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Abstract. Earlier work has demonstrated the effectiveness of in-network data
aggregation in order to minimize the amount of messages exchanged during con-
tinuous queries in large sensor networks. The key idea is to build an aggregation
tree, in which parent nodes aggregate the values received from their children. Nev-
ertheless, for large sensor networks with severe energy constraints the reduction
obtained through the aggregation tree might not be sufficient. In this paper we ex-
tend prior work on in-network data aggregation to support approximate evaluation
of queries to further reduce the number of exchanged messages among the nodes
and extend the longevity of the network. A key ingredient to our framework is the
notion of the residual mode of operation that is used to eliminate messages from
sibling nodes when their cumulative change is small. We introduce a new algo-
rithm, based on potential gains, which adaptively redistributes the error thresholds
to those nodes that benefit the most and tries to minimize the total number of trans-
mitted messages in the network. Our experiments demonstrate that our techniques
significantly outperform previous approaches and reduce the network traffic by
exploiting the super-imposed tree hierarchy.

1 Introduction

Technological advances in recent years have made feasible the deployment of hundreds
or thousands of sensor nodes in an ad-hoc fashion, that are able to coordinate and perform
a variety of monitoring applications ranging from measurements of meteorological data
(like temperature, pressure, humidity), noise levels, chemicals etc. to complex military
vehicle surveillance and tracking applications. Independently of the desired functionality
of the sensors, all the above applications share several similar characteristics. First of
all, processing is often driven by designated nodes that monitor the behavior of either
the entire, or parts of the network. This monitoring is typically performed by issuing
queries, which are propagated through the network, over the data collected by the sensor
nodes. The output of the queries is then collected by the monitoring node(s) for further
processing. While typical database queries are executed once, queries in monitoring
applications are long-running and executed over a specified period, or until explicitly
being terminated. These types of queries are known as continuous queries [3,14].
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Another common characteristic of sensor node applications revolves around the
severe energy and bandwidth constraints that are met in such networks. In many ap-
plications sensor nodes are powered by batteries, and replacing them is not only very
expensive but often impossible (for example, sensors in a disaster area). In such cases,
energy-aware protocols involving the operation of the nodes need to be designed to
ensure the longevity of the network. This is the focus of the work in [9,10], where
energy-based query optimization is performed. The bandwidth constraints arise from
the wireless nature of the communication among the nodes, the short-ranges of their
radio transmitters and the high density of network nodes in some areas.

Recent work [8,9,15] has focused on reducing the amount of transmitted data by
performing in-network data aggregation. The main idea is to build an aggregation tree,
which the results will follow. Non-leaf nodes of that tree aggregate the values of their
children before transmitting the aggregate result to their parents. At each epoch, ideally,
a parent node coalesces all partial aggregates from its child nodes and transmits upwards
a single partial aggregate for the whole subtree.

All the above techniques try to limit the number of transmitted data while always
providing accurate answers to posed queries. However, there are many instances where
the application is willing to tolerate a specified error, in order to reduce the bandwidth
consumption and increase the lifetime of the network. In [11], Olston et al. study the
problem of error-tolerant applications, where the users register continuous queries along
with strict precision constraints at a central stream processor. The stream processor then
dynamically distributes the error budget to the remote data sources by installing filters
on them that necessitate the transmission of a data value from each source only when
the source’s observed value deviates from its previously transmitted value by more that
a threshold specified by the filter.

The algorithms in [11] cannot be directly applied to monitoring applications over
sensor networks. While the nodes in sensor networks form an aggregation tree where
messages are aggregated and, therefore, the number of transmitted messages depends
on the tree topology, [11] assumes a flat setup of the remote data sources, where the cost
of transmitting a message from each source is independent to what happens in the other
data sources. Moreover, as we will show in this paper, the algorithms in [11] may exhibit
several undesirable characteristics for sensor networks, such as:

• The existence of a few volatile data sources will make the algorithms of [11] dis-
tribute most of the available budget to these nodes, without any significant benefit,
and at the expense of all the other sensor nodes.

• The error distribution assumes a worst-case behavior of the sensor nodes. If any
node exceeds its specified threshold, then its data needs to be propagated to the
monitoring node. However, there might be many cases when changes from different
data sources effectively cancel-out each other. When this happens frequently, our
algorithms should exploit this fact and, therefore, prevent unnecessary messages
from being propagated all the way to the root node of the aggregation tree.

In this paper we develop new techniques for data dissemination in sensor networks
when the monitoring application is willing to tolerate a specified error threshold. Our
techniques operate by considering the potential benefit of increasing the error threshold
at a sensor node, which is equivalent to the amount of messages that we expect to save
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by allocating more resources to the node. The result of using this gain-based approach
is a robust algorithm that is able to identify volatile data sources and eliminate them
from consideration. Moreover, we introduce the residual mode of operation, during
which a parent node may eliminate messages from its children nodes in the aggregation
tree, when the cumulative change from these sensor nodes is small. Finally, unlike the
algorithms in [11], our algorithms operate with only local knowledge, where each node
simply considers statistics from its children nodes in the aggregation tree. This allows
for more flexibility in designing adaptive algorithms, and is a more realistic assumption
for sensors nodes with very limited capabilities [9].
Our contributions are summarized as follows:

1. We present a detailed analysis of the current protocols for data dissemination in sen-
sor networks in the case of error-tolerant applications along with their shortcomings.

2. We introduce the notion of the residual mode of operation. When the cumulative
change in the observed quantities of multiple sensor nodes is small, this operation
mode helps filter out messages close to the sensors, and prevents these messages
from being propagated all the way to the root of the aggregation tree. We also extend
previous algorithms to make use of the residual mode and explore their performance.

3. We introduce the notion of the potential gain of a node or an entire subtree and em-
ploy it as an indicator of the benefit of increasing the error thresholds in some nodes
of the subtree. We then present an adaptive algorithm that dynamically determines
how to rearrange the error thresholds in the aggregation tree using simple, local
statistics on the potential gains of the nodes. Similarly to [11], the sensor nodes in
our techniques periodically shrink their error thresholds to create an error “budget”
that can be re-distributed amongst them. This re-distribution of the error is neces-
sary to account for changes in the behavior of each sensor node. Unlike [11], where
nodes are treated independently, our algorithm takes into account the tree hierarchy
and the resulting interactions among the nodes.

4. We present an extensive experimental analysis of our algorithms in comparison to
previous techniques. Our experiments demonstrate that, for the same maximum error
threshold of the application, our techniques have a profound effect on reducing the
number of messages exchanged in the network and outperform previous approaches,
up to a factor of 7 in some cases.

The rest of the paper is organized as follows. Section 2 presents related work. In
Sect. 3 we describe the algorithms presented in [11] and provide a high level descrip-
tion of our framework. In Sect. 4 we discuss the shortcomings of previous techniques
when applied to sensor networks. Section 5 presents our extensions and algorithms for
dynamically adjusting the error thresholds of the sensor nodes. Section 6 contains our
experiments, while Sect. 7 contains concluding remarks.

2 Related Work

The development of powerful and inexpensive sensors in recent years has spurred a
flurry of research in the area of sensor networks, with particular emphasis in the topics of
network self-configuration [2], data discovery [6,7] and in-network query processing [8,
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9,15]. For monitoring queries that aggregate the observed values from a group of sensor
nodes, [8] suggested the construction of a greedy aggregation tree that seeks to maximize
the number of aggregated messages and minimize the amount of the transmitted data.
To accomplice this, nodes may delay sending replies to a posed query in anticipation
of replies from other queried nodes. A similar approach is followed in the TAG [9],
TinyDB [10] and Cougar [15] systems. In [5], a framework for compensating for packet
loss and node failures during query evaluation is proposed. The work in [9] also addressed
issues such as query dissemination, sensor synchronization to reduce the amount of time
a sensor is active and therefore increase its expected lifetime, and also techniques for
optimizations based on characteristics of the used aggregate function. Similar issues are
addressed in [10], but the emphasis is on reducing the power consumption by determining
appropriate sampling rates for each data source. The above work complements our
in many cases, but our optimizations methods are driven by the error bounds of the
application at hand.

The work in [11] addressed applications that tolerate a specified error threshold and
presented a novel, dynamic algorithm for minimizing the number of transmitted mes-
sages. While our work shares a similar motivation with the work in [11], our methods
apply over a hierarchical topology, such as the ones that are typically met in continuous
queries over sensor networks. Similarly, earlier work in distributed constraint check-
ing [1,13] cannot be directly applied in our setting, because of the different communi-
cation model and the limited resources at the sensors. The work of [12] provides qual-
ity guarantees during in-network aggregation, like our framework, but this is achieved
through a uniform allocation strategy and does not make use of the residual mode of
operation that we introduce in this paper. The evaluation of probabilistic queries over
imprecise data was studied in [4]. Extending this work to hierarchical topologies, such
as the ones studied in our paper, is an open research topic.

3 Basics

We first describe Olston’s framework and algorithms [11] for error-tolerant monitoring
applications in flat, non-hierarchical, topologies, and then provide a high-level descrip-
tion of our framework. The notation that we will use in the description of our algorithms
is presented in Table 1. A short description of the characteristics of sensor nodes, and
sensor networks in general can be found in the full version of this paper.

3.1 Olston’s Framework for Error Tolerant Applications

Consider a node Root, which initiates a continuous query over the values observed by
a set of data sources. This continuous query aggregates values observed by the data
sources, and produces a single aggregate result. For each defined query, a maximum
error threshold, or equivalently a precision constraint E Global that the application is
willing to tolerate is specified. The algorithm will install filters at each queried data
source, that will help limit the number of transmitted messages from the data source.
The selection process for the filters enforces that at any moment t after the installation of
the query to the data sources, the aggregate value reported at node Root will lie within
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the specified error threshold from the true aggregate value (ignoring network delays, or
lost messages).

Initially, a filter Fi is installed in every data source Si, such that the initial error
guarantees are not violated. Each filter Fi is an interval of real values [Li, Hi] of width
Wi = Hi − Li, such that any source Si whose current observed value Currenti lies
outside its filter Fi will need to transmit its current value to the Root node and then
re-center its filter around this transmitted value, by setting Li = Currenti − Wi/2 and
Hi = Currenti +Wi/2. However, if Currenti lies within the interval specified by the
filter Fi, then this value does not need to be transmitted.

In order for the algorithm to be able to adapt to changes in the characteristics of
the data sources, the widths Wi of the filters are periodically adjusted. Every Upd
time units, Upd being the adjustment period, each filter shrinks its width by a shrink
percentage (shrinkFactor). At this point, the Root node obtains an error budget equal
to (1−shrinkFactor)×E Global, which it can then distribute to the data sources. The
decision of which data sources will increase their window Wi is based on the calculation
of a Burden Score metric Bi for each data source, which is defined as: Bi = Ci

Pi×Wi
.

In this formula, Ci is the cost of sending a value from the data source Si to the Root
and Pi is the estimated streamed update period, defined as the estimated amount of time
between consecutive transmissions for Si over the last period Upd. For a single query
over the data sources, it is shown in [11] that the goal would be to try and have all the
burden scores be equal. Thus, the Root node selects the data sources with the largest
deviation from the target burden score (these are the ones with the largest burden scores
in the case of a single query) and sends them messages to increase the width of their
windows by a given amount. The process is repeated every Upd time units.

A key drawback of the approach, when applied over sensor networks, is the require-
ment from each node that makes a transmission because its measured value was outside
its error filter to also transmit its burden score. In hierarchical topologies, where mes-
sages from multiple nodes are aggregated on their path to the Root node, this may result
in a significant amount of side-information that needs to be communicated along with
the aggregate value (one burden score for each node that made a transmission), which
defeats the purpose of the algorithm, namely the reduction in the amount of information
being transmitted in the network.

3.2 A Framework for Hierarchical Data Aggregation

The model that we consider in this paper is a mixture of the Olston [11] and TAG [9]
models. Similarly to [11], we consider error-tolerant applications where precision con-
straints are specified and filters are installed at the data sources. Unlike [11], we consider
a hierarchical view of the data sources, based on the paths that the aggregate values follow
towards the Root node.

We assume that the aggregation tree (ex: Fig. 1) for computing and propagating the
aggregate has already been established. Techniques for discovering and modifying the
aggregation tree are illustrated in [9]. There are two types of nodes in the tree. Active
nodes, marked grey in the figure, are nodes that collect measurements. Passive nodes (for
example, node 2 in the figure) are intermediate nodes in the tree that do not record any
data for the query but rather aggregate partial results from their descendant nodes. By
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Table 1. Symbols Used in our Algorithms

Symbol Description

Ni Sensor node i
Wi The width of the filter of sensor Ni

Ei = Wi/2 Maximum permitted error in node Ni

E Subi Maximum permitted error in entire subtree
of node Ni

E Global Maximum permitted error of the application
Upd Update period of adjusting error filters
shrinkFactor Shrinking Factor of filter widths
T Number of nodes in the aggregation tree
Root The node initiating the continuous query
Gain The estimated gain of allocating additional

error to the node
CumGain The estimated gain of allocating additional

error to the the node’s entire subtree
CumGain Sub[i] The estimated gain of allocating additional

error to the the node’s i-th subtree

1

4 5 6

8

87

2 3

E_Global = 13.5
E  = 01

E  = 0 E  = 2.5

E  = 3E  = 1E  = 2E  = 4E  = 14 5 6 7

32

Fig. 1. Sample Aggregation Tree

default all leaf nodes are active, while intermediate nodes may be either active or passive.
Our algorithms will install a filter to any node Ni in the aggregation tree, independently
on whether the node is an active or passive one. This is a distinct difference from the
framework of [11], where filters are assigned only to active nodes.

Similarly to the work in [11], our work covers queries containing any of the five stan-
dard aggregate functions: SUM, AVG, COUNT, MIN and MAX. The COUNT function
can always be computed exactly, while the AVG function can be computed by the SUM
and COUNT aggregates. The use of MIN and MAX is symmetric. The work in [11]
demonstrated how these queries can be treated as a collection of AVG queries. The same
observations apply in our case as well. In this paper, the focus of our discussion will
thus be on queries involving the SUM aggregate function.

Figure 1 shows the maximum error of each filter for a query calculating the SUM
aggregate over the active nodes of the tree. Notice that the sum of the errors specified
is equal to the maximum error that the application is willing to accept (E Global).
Moreover, there is no point in placing an error filter in the Root node, since this is where
the result of the query is being collected.

We now describe the propagation of values in the aggregation tree, using a radio
synchronization process similar to the one in [9]. During an epoch duration and within
the time intervals specified in [9] the sensor nodes in our framework operate as follows:

• An active leaf node i obtains a new measurement and forwards it to its parent if the
new measurement lies outside the interval [Li, Hi] specified by its filter.

• A passive (non-leaf) node awaits for messages from its children. If one or more
messages are received, they are combined and forwarded to its own parent only if
the new partial aggregate value of the node’s subtree does not lie within the interval
specified by the node’s filter. Otherwise, the node remains idle.

• An active non-leaf node obtains a new measurement and waits for messages from its
children nodes as specified in [9]. The node then recomputes the partial aggregate
on its subtree (which is the aggregation of its own measurement with the values
received by its child-nodes) and forwards it to its parent only if the new partial
aggregate lies outside the interval specified by the node’s filter.
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Along this process, the value sent from a node to its parent is either (i) the node’s
measurement if the node is a leaf or (ii) the partial aggregate of all measurements in the
node’s subtree (including itself) if the node is an intermediate node. In both cases, a node
remains idle during an epoch if the newly calculated partial aggregate value lies within
the interval [Li, Hi] specified by the node’s filter. This is a distinct difference from [11],
where the error filters are applied to the values of the data sources, and not on the partial
aggregates calculated by each node.

Details on the operation of the sensor nodes will be provided in the following sections.
In our discussion hereafter, whenever we refer to Olston’s algorithm we will assume the
combination of its model with the model of TAG, which aggregates messages within the
aggregation tree. Compared to [11], we introduce two new ideas:

1. A new algorithm for adjusting the widths of filters in the nodes: Our algorithm
bases its decisions on estimates of the expected gain of allocating additional error
to different subtrees. In this way, our algorithm is more robust to the existence of
volatile nodes, nodes where the value of the measured quantity changes significantly
in each epoch. Moreover, the estimation of gains is performed based only on local
statistics for each node (that take into account the tree topology), in contrast to
Olston’s framework where sources are independent and a significant amount of
information needs to be propagated to the Root node. These statistics are a single
value for each node, which can be piggy-backed at the transmitted messages. The
details of this process are presented in Sect. 5.

2. A hierarchical-based mode of operation: The filters in non-leaf nodes are used in
a mode that may potentially filter messages transmitted from their children nodes,
and not just from the node itself. We denote this type of operation as residual-based
operation, and also denote the error assigned to each node in this case as a residual
error. We show that under the residual-based mode nodes may transmit significantly
fewer messages than in a non-residual operation because of the coalescing of updates
that cancel out and are not propagated all the way to the Root node.

4 Problems of Existing Techniques

We now discuss in detail the shortcomings of the algorithms of [11] when applied in
the area of sensor networks, and motivate the solutions that we present in the following
section.

Hierarchical Structure of Nodes. As we have mentioned above, the sensor nodes that
either measure or forward data relevant to a posed continuous query form an aggregation
tree, which messages follow on their path to the node that initiated the query. Due to
the hierarchical structure of this tree, transmitted values by some node in the tree may
be aggregated at some higher level (closer to the Root node) with values transmitted by
other sensor nodes. This has two main consequences: (1) While each data transmission
by a node Ni may in the worst case require transmitting as many messages as the distance
of Ni from the Root node, the actual cost in most cases will be much smaller; and (2) The
actual cost of the above transmission is hard to estimate, since this requires knowledge of
which sensors transmitted values, and their exact topology. However, this is an unrealistic
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scenario in sensor networks, since the additional information required would have to be
transmitted along with the aggregate values. The cost of transmitting this additional
information would outweight all the benefits of our (or Olston’s) framework.

The calculation of the Burden Score in [11] (see Sect. 3.1) requires knowledge of
the cost of each transmission, since this is one of the three variables used in the formula.
Therefore, the techniques introduced in [11] can be applied in our case only by using a
heuristic function for the cost of the message. However, it is doubtful that any heuristic
would be an accurate one. Consider, for example, the following two cases: (1) All the
nodes in the tree need to transmit their observed value. Then, if the tree contains T nodes,
under the TAG [9] model exactly T − 1 messages will be transmitted (the Root node
does not need to transmit a message), making the average cost of each transmission to be
equal to 1; and (2) If just one node needs to transmit its observed value, then this value
may be propagated all the way to the Root. This always happens under the framework
of [11], but not in our framework. In this case, the cost of the message will be equal to
the distance (in number of hops or tree edges) of the node from the Root, since this is
the number of messages that will ultimately be transmitted.

In our algorithms we will thus seek to use a metric that will not be dependent on
the cost of each transmission, since this is not only an estimate that is impractical to
calculate, but also because it varies substantially over time, due to the adaptive nature of
our algorithms, and the (possibly) changing characteristics of the data observed by the
sensor nodes.

Robustness toVolatile Nodes. One of the principle ideas behind the adaptive algorithms
presented in [11] is that an increase in the width of a filter installed in a node will result in
a decrease at the number of transmitted messages by that node. While this is an intuitive
idea, there are many cases, even when the underlying distribution of the observed quantity
does not change, where an increase in the width of the filter does not have any impact
in the number of transmitted messages. To illustrate this, consider a node whose values
follow a random step pattern, meaning that the observed value at each epoch differs by
the observed value in the previous epoch by either +∆ or −∆. In this case, any filter
with a window whose width is less than 2 × ∆ will not be able to reduce the number of
transmitted messages. A similar behavior may be observed in cases where the measured
quantity exhibits a large variance. In such cases, even a filter with considerable width
may not be able to reduce but a few, if any, transmissions.

The main reason why this occurs in Olston’s algorithm is because the Burden Score
metric being used does not give any indication about the expected benefit that we will
achieve by increasing the width of the installed filter at a node. In this way, a significant
amount of the maximum error budget that the application is willing to tolerate may be
spent on a few nodes whose measurements exhibit the aforementioned volatile behavior,
without any real benefit.

In the algorithms that are presented in the next section we propose a method for
distributing the available error using a gain-based policy, which will distribute the error
budget to subtrees and nodes based on the expected gain of each decision. Our algo-
rithms identify very volatile nodes which incur very small potential gains and isolate
them. Even though the result of this approach is a constant transmission by these nodes,
the cost of these transmissions is amortized due to the aggregation of messages that
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we described above. Our experiments validate that such an approach may result in a
significant decrease in the number of transmitted messages, due to the more efficient
utilization of the error budget in other non-volatile sensor nodes.

Negative Correlations in NeighboringAreas. According to the algorithms in [11], each
time the value of a measured quantity at a node Ni lies outside the interval specified by
the filter installed at Ni, then the new value is transmitted and propagated to the Root
node. However, there might be cases when changes from nodes belonging to different
subtrees of the aggregation tree either cancel out each other, or result in a very small
change in the value of the calculated aggregate. This may happen either because of a
random behavior of the data, or because of some properties of the measured quantity.
Consider for example the aggregation tree of Fig. 1, and assume that each node observes
the number of items moving within the area that it monitors. If some objects move from
the area of node 4 to the area of node 5, then the changes that will be propagated to node
2 will cancel out each other. Even in cases when the overall change of the aggregate
value is non-zero, but relatively small, and such a behavior occurs frequently, we would
like our algorithms to be able to detect this and filter these messages without having
them being propagated to the Root node.

The algorithm that we will present in the next section introduces the notion of a
residual mode of operation to deal with such cases. The width of the filters installed in
non-leaf nodes is increased in cases when it is detected that such an action may result
in filtering out a significant number of messages from descendant nodes.

5 Our Algorithms

In this section we first describe in detail our framework and demonstrate the operation
of the nodes. We then present the details of our algorithms for dynamically modifying
the widths of the filters installed in the sensor nodes.

5.1 Operation of Nodes

We now describe the operation of each sensor node using the notation of Table 1. Detailed
pseudocode for this operation can be found in the full version of this paper. A filter is
initially installed in each node of the aggregation tree, except from the Root node.
The initial width of each filter is important only for the initial stages of the network’s
operation, as our dynamic algorithm will later adjust the sizes of the filters appropriately.
For example, another alternative would have been to install filters with non-zero width
in the initialization phase only to active nodes of the network. In our algorithms we
initialize the widths of the error filters similarly to the uniform allocation method. For
example, in the case when the aggregate function is the function SUM , then each of the
T − 1 nodes in the aggregation tree besides the Root node is assigned the same fraction
E Global/(T − 1) of the error E Global that the application is willing to tolerate.

In each epoch, the node obtains a measurement (V Curr) related to the observed
quantity only if it is an active node, and then waits for messages from its children
nodes containing updates to their measured aggregate values. We here note that each
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node computes a partial aggregate based on the values reported by its children nodes in
the tree. This is a recursive procedure which ultimately results in the evaluation of the
aggregate query at the Root node. After waiting for messages from its children nodes,
the current node computes the new value of the partial aggregate based on the most
current partial aggregate values LastReceived[i] it has received from its children.

The new aggregate is calculated using a Combine function, which depends on the
aggregate function specified by the query. In Table 2 we provide its implementation for
the most common aggregate functions. In the case of the AVG aggregate function, we
calculate the sum of the values observed at the active nodes, and then the Root node will
divide this value with the number of active nodes participating in the query.

After calculating the current partial aggregate, the node must decide whether it needs
to transmit a measurement to its parent node or not. This depends on the operation mode
being used. In a non-residual mode, the node would have to transmit a message either
when the value of the measured quantity at the node itself lies outside its filter, or when
at least one of the subtrees has transmitted a message and the new changes do not exactly
cancel out each other. This happens because in the non-residual mode (e.g. the original
algorithm of [11]) the error filters are applied to the values measured by each node,
and not to the partial aggregates of the subtree. On the contrary, in a residual mode of
operation, which is the mode used in our algorithms, the node transmits a message only
when the value of the new partial aggregate lies outside the node’s filter. In both modes of
operation the algorithm that distributes the available error enforces that for any node Ni,
its calculated partial aggregate will never deviate by more than E Subi from the actual
partial aggregate of its subtree (ignoring propagation delays and lost messages). At each
epoch the node also updates some statistics which will be later used to adjust the widths
of the filters. The cumulative gain of the node, which is a single value, is the only statistic
propagated to the parent node at each transmission. This adjustment phase is performed
every Upd epochs. The first step is for all nodes to shrink the widths of their filters by a
shrinking factor shrinkFactor (0 ≤ shrinkFactor < 1). After this process, the Root
node has an error budget of size E Global × (1 − shrinkFactor), where E Global is
the maximum error of the application, that it can redistribute recursively to the nodes of
the network. Details of the adjustment process will be given later in this section.

5.2 Calculating the Gain of Each Node

Our algorithm updates the width of the filter installed in each node by considering the
potential gain of increasing the error threshold at a sensor node, which is defined as the
amount of messages that we expect to save by allocating more resources to the node. The
result of using this gain-based approach is a robust algorithm that respects the hierarchy
imposed by the aggregation tree and, at the same time, is able to identify volatile data
sources and eliminate them from consideration. This computation of potential gains, as
we will show, requires only local knowledge, where each node simply considers statistics
from its children nodes in the aggregation tree. In Fig. 2 we show the expected behavior
of a sensor node Ni, varying the width of the its filter Wi. The y-axis plots the number
of messages sent from this node to its parent in the aggregation tree in a period of Upd
epochs. Assuming that the measurement on the node is not constant, a zero width filter
(Wi = Ei = 0) results in one message for each of the Upd epochs. By increasing the
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Table 2. Definition of the Combine
function

Aggregate
Function Implementation of Combine Function

SUM V Curr +
∑

i
LastReceived[i]

AVERAGE V Curr +
∑

i
LastReceived[i]

MAX max{V Curr, maxi{LastReceived[i]}}
MIN min{V Curr, mini{LastReceived[i]}}

expand
shrink expand

shrinkFactor * W

shrink

Width

Number of Messages

C

C
Upd

W+dWW

Fig. 2. Potential Gain of a Node

width of the filter, the number of messages is reduced, up to the point that no messages
are required. Of course, in practice, this may never happen as the width of the filter
required may exceed the global error constraint E Global. Some additional factors that
can make a node deviate from the typical behavior of Fig. 2 also exist. As an example,
the measurement of the node may not change for some period of time exceeding Upd.
In such a case, the curve becomes a straight line at y=0 and no messages are being sent
(unless there are changes on the subtree rooted at the node). In such cases of very stable
nodes, we would like to be able to detect this behavior and redistribute the error to other,
more volatile nodes. At the other extreme, node Ni may be so volatile that even a filter
of considerable width will not be able suppress any messages. In such a case the curve
becomes a straight line at y=Upd. Notice that the same may happen because of a highly
volatile node Nj that is a descendant of Ni in the aggregation tree.

In principle, we can not fully predict the behavior of a node Ni unless we take into
account its interaction will all the other nodes in its subtree. Of course, a complete knowl-
edge of this interaction is infeasible, due to the potentially large amounts of information
that are required, as described in Sect. 4. We will thus achieve this by computing the
potential gains of adjusting the width of the node’s filter Wi, using simple, local statistics
that we collect during the query evaluation.

Let Wi be the width of the filter installed at node Ni at the last update phase.
The node also knows the shrinkFactor that is announced when the query is initiated.
Unless the adaptive procedure decides to increase the error of the node, its filter’s width
is scheduled to be reduced to shrinkFactor×Wi in the next update phase, which takes
place every Upd epochs. The node can estimate the effects of this change as follows. At
the same time that the node uses its filter Wi to decide whether or not to send a message
to its parent, it also keeps track of its decision assuming a filter of a smaller width of
shrinkFactor × Wi. This requires a single counter Cshrink that will keep track of the
number of messages that the node would have sent if its filter was reduced. Cshrink gives
as an estimate of the negative effect of reducing the filter of Ni. Since we would also
like the node to have a chance to increase its filter, the node also computes the number
of messages Cexpand in case its filter was increased by a factor dW to be defined later.1

1 Even though this computation, based on two anchor points, may seem simplistic, there is little
more that can truly be accomplished with only local knowledge, since the node cannot possibly
know exactly which partial aggregates it would have received from its children in the case of
either a smaller or a larger filter, because these partial aggregates would themselves depend on
the corresponding width changes in the filters of the children nodes.
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Our process is demonstrated in Fig. 2. Let δG ≥ 0 be the reduction in the number
of messages by changing the width from shrinkFactor × Wi (which is the default in
the next update phase) to Wi + dW . The potential gain for the node is defined as:

Gaini = δG = Cshrink − Cexpand .

It is significant to note that our definition of the potential gain of a node is independent on
whether the node is active or not, since the algorithm for deciding whether to transmit a
message or not is only based on the value of the partial aggregate calculated for the node’s
entire subtree. Moreover, the value of dW is not uniquely defined in our algorithms. In
our implementation we use the following heuristic for the computation of gains:

• For leaf nodes, we use dW = E Global
Nactive

, Nactive being the number of active nodes
in the aggregation tree.

• For non-leaf nodes, in the residual mode, we need a larger value of dW , since
the expansion of the node’s filter should be large enough to allow the node to
coalesce negative correlations in the changes of the aggregates on its children nodes.
As a heuristic, we have been using dW = num childreni × E Global

Nactive
, where

num childreni is the number of children of node Ni.

These values of dW have been shown to work well in practice on a large variety of
tested configurations. We need to emphasize here that these values are used to give the
algorithm an estimate on the behavior of the sensor and that the actual change in the
widths Wi of the filters will also be based on the amount of “error budget” available and
the behavior of all the other nodes in the tree.

Computation of Cumulative Gains. The computation of the potential gains, as ex-
plained above, may provide us with an idea of the effect that modifying the size of the
filter in a node may have, but is by itself inadequate as a metric for the distribution of
the available error to the nodes of its subtree. This happens because this metric does not
take into account the corresponding gains of descendant nodes in the aggregation tree.
Even if a node may have zero potential gain (this may happen, for example, if either
the node itself or some of its descendants are very volatile), this does not mean that we
cannot reduce the number of transmitted messages in some areas of the subtree rooted
at that node.

Because of the top-down redistribution of the errors that our algorithm applies, if no
budget is allocated to Ni by its parent node then all nodes in the subtree of Ni will not
get a chance to increase their error thresholds and this will eventually lead to every node
in that subtree to send a new message on each epoch, which is clearly an undesirable
situation. Thus, we need a way to compute the cumulative gain on the subtree of Ni and
base the redistribution process on that value. In our framework we define the cumulative
gain on a node Ni as:

CumGaini =
{

Gaini Ni is a leaf node
Gaini +

∑
Nj∈children(Ni) CumGain Sub[j] otherwise .

This definition of the cumulative gain has the following desirable properties: (1) It is
based on the computed gains (Gaini) that is purely a local statistic on a node Ni; and (2)
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The recursive formula can be computed in a bottom-up manner by having nodes piggy-
back the value of their cumulative gain in each message that they transmit to their parent
along with their partial aggregate value. This is a single number that is being aggregated
in a bottom-up manner, and thus poses a minimal overhead.2 Moreover, transmitting the
cumulative gain is necessary only if its value has changed (and in most cases only if this
change is significant) since the last transmission of the node.

5.3 Adjusting the Filters

The algorithm for adjusting the widths of the filters is based on the cumulative gains
calculated at each node. Every Upd epochs, we mentioned before that all the filters
shrink by a factor of shrinkFactor. This results in an error budget of E Global × (1−
shrinkFactor) which the Root node can distribute to the nodes of the tree. Each node
Ni has statistics on the potential gain of allocating error to the node itself (Gaini), and
the corresponding cumulative gain of allocating error to each of its subtrees. Using these
statistics, the allocation of the errors is performed as follows, assuming that the node
can distribute a total error of E Additional to itself and its descendants:

1. For each subtree j of node Ni, allocate error E Subj proportional to its cumulative

gain: E Additionalj = E Additional×CumGain Sub[j]
Gaini+

∑
Nj∈children(Ni)

CumGain Sub[j]
. This distribution

is performed only when this quantity is at least equal to E Global/Nactive.

2. The remaining error budget is distributed to the node itself.

The fraction of the error budget allocated to the node itself and to each of the subtrees
is analogous to the expected benefit of each choice. The only additional detail is that in
case when the error allocated to a subtree of node Ni is less than the E Global/Nactive

value, then we do not allocate any error in that subtree, and allocate this error to node
Ni itself. This is done to avoid sending messages for adjusting the filters when the error
budget is too small.

6 Experiments

We have developed a simulator for sensor networks that allows us to vary several param-
eters like the number of nodes, the topology of the aggregation tree, the data distribution
etc. The synchronization of the sensor nodes is performed, for all algorithms, as described
in TAG [9]. In our experiments we compare the following algorithms:

1. BBA (Burden-Based Adjustment): This is an implementation of the algorithm pre-
sented in [11] for the adaptive precision setting of cached approximate values.

2. Uni: This is a static setting where the error is evenly distributed among all ac-
tive sensor nodes, and therefore does not incur any communication overhead for
adjusting the error thresholds of the nodes.

2 In contrast, the algorithm of [11], requires each node to propagate the burden scores of all of its
descendant nodes in the aggregation tree whose observed values was outside their error filters.
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3. PGA (Potential Gains Adjustment): This is our precision control algorithm, based
on the potential gains (see Sect. 5), for adjusting the filters of the sensor nodes.

For the PGA and BBA algorithms we made a few preliminary runs to choose their
internal parameters (adjustment period, shrink percentage). Notice that the adjustment
period determines how frequently the precision control algorithm is invoked, while the
shrink percentage determines how much of the overall error budget is being redistributed.
Based on the observed behavior of the algorithms, we have selected the combination
of values of Table 3(a) as the most representative ones for revealing the “preferences”
of each algorithm. The first configuration (Conf1) consistently produced good results,
in a variety of tree topologies and datasets, for the PGA algorithm, while the second
configuration (Conf2) was typically the best choice for the BBA algorithm. In the BBA
algorithm we also determined experimentally that distributing the available error to 10%
of the nodes with the highest burden scores was the best choice for the algorithm.

The initial allocation of error thresholds was done using the uniform policy. We then
used the first 10% of epochs as a warm-up period for the algorithms to adjust their
thresholds and report the results (number of transmitted messages) for the later 90%. We
used synthetic data, similar in spirit to the data used in [11]. For each simulated active
node, we generated values following a random walk pattern, each with a randomly
assigned step size in the range (0 . . . 2]. We further added in the mix a set of “unstable
nodes” whose step size is much larger: (0 . . . 200]. These volatile nodes allow us to
investigate how the different algorithms adapt to noisy sensors. Ideally, when the step-
size of a node is comparable to the global error threshold, we would like the precision
control algorithm to restrain from giving any of the available budget to that node at the
expense of all the other sensor nodes in the tree. We denote with Punstable the probability
of an active node being unstable.

Punstable describes the volatility of a node in terms of the magnitude of its data values.
Volatility can also be expressed in the orthogonal temporal dimension. For instance some
nodes may not update their values frequently, while others might be changing quite
often (even by small amounts, depending on their step size). To capture this scenario,
we further divide the sensor nodes in two additional classes: workaholics and regulars.
Regular sensors make a random step with a fixed probability of 1% during an epoch.
Workaholics, on the other hand, make a random step on every epoch. We denote with
Pworkaholic the probability of an active node being workaholic.

We used three different network topologies denoted as Tleaves, Tall and Trandom.
In Tleaves the aggregation tree was a balanced tree with 5 levels and a fan-out of 4 (341
nodes overall). For this configuration all active nodes were at the leaves of the tree. In
Tall, for the same tree topology, all nodes (including the Root) were active. Finally in
Trandom we used 500 sensor nodes, forming a random tree each time. The maximum
fan-out of a node was in that case 8 and the maximum depth of the tree 6. Intermediate
nodes in Trandom were active with probability 20% (all leaf nodes are active by default).

In all experiments presented here, we executed the simulator 10 times and present
here the averages. In all runs we used the SUM aggregate function (the performance of
AVG was similar).
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Benefits of Residual Operation and Sensitivity Analysis. The three precision control
algorithms considered (Uni, PGA, BBA) along with the mode of operation (residual:
Res, non-residual: N oRes) provide us with six different choices (Uni+Res, Uni+
N oRes . . . ). We note that BBA+N oRes is the original algorithm of [11] running over
TAG, while BBA+Res is our extension of that algorithm using the residual mode of
operation. The combination PGA+Res denotes our algorithm. In this first experiment
we investigate whether the precision control algorithms benefit from the use of the
residual mode of operation. We also seek their preferences in terms of the values of
parameters adjustment period and shrink percentage.

We used a synthetic dataset with Punstable=0 and Pworkaholic=0.2. We then let the
sensors operate for 40,000 epochs using a fixed error constraint E Global=500. The
average value of the SUM aggregate was 25,600, meaning that this E Global value
corresponds to a relative error of about 2%. In Table 3(b) we show the total number of
messages in the sensor network for each choice of algorithm and tree topology and each
selection of parameters. We also show the number of messages for an exact computation
of the SUM aggregate using one more method, entitled as (E Global=0)+Res, which
places a zero width filter in every node and uses our residual mode of operation for
propagating changes. Effectively, a node sends a message to its parent only when the
partial aggregate on its subtree changes. This is nothing more than a slightly enhanced
version of TAG. The following observations are made:

• Using a modest E Global value of 500 (2% relative error), we are able to reduce the
number of messages by 7.6-9.9 times (in PGA+Res) compared to (E Global=0)+
Res. Thus, error-tolerate applications can significantly reduce the number of trans-
missions, resulting in great savings on both bandwidth and energy consumption.

• Algorithm PGA seems to require fewer invocations (larger adjustment period) but
with a larger percentage of the error to be redistributed (a smaller shrink percentage
results in a wider reorganization of the error thresholds). In the table we see that the
number of messages for the selection of values of Conf1 is always smaller. Intuitively,
larger adjustment periods, allow for more reliable statistics on the computation of
potential gains. On the contrary, BBA seems to behave better when filters are
adjusted more often by small increments. We also note that BBA results in a lot
more messages than PGA, no matter which configuration is used.

• The PGA algorithm, when using the residual operation (PGA+Res), results in
substantially fewer messages that all the other alternatives. Even when using the
non-residual mode of operation, PGA outperforms, significantly, the competitive
algorithms.

• BBA seems to benefit only occasionally from the use of the residual operation. The
adjustment of thresholds based on the burden of a node can not distinguish on the
true cause of a transmission (change on local measurement or change in the subtree)
and does not seem to provide a good method of adjusting the filters with respect to
the tree hierarchy.

In the rest of the section we investigate in more details the performance of the
algorithms based on the network topology and the data distribution. For PGA we used
the residual mode of operation. For BBA we tested both the residual and non-residual
modes and present here the best results. (as seen on Table 3(b), the differences were very
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small) We configured PGA using the values of Conf1 and BBA using the values of
Conf2 that provided the best results per case.

Sensitivity on Temporal Volatility of Sensor Measurements. We here investigate the
performance of the algorithms when varying Pworkaholic and for Punstable=0. We first
fixed Pworkaholic to be 20%, as in the previous experiment. In Fig. 3 we plot the total
number of messages in the network (y-axis) for 40,000 epochs when varying the error
constraint E Global from 100 to 2,000 (8% in terms of relative error). Depending on
E Global, PGA results in up to 4.8 times fewer messages than BBA and up 6.4 times
fewer than Uni. These differences arise from the ability of PGA to place, judiciously,
filters on passive intermediate sensor nodes and exploit negative correlations on their
subtree based on the computed potential gains. Algorithm BBA may also place filters
on the intermediate nodes (when the residual mode is used) but the selection of the
widths of the filters based on the burden scores of the nodes was typically not especially
successful in our experiments.

Figures 4 and 5 repeat the experiment for the Tall and Trandom configurations. For
the same global error threshold, PGA results in up to 4 times and 6 times fewer messages
than BBA and Uni respectively. In Fig. 6 we vary Pworkaholic between 0 and 1 for
Tall (best network topology for BBA). Again PGA outperforms the other algorithms.
An important observation is that when the value of Pworkaholic is either 0 or 1, all
the methods behave similarly. In this case all the nodes in the network have the same
characteristics, so it is not surprising that Uni performs so well. The PGA and BBA
algorithms managed to filter just a few more messages than Uni for these cases, but due
to their overhead for updating the error thresholds of the nodes, the overall number of
transmitted messages was about the same for all techniques.

Sensitivity in Magnitude of Sensor Measurements. In Figs. 7, 8 we vary the percent-
age of unstable nodes (nodes that make very large steps) from 0 to 100% and plot the
total number of messages for Tall and Trandom (Pworkaholic=0, E Global=500). For
Punstable=1 the error threshold (500) is too small to have an effect on the number of
messages and all algorithms have practically the same behavior. For smaller values of
Punstable, algorithm PGA results in a reduction in the total number of messages by a
factor of up to 3.8 and 5.5 compared to BBA and Uni respectively.

7 Conclusions

In this paper we proposed a framework for in-network data aggregation that supports
the evaluation of aggregate queries in error-tolerant applications over sensor networks.
Unlike previous approaches, our algorithms exploit the tree hierarchy that messages
follow in such applications to significantly reduce the number of transmitted messages
and, therefore, increase the lifetime of the network. Our algorithms are based on two
key ideas that we presented in this paper. Firstly, the residual mode of operation for
nodes in the aggregation tree allows nodes to apply their error filters to the partial
aggregates of their subtrees and, therefore, potentially suppress messages from being
transmitted towards the root node of the tree. A second key idea is the use of simple
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Table 3. (a) Used Configurations; (b) First number is total number of messages (in thousands) in the
network when using parameters of Conf1, second for Conf2. Uni does not use these parameters.
Best numbers for each algorithm in bold

Configuration
Parameters Conf1 Conf2

Upd 50 20
shrinkFactor 0.6 0.95

Invocations Fewer Frequent
Error Amount Significant Smaller
Redistributed

Tleaves Tall Trandom

PGA+Res 423 / 978 479 / 903 677 / 1,207
PGA+NoRes 463 / 924 558 / 894 830 / 1,454

BBA+Res 2,744 / 1,654 2,471 / 1,426 3,775 / 2,657
BBA+NoRes 3,203 / 1,394 2,967 / 1,481 4,229 / 2,474

Uni+Res 2,568 2,451 3,906
Uni+NoRes 2,568 2,642 4,044

(E Global=0)+Res 4,176 4,176 5,142
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and local statistics to estimate the potential gain of allocating additional error to nodes
in a subtree. This is a significant improvement over previous approaches that require a
large amount of information to be continuously transmitted to the root node of the tree,
therefore defeating their purpose, namely the reduction in the amount of transmitted
information in the network. Through an extensive set of experiments, we have shown
in this paper that while the distribution of the error based on the computed gains is the
major factor for the effectiveness of our techniques compared to other approaches, the
fusion of the two ideas provides even larger improvements.
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1. D. Barbará and H. Garcia-Molina. The Demarcation Protocol: A Technique for Maintaining
Linear Arithmetic Constraints in Distributed Database Systems. In EDBT, 1992.

2. A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring sEnsor Network Topologies.
In INFOCOM, 2002.

3. J. Chen, D.J. Dewitt, F. Tian, andY. Wang. NiagaraCQ: A Scalable Continuous Query System
for Internet Databases. In ACM SIGMOD, 2000.

4. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating Probabilistic Queries over Im-
precise Data. In ACM SIGMOD Conference, pages 551–562, 2003.

5. J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggregation Techniques for Sensor
Databases. In ICDE, 2004.

6. D. Estrin, R. Govindan, J. Heidermann, and S. Kumar. Next Century Challenges: Scalable
Coordination in Sensor Networks. In MobiCOM, 1999.

7. J. Heidermann, F. Silva, C. Intanagonwiwat, R. Govindanand D. Estrin, and D. Ganesan.
Building Efficient Wireless Sensor Networks with Low-Level Naming. In SOSP, 2001.

8. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidermann. Impact of Network Density
on Data Aggregation in Wireless Sensor Networks. In ICDCS, 2002.

9. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A Tiny Aggregation Service
for ad hoc Sensor Networks. In OSDI Conf., 2002.

10. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design of an Acquisitional
Query processor for Sensor Networks. In ACM SIGMOD Conf, June 2003.

11. C. Olston, J. Jiang, and J. Widom. Adaptive Filters for Continuous Queries over Distributed
Data Streams. In ACM SIGMOD Conference, pages 563–574, 2003.

12. M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. TiNA: A Scheme for Temporal
Coherency-Aware in-Network Aggregation. In MobiDE, 2003.

13. N. Soparkar and A. Silberschatz. Data-value Partitioning and Virtual Messages. In Proceed-
ings of PODS, pages 357–367, Nashville, Tennessee, April 1990.

14. D.B. Terry, D. Goldberg, D. Nichols, and B.M. Oki. Continuous Queries over Append-Only
Databases. In ACM SIGMOD, 1992.

15. Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing in Sensor
Networks. SIGMOD Record, 31(3):9–18, 2002.


	Introduction
	Related Work
	Basics
	Olston's Framework for Error Tolerant Applications
	A Framework for Hierarchical Data Aggregation

	Problems of Existing Techniques
	Our Algorithms
	Operation of Nodes
	Calculating the Gain of Each Node
	Adjusting the Filters

	Experiments
	Conclusions

