFunction subclasses.
In BallFunction, the way to check for a local violation in a
generic way is performed using a grid of points within the
sphere that each node constructs in order to check for a local
violation. Any function that wants to use the original tech-
nique with the spheres (c.f. Section 2) simply needs to: (i)
Create a subclass of BallFunction that provides the code
for the F method, (ii) Create a subclass of NodeState that
provides the code for the updateLSV method, and (iii) op-
tionally provide a better method for hasLocalViolation if
for the specific function it is simple to compute its maxi-
mum and minimum values within a sphere. If the third step
is omitted, the development of a new function literally re-
quires just a few lines of code and very limited knowledge
on the internals of the geometric approach.

The SafeZoneFunction class inherits the BallFunction class
because we may want to define a function that uses a safe
zone only when the estimate vector lies on one side of the
threshold, while checking for a local violation using the spheres



in the other case. In case we want to use a safe zone, this
is determined by the intersection of one or more convex re-
gions (class ConvexRegion). Given the value of lsvSize, and
two vectors factors and powers (having a dimensionality
of lsvSize+1 and lsvSize, respectively) each convex region
is defined as the set of points P that satisfy a multivariate
polynomial of the form:

∑lsvSize
i=1 factors[i] ∗ P [i]factors[i] =

factors[lsvSize]. When developing the code for a function
that uses safe zones, one simply needs to: (i) Create a sub-
class of SafeZoneFunction and provide the code for the F

method, (ii) Create a subclass of NodeState that provides
the code for the updateLSV method, and (iii) Provide the
method computeSafeZones that computes the safe zone to
use whenever the estimate vector is updated. With this hier-
archy, it is now possible to implement monitored conditions
over functions with little implementation effort.

4.2.2 Mapping to the FERARI Architecture
The Storm topology we derived in our basic example in Sec-
tion 4.1, can also be used to instantiate the more powerful
approach of our function hierarchy. As the FERARI inter-
faces are used to express the algorithm, we can map the re-
quired runtime adaption to our Storm topology. New input
data from the monitored streams reach the local nodes by
the update method and are directed to the function we moni-
tor accordingly. Local violations are communicated with the
coordinator by the sendToCoordinator method, which is be-
ing mapped to a global grouping between the LocalBolt

and CoordinatorBolt. In the other direction, the coordi-
nator provides the local nodes with an updated estimate
vector by the method sendToLocal. This is translated on
the Storm topology to an all grouping between the Coor-

dinatorBolt and the LocalBolts. The appropriate calcula-
tions required by the geometric approach, update of lsv, dv
and estimate. are invoked by the handleFromCoordinator

and handleFromLocal respectively. The same Storm, topol-
ogy with LocalBolt, CoordinatorBolt and the connecting
streams can be used, as runitme for the geometric monitor-
ing hierarchy. Therefore, this topology can act as FERARI
runtime adaption template.

5. CONCUSIONS AND FUTURE
DIRECTIONS

In this paper we proposed an architecture for distributed de-
tection and processing of events that allows the separation
of application specific code from runtime dependent code.
This is achieved by the introduction of the FERARI inter-
faces, which allow us to create applications for different exe-
cution environments. We evaluated established open source
distributed streaming platforms, Akka, Spark, Storm and
Trident and found that Storm best suits our requirements
for the distributed monitoring scenario. We demonstrated
how the proposed architecture can be used to implement
an interesting example, monitoring when artists get popu-
lar by analyzing a stream of listen events. Additionally, we
described how the powerful geometric monitoring approach
can be implemented using our architecture while requiring
tiny programming development efforts. Our code, in ad-
vance is public and available on-line 4.

Our future direction is to provide additional FERARI build-

4https://bitbucket.org/sbothe-iais/ferari

ing blocks. Especially, we are interested in including the
distributed online learning framework recently published in
[6]. Another important block we are working on within the
consortium is in providing the capabilities of the PROTON
engine, that is open sourced by our partner IBM 5. Finally,
we work on creating a query planer, that will allow to for-
mulate and dynamically optimize the monitoring task in a
very convenient way.
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