
Efficient Influence-Based Processing of
Market Research Queries

Anastasios Arvanitis
∗

National Technical University
of Athens, Greece

anarv@dblab.ntua.gr

Antonios Deligiannakis
Technical University of Crete,

Greece
adeli@softnet.tuc.gr

Yannis Vassiliou
National Technical University

of Athens, Greece
yv@cs.ntua.gr

ABSTRACT
The rapid growth of social web has contributed vast amounts of
user preference data. Analyzing this data and its relationships with
products could have several practical applications, such as person-
alized advertising, market segmentation, product feature promo-
tion etc. In this work we develop novel algorithms for efficiently
processing two important classes of queries involving user prefer-
ences, i.e. potential customers identification and product position-
ing. With regards to the first problem, we formulate product attrac-
tiveness based on the notion of reverse skyline queries. We then
present a new algorithm, termed as RSA, that significantly reduces
the I/O cost, as well as the computation cost, when compared to the
state-of-the-art reverse skyline algorithm, while at the same time
being able to quickly report the first results. Several real-world ap-
plications require processing of a large number of queries, in order
to identify the product characteristics that maximize the number of
potential customers. Motivated by this problem, we also develop
a batched extension of our RSA algorithm that significantly im-
proves upon processing multiple queries individually, by grouping
contiguous candidates, exploiting I/O commonalities and enabling
shared processing. Our experimental study using both real and syn-
thetic data sets demonstrates the superiority of our proposed algo-
rithms for the studied classes of queries.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

Keywords
reverse skylines, preferences, market research

1. INTRODUCTION
Analyzing user data (e.g., query logs, purchases) has seen con-

siderable attention due to its importance in providing insights re-
garding users’ intentions and helping enterprises in the process of

∗Anastasios Arvanitis is currently affiliated with the University of Califor-
nia, Riverside, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

decision making. Recently, the rapidly growing social web has
been a source of vast amounts of data concerning user preferences
in the form of ratings, shares, likes, etc. Previous efforts (e.g., in
preference learning and recommender systems) mainly focus on
helping users discover the most interesting, according to their pref-
erences, among a pool of available products.

Highlighting the manufacturer’s perspective, the need for tools to
analyze user preferences for improving business decisions has been
well recognized. Preference analysis has various important applica-
tions such as personalized advertising, market segmentation, prod-
uct positioning etc. For example, a laptop manufacturer might be
interested in finding those users that would be more interested in
purchasing a laptop model. Thereby, manufacturers can benefit by
targeting their advertising strategy to those users. Or they might
search for laptop feature configurations that are the most popular
among customers. Similarly, a mobile carrier operator that is about
to launch a new set of phone plans may want to discover those plans
that would collectively attract the largest number of subscribers.

In this work we develop novel algorithms for two classes of
queries involving customer preferences, with practical applications
in market research. In the first query type that we consider, we
seek to identify customers that may find a product as attractive. We
formulate this problem as a bichromatic reverse skyline query, and
we present a new algorithm, termed as RSA, that outperforms the
state-of-the-art algorithm BRS [25] in terms of both I/O and com-
putational cost. Compared to BRS, our RSA algorithm is based
on a different processing order, which allows for significant im-
provements with respect to the performance, the scalability and the
progressiveness of returned results when compared to BRS.

Real world applications usually require processing multiple queries
efficiently. For example, assume that a mobile carrier operator
maintains a database of existing phone plans, customer statistics
(i.e., voice usage duration, number of text messages sent, data vol-
ume consumed per month) and a list of new phone plans under con-
sideration. We formulate this problem as a new query type, namely
the k-Most Attractive Candidates (k-MAC) queries. Given a set of
existing product specifications P, a set of customer preferences C
and a set of new candidate products Q, the k-MAC query returns
the set of k candidate products from Q that jointly maximizes the
total number of expected buyers, measured as the cardinality of the
union of individual reverse skyline sets (i.e., influence sets).

Recent works [12, 15] have independently studied similar prob-
lems over ’objective’ attributes, i.e. those that have a globally pre-
ferred value, such as (zero) price, (infinite) battery life, etc. In such
a scenario, the dominance relationships among customer prefer-
ences, existing products and candidates can be extracted by execut-
ing a single skyline query over the data set. Thereby, these works
focus on providing greedy algorithms that determine the most prof-

itable solution by combining customer sets. In this work we gen-
eralize their definition of user preferences, such that we can also
handle ’subjective’ attributes i.e., those not having a strict order
for all users, e.g., as screen size, processor type, operating system
etc. For example, for customer A that prefers a portable laptop, a
11" laptop would be more preferable than a 15" one. On the other
hand, for a customer B searching for a desktop replacement laptop,
the latter model would be more appropriate.

For such attributes, applying methods such as those proposed in
[12, 15] requires having extracted the product dominance relation-
ships for all users, since these relations are user-dependent. Thus,
we have to execute a dynamic skyline query [14] for each customer,
which is prohibitively expensive. Further, applying single point re-
verse skyline approaches to solve a k-MAC query would require
calculating the influence set for each candidate product individ-
ually, which is also a very expensive task, especially when han-
dling large data sets. We, thus, propose a batched extension of our
RSA algorithm for the k-MAC problem that improves upon pro-
cessing candidates sequentially by grouping contiguous candidates,
exploiting I/O commonalities and enabling shared processing. Af-
ter extracting the influence set of each candidate product, we also
propose an algorithm that greedily calculates the final solution for
the k-MAC problem by combining the influence sets of individual
candidate products. In brief, the contributions of this paper are:
• We present a novel progressive algorithm, termed as RSA, for

(single) reverse skyline query evaluation. Our RSA algorithm
scales better in data sets that contain a large number of skyline
points (e.g., high-dimensional data), while reporting the first re-
sults significantly faster than the state-of-the-art algorithm BRS.
• We develop a batched variant of our RSA algorithm that im-

proves upon processing multiple queries individually, by group-
ing contiguous candidates, exploiting I/O commonalities and
enabling shared processing among similar candidates. We then
apply our batched algorithm to solve the k-MAC query. k-MAC
generalizes the "k-most demanding products query" of [12] and
the "top-k popular products query" of [15] to problems where
customer preferences also include subjective attributes.
• We perform an extensive experimental study using both syn-

thetic and real data sets. Our study demonstrates that (i) our
RSA algorithm outperforms BRS for the reverse skyline query,
in terms of I/Os, CPU cost and progressiveness of the output, es-
pecially for real data, higher dimensional data, or when the size
of the product data set is relatively larger than that of customers,
and (ii) that our proposed batched algorithm outperforms base-
line approaches that process each candidate individually.

2. PRELIMINARIES
2.1 Single Point Reverse Skylines

Consider two sets of points, denoted as P and C, in the same D-
dimensional space. We will refer to each point p ∈ P as a prod-
uct. Each product is a multi-dimensional point, with pi denot-
ing the product’s attribute value Ai. For example, assuming that
products are notebooks, the dimensions1 of pi may correspond to
the notebook’s price, weight, screen size, etc. Further, each point
c∈C represents a customer’s preferred notebook specifications that
she would be interested in; we will refer to each point c as a cus-
tomer. Clearly, customers are more interested to the products that
are closer to their preferences. In order to capture the preferences of
a customer c, we formally define the notion of dynamic dominance.

DEFINITION 1. (Dynamic Dominance) (from [5]): Let c ∈ C,
p, p′ ∈ P. A product p dynamically dominates p′ with respect to c,
1In the following we will use the terms dimension and attribute interchangeably

denoted as p ≺c p′, iff for each dimension |pi− ci| ≤ |p′i− ci| and
there exists at least one dimension such that |pi− ci|< |p′i− ci|.

Note that this definition can accommodate dimensions with uni-
versally optimal values where smaller (larger) values are preferred
by simply setting ci to the minimum (resp. maximum) value of
dimension Ai. For example, assuming that lighter notebooks are
preferred, we can simply set for all customers cweight = 0.

DEFINITION 2. (Dynamic Skyline) (from [5]): The dynamic sky-
line with respect to a customer c ∈C, denoted as SKY (c), contains
all products p ∈ P that are not dynamically dominated with respect
to c by any other p′ ∈ P.

Consider a set of existing products P = {p1, p2, p3, p4} and cus-
tomers C = {c1,c2,c3}. Figure 1(a) illustrates the dynamic skyline
of c1 that includes notebooks p2 and p4 in a sample scenario with 2
dimensions corresponding to the CPU speed and the screen size of
a notebook. Points in the shaded areas are dynamically dominated
by points belonging to the dynamic skyline of c1. Since we are in-
terested in the absolute distance between products, a product might
dominate other products that belong to different quadrants with re-
spect to a customer. For example, p1 and p3 in the upper right
quadrant are dynamically dominated by p2 in the lower right quad-
rant because p2 has a CPU speed and a screen size that are both
closer to c1 than the corresponding characteristics of p1 and of p3.
Figures 1(b) and 1(c) illustrate the dynamic skylines of customers
c2 and c3 respectively. We now highlight the product’s perspective
by introducing the definition of bichromatic reverse skylines.

DEFINITION 3. (Bichromatic Reverse Skyline) (from [11]): Let
P be a set of products and C be a set of customers. The bichromatic
reverse skyline of p, denoted as RSKY (p) contains all customers
c ∈C such that p ∈ SKY (c).

Thus, the bichromatic reverse skyline of a product p contains
all customers c that find p as ‘attractive’. Henceforth, we refer
to the bichromatic reverse skyline of p as the influence set of p.
Figure 1(d) illustrates the influence sets of products p1, p2, p3 and
p4. The cardinality of RSKY (p) is a useful metric of the product’s
impact in the market. We refer to |RSKY (p)| as the influence score
IS(p). In our example, IS(p1)=IS(p2)=2 and IS(p3)=IS(p4)=1.

2.2 Influence Region
Consider a new product q. The new product partitions the D-

dimensional space into 2D orthants Ωi, each identified by a number
in the range [0,2D−1]. Since all orthants are symmetric and we are
interested in the absolute distance between products, we can map
all products to Ω0 as illustrated in Figure 2(a). For simplicity, we
hereafter concentrate on Ω0 with respect to a query point q.

For every dynamic skyline point pi, let mi(q) be the midpoint
of the segment connecting a query point q with pi. In Figure 2(b)
black points m1, m2 and m4 represent the midpoints of p1, p2 and
p4 with respect to q. Henceforth, in order to alleviate the compli-
cation of maintaining both points and midpoint skylines, whenever
we refer to a product pi we imply the corresponding mi(q) with re-
spect to q. We also assume that each dynamic skyline point pi with
respect to q is mapped to its midpoint skyline mi(q) on the fly.

The influence region of a query point q, denoted as IR(q), is the
union of all areas not dynamically dominated with respect to q by
the midpoint skylines of q. The area in Ω0 that is not shaded in Fig-
ure 2(b) draws the influence region for q. Note that the midpoints
themselves belong to the IR, since a tuple cannot dominate itself.

LEMMA 1. (from [11]) A customer c belongs to the influence
set RSKY (q) of q iff c lies inside the influence region of q i.e., c ∈
IR(q)⇔ c ∈ RSKY (q).

p2

c1

Sc
re

en
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

(a) Dynamic Skyline of c1

p2

c1

Sc
re

en
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

(b) Dynamic Skyline of c2

p2

c1

Sc
re

en
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

(c) Dynamic Skyline of c3

Products pi

ciCustomers
SΚΥ(c1): {p2, p4}

SΚΥ(c2): {p1, p3}

SΚΥ(c3): {p1, p2}

RSKY(p1): {c2, c3}

RSKY(p2): {c1, c3}
RSKY(p3): {c2}

RSKY(p4): {c1}

(d) Skylines and
Influence Sets

Figure 1: Dynamic Skylines example

p2

c1

Sc
re

en
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

q

p4'

p2'

c1'

c2'

c3'

(a) Transformed space to Ω0
with respect to q

p2

c1

Sc
re

en
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

q

p4'

p2'

c1'

c2'

c3'

m2 m4
m1

(b) Midpoints w.r.t. q

Figure 2: Influence region of q

q

minmax
corners

min corner

MBB

e
-

(a) Example MBB

q

ep1

ep2

ep3

IR-

ep4

(b) Lower bound for IR(q)

q

ep3

ep2

ep1

IR+

ep4

(c) Upper bound for IR(q)

ep3

ep2

ep1

q

ec1

ec4

ec2
ec3

(d) Pruning example

Figure 3: Influence Regions

Returning to the example of Figure 2(b), notice that only c2 lies
inside IR(q). Therefore, RSKY (q) = {c2}.

Hereafter, we assume that all points (either products or customer
preferences) are indexed using a multidimensional index (e.g., R-
trees, kd-trees etc.); for our presentation we will consider R-trees.
Figure 3(a) shows an example minimum bounding box (MBB) e.
Inside each MBB e, let min-corner e−(q) denote the point in e
having the minimum distance from a query point q. The min-corner
dominates the largest possible space. The points that reside in each
of the d faces closest to q and are the farthest from the origin q
are denoted as minmax-corners. Each MBB contains D minmax-
corners. Independently of how products within e are distributed,
any point in e certainly dominates the area that the minmax-corners
do, while at best it dominates the area that the min-corner does.

Given a set of MBBs, we can derive two sets: the set of all min-
corners denoted as L and the set of all minmax-corners w.r.t. q
denoted as U . Figure 3(b) presents an example, assuming EP =
{ep1,ep2,ep3,ep4}, where epi denotes a product entry. In Fig-
ures 3(b), 3(c) black and hollow circles represent the min-corners
and minmax-corners respectively and rectangles represent midpoints.

Continuing the example of Figure 3(b), the grey area represents a
lower bound of the actual influence region IR−(q) and it is defined
as the space not dominated w.r.t. q by any min-corner l ∈ L. Re-
spectively, the grey area in Figure 3(c) represents an upper bound
of the actual influence region IR+(q), defined as the space not dom-
inated w.r.t. q by any minmax-corner u ∈U . It follows [25]:

LEMMA 2. If an entry ec is dominated by any u ∈U, i.e. ec is
completely outside IR+(q), ec cannot contain any customer inside
IR(q). Hence, according to Lemma 1, ec can be pruned.

For example, ec1 in Figure 3(d) can be pruned because it is com-
pletely outside IR+(q).

2.3 The BRS Algorithm
In the following we detail the state-of-the-art Bichromatic Re-

verse Skyline (BRS) algorithm [25] that efficiently calculates the
influence set of a single query point q. BRS aims at minimizing the
I/O cost (i) by progressively refining the influence region of q until
the influence set of q has been retrieved, (ii) by applying Lemma 2
to prune ec entries that do not contribute to RSKY (q).

BRS uses two indexes, an R-tree TP on the set of products P and
another TC on the set of customers C. Initially, the algorithm inserts

all root entries of TP (resp. TC) in a priority queue EP (resp. EC)
sorted with the minimum Euclidean distance of each entry from q.
BRS extracts a set L of all min-corners and a set U of all minmax-
corners of ep ∈ EP. Further, in order to reduce the number of sub-
sequent dominance checks, BRS calculates the skylines of L and
U , denoted as SKY (L) and SKY (U) respectively.

In each iteration BRS expands the entry in EP with the minimum
Euclidean distance from q and updates the current L and U and
their skylines SKY (L) and SKY (U). Then, all ec ∈ EC are checked
for dominance with SKY (L) and SKY (U). If ec is not dominated
by SKY (L) (i.e. it intersects IR−(q)), BRS expands ec as it may
contain customers inside IR(q). Returning to Figure 3(d), ec3 inter-
sects IR−(q); therefore ec3 is expanded. In contrast, if a customer
entry ec (such as ec1 in Figure 3(d)) is dominated by SKY (U), then
ec can be safely pruned according to Lemma 2. BRS terminates
when EC becomes empty, i.e. the position of all customers either
inside or outside IR(q) has been determined.

3. EFFICIENT COMPUTATION OF
REVERSE SKYLINES

In this section, we detail the drawbacks of BRS and then present
a more efficient reverse skyline algorithm, termed RSA.

3.1 BRS Shortcomings
Complexity Analysis. Let pk, ck denote the sizes of the currently
active entries in EP and EC, respectively, after the k-th iteration
of the BRS algorithm. The worst-case cardinality of pk and ck
are |P| and |C| respectively. In each iteration, the BRS algorithm
maintains both SKY (L) and SKY (U), two sets with O(|P|) and
O(D|P|) entries respectively, where D is the dimensionality of the
data set. BRS then checks for dominance each entry in EP and
EC with both SKY (L) and SKY (U). Thus, each iteration entails
O(D|P| × (|P|+ |C|)) dominance checks, which require a total of
O(D2|P| × (|P|+ |C|)) comparisons, since each dominance check
requires O(D) comparisons.

Clearly, the processing cost of BRS depends on the size of the
intermediate upper and lower skyline sets. [2] shows that for uni-
formly distributed data the size of the skyline set is Θ(

(ln|P|)D−1

D!).
Thus, for larger data sets or higher dimensional data the processing
cost of maintaining SKY (L) and SKY (U) becomes prohibitively
expensive. Our experimental evaluation (Section 6) confirms that

q

p1

ep2

ec1

p5

ep3

ep4

ec2

ec3

(a) BRS will expand ep2 en-
tailing an unnecessary I/O

q

p1

ep2

ec1

p5

ep3

ep4

ec2

ec3

c5

c4

(b) RSA will avoid accessing ep2
by pruning c4 with p1

Figure 4: Processing order and I/O accesses

BRS is impractical for |P| ≥ 106 or D≥ 4. Motivated by the above
analysis, we introduce a more efficient and scalable reverse skyline
algorithm, which eliminates the dependency on the SKY (L) and
SKY (U) sets, thus being able to handle high dimensional data, or,
in general, data where the size of skyline points is large.
Processing Order. BRS performs a synchronous traversal on the
TP and TC indexes, which are built on product and customer points,
respectively, following a monotonic order based on the Euclidean
distance of ep entries from q. This processing order ensures that the
number of I/Os on TP is minimized. However, in terms of the total
I/Os, BRS might perform some unnecessary I/Os. Figure 4(a) illus-
trates one such scenario, where the nodes ep2 and ec1 have not been
yet expanded.2 BRS would proceed by expanding ep2 , revealing
ep3 and ep4 . Unfortunately, ec1 is not affected by this refinement
and it still has to be accessed. On the other hand, if we first expand
ec1 , this operation would reveal ec2 and ec3 , which can be pruned by
p1 and p5 respectively, eliminating the need to access ep2 . Clearly,
in this scenario the I/O access on ep2 was redundant. In order to
avoid such redundant I/Os, our RSA follows a visiting strategy that
is primarily based on the tree level of customer entries, which, as
confirmed in our experiments, results in fewer total I/Os.
Progressiveness. BRS iteratively refines IR−(q) and reports the
customer points that lie inside IR(q). In order to retrieve the first
reverse skyline point, several iterations of BRS may be required,
which is undesirable for applications that require a quick response
containing only a fraction of the output, or if the complete output
is not useful (e.g., if it contains too many results). We, thus, seek to
develop an algorithm that reports the first results faster than BRS.

3.2 The RSA Algorithm
We now present our Reverse Skyline Algorithm (RSA), which

aims to address the shortcomings outlined above.
Data Structures Used and Basic Intuition. The RSA algorithm:
• Does not require the maintenance of the SKY (L) and SKY (U)

sets and is, thus, less expensive in terms of processing cost.
• Checks one customer entry per iteration following a visiting

strategy based on the entry’s tree level (primary sort criterion)
and Euclidean distance from q (secondary sort criterion).
• Accesses a product entry only if it is absolutely necessary in

order to determine if a customer point belongs to RSKY (q).
RSA maintains the following data structures for its operation:
• A priority queue EP on the set of product entries
• A priority queue EC on the set of customer entries
• A set SKY (q) with the currently found midpoint skylines

The two priority queues are sorted based on a dual sorting cri-
terion: primarily, based on the tree level of the stored entries and,
subsequently, using the Euclidean distance of each entry from q.

2Note that with ep we actually represent the respective midpoints w.r.t q.

Algorithm 1: RSA
Input: q a query point, TP R-tree on products, TC R-tree on customers, EP(q)

priority queue on products, EC(q) priority queue on customers
Output: RSKY (q) reverse skylines of q
Variables: SKY (q) currently found midpoint skylines of products w.r.t. q

1 begin
2 SKY (q) :=∅;RSKY (q) :=∅;
3 while EC 6=∅ do
4 dominated := false;
5 EC(q).pop()→ ec;
6 if dominated(ec, SKY (q)) then
7 dominated := true; continue;

8 if ec is a non-leaf entry then
9 Expand ec, insert children entries in EC(q);

10 else
11 foreach ep ∈ EP(q) do
12 mid point(ep,q)→ m;
13 if ec is dominated by m then
14 if ep is a leaf entry then
15 if (dominated(m, SKY (q)) == false) then
16 SKY (q).push(m);

17 dominated := true; break;

18 else
19 Expand ep, insert children entries in EP(q);

20 EP(q).remove(ep);

21 if (dominated == false) then
22 RSKY (q).push(ec);

23 return RSKY (q);

Thus, leaf entries are given higher priority and are processed first,
while the examination of non-leaf entries is postponed as much as
possible. By first processing all leaf ec entries, the algorithm may
reveal a midpoint skyline, which will be subsequently used to prune
a non-leaf ec based on Lemma 2, thus avoiding an access on TC.
The same intuition holds for ep entries as well; an already found
midpoint skyline can be used to prune dominated non-leaf product
entries, since these entries will not contribute to the skyline. Fur-
ther, whenever an ec entry is checked for dominance with EP, first
all leaf ep entries will be examined. As long as no leaf ep dom-
inates ec, only then will RSA proceed to expand the nearest to q
non-leaf ep entry. This change in the visiting order of EP reduces
the number of accesses on TP as well. For instance, in Figure 4(b)
BRS would access ep2 that has the minimum Euclidean distance
from q. In contrast, RSA will use p1 to determine that c4 does not
belong to RSKY (q), hence avoiding the access of ep2 .
Algorithm Description. The RSA algorithm is presented in Al-
gorithm 1. Initially, RSA inserts all root entries of TP (resp. TC)
in the priority queue EP (resp. EC). Further, RSA maintains a set
SKY (q) of the currently found midpoint skylines which are used for
pruning based on Lemma 1. RSA proceeds in iterations. In each it-
eration RSA extracts the entry in EC having the minimum key from
q (Line 5) and checks the following pruning conditions:
1. If ec is dominated by any point that belongs to the currently
found midpoint skylines SKY (q), ec can be removed from EC based
on Lemma 1 (Lines 6-7).
2. Otherwise, if ec is a non-leaf entry (Line 8), ec is expanded and
child nodes are inserted into EC (Line 9).
3. Else, for all ep entries in EP (Lines 11-22):
• If ec is dominated by the midpoint of a leaf entry ep ∈EP (Line 13),

then ec can be removed from EC, based on Lemma 1, and the
midpoint of ep is inserted into SKY (q) (Line 16)).
• Else if ec is dominated by the midpoint of the min-corner e−p of

a non-leaf ep ∈ EP (Line 18), ep is expanded and its children
entries are inserted into EP (Line 19).

q

p5

ep1

ec1

p8

ep2

ep3

c2

ec3

c5

c6

p6 ec4

p9

ep7

ep4

(a) Step 1

q

p5

ep1

p8

ep2

ep3

c2

ec3

c5

c6

p6 ec4

p9

ep7

ep4

(b) Step 2

q

p5

ep1

p8

ep2

ep3

c2

ec3

c5

c6

p6 ec4

p9

ep4

(c) Step 3

q

p5

ep1

p8

ep2

ep3

c2

ec3

c5

c6

p6

p9

ep4

(d) Step 4

Figure 5: Running example of the RSA algorithm

Finally, if ec has not been pruned by any of the above conditions
(Line 21), then ec is a reverse skyline point and can be at that stage
reported as a result (Line 22). The RSA algorithm terminates when
EC becomes empty and then RSKY (q) is returned (Line 23).
Example. We illustrate the execution of RSA using the running
example depicted in Figure 5. At the beginning, EP(q) = {ep7 ,ep1 ,
ep4} and EC(q) = {ec1 ,ec4} (sorted by their distance from q). In the
first iteration, RSA will examine ec1 that has the minimum distance
from q. Since it is a non-leaf entry, RSA will expand ec1 (Line 9)
and it will insert child nodes c2 and ec3 into EC(q) (see Figure 5(b)).
Now EC(q) = {c2,ec4 ,ec3} and RSA selects to examine c2. Since
the current skyline is empty, c2 is not dominated by any product
entry; hence RSA will proceed by checking if c2 is dominated by
any product entry contained in EP(q). c2 is dominated by the min-
corner of the first entry in EP(q), i.e. ep7 (Line 13). In order to
determine if there actually exists a point inside ep7 that dominates
c2 w.r.t. q, RSA will expand ep7 (Line 19), pushing its child nodes
p8 and p9 inside EP(q), thus EP(q) = {p8, p9,ep1 ,ep4} (see Fig-
ure 5(c)). Now, RSA discovers that c2 is dominated by p8, which
is marked as a skyline point (Line 16) and c2 is discarded. In the
next iteration, RSA selects to examine ec4 , which has the minimum
distance from q. ec4 is not dominated by any currently found sky-
line point and since it is a non-leaf entry, it is expanded and child
nodes c5 and c6 are inserted into EC(q) (Line 9) (see Figure 5(d)).
Now we have EC(q) = {c5,c6,ec3}. Next, RSA will examine c5.
Since c5 is not dominated by any product entry, c5 is reported as a
reverse skyline result (Line 22). Now RSA examines c6 which is
already dominated by a currently found skyline point, i.e. p8, (Line
6), hence it is discarded. Finally, ec3 is examined. Similarly, ec3 is
dominated by p8 and it is also pruned. Since EC(q) is now empty,
RSA terminates and outputs c5 as the final answer.
Complexity and Progressiveness Analysis. RSA requires at most
|C| iterations (one for each customer), although in fact several ec
entries will be pruned by SKY (q) (Line 6). Each iteration en-
tails a dominance check with (i) the currently found midpoint sky-
line SKY (q), and (ii) all product entries currently in EP, both hav-
ing O(|P|) worst-case cardinality. Overall RSA requires O(|P||C|)
dominance checks, or O(D|P||C|) comparisons.

With respect to progressiveness, recall that RSA will first ex-
amine leaf customer entries that have the minimum Euclidean dis-
tance from the query point q (based on the dual sorting scheme on

EC). In other words, the very first iterations of RSA concern cus-
tomer entries that are very close to q. Intuitively, the closer to q a
customer is, the more likely that q will not be dominated by any
product w.r.t. the examined customer. Hence, customers that will
be examined in the first iterations tend to have a higher probabil-
ity of belonging to RSKY (q). Further, since the first entries to be
examined are actual points (not MBBs), the first iterations will not
involve ec expansions (Line 10), which are expensive in terms of
processing cost. Thus, the first iterations will be faster than subse-
quent ones. Overall, RSA typically reports the first results in just
a few iterations. In contrast, recall that BRS requires several itera-
tions in order to adequately refine the influence regions, such that
the first reverse skylines have been determined. Our experimental
study (Section 6) verifies the superiority of RSA in terms of pro-
gressiveness compared to the BRS algorithm.

4. K-MAC QUERIES
We now present the k-Most Attractive Candidates (k-MAC) query,

which serves as a motivating example that demonstrates the need
to develop a batch processing algorithm for computing several re-
verse skyline queries. The k-MAC query is a slight generalization
of the problems studied in [15, 12] for the case when the customer
preferences also include subjective dimensions. We first present
a motivating scenario, which highlights the usefulness of k-MAC
queries. We then present the definition of the k-MAC query.
Motivating Scenario. A laptop manufacturer wants to produce k
new notebooks, among a set of feasible alternative configurations Q
proposed by the engineering department. The manufacturer needs
to consider three sets: (i) the existing competitor products P, (ii) the
set of customers’ preferred specifications C, and (iii) a set of can-
didate products Q. We will refer to each q ∈ Q as a candidate. The
goal of the manufacturer is to identify the specifications that are ex-
pected to jointly attract the largest number of potential buyers. Note
that this is different than simply selecting the k products that are the
most attractive individually, since it does not make much sense to
select products that seem attractive to the same set of customers.
Problem Definition. We first define the joint influence set for a
set of candidates Q. We then define the notion of the joint influence
score and introduce the k-Most Attractive Candidates (k-MAC) query.

DEFINITION 4. (Joint Influence Set): Given a set of products P,
a set of customers C and a set of candidates Q, the joint influence
set of Q, denoted as RSKY (Q), is defined as the union of individual
influence sets of any qi ∈ Q: RSKY (Q) =

⋃
qi∈Q

RSKY (qi)

Following the above definition, the joint influence score IS(Q)
for a set of candidates Q is equal to the size of the joint influence
set of Q, |RSKY (Q)|. We now introduce the k-Most Attractive Can-
didates (k-MAC) query as follows:

DEFINITION 5. (k-Most Attractive Candidates (k-MAC) query):
Given a set of products P, a set of customers C, a set of candidates
Q and an integer k > 1, determine the subset Q′ ⊆ Q, such that
|Q′|= k and the joint influence score of Q′, IS(Q′), is maximized.

Note that several candidates might be interesting for the same
customer. Additionally, we emphasize that for evaluating a k-MAC
query each candidate q∈Q is considered separately from other can-
didates and only with respect to existing products. In other words,
intra-candidate dominance relations are not taken into account for
k-MAC queries. This is consistent with a real-world setting where
a manufacturer is interested to compare their product portfolio only
with respect to the competition. We discuss how we resolve ties at
the end of this section where we present a greedy algorithm that
computes an approximate solution for the k-MAC problem.

Unlike recent works [15, 12] that targeted similar problems as-
suming only ’objective’ attributes, i.e. those having a globally pre-
ferred value (such as zero price, infinite battery life, etc.), k-MAC
can handle cases where customer preferences are expressed over
’subjective’ dimensions (e.g., screen size, processor type). This
generalisation is possible because the attractiveness of each candi-
date products is computed based on the size of their bichromatic
influence set. Moreover, while our focus is on efficiently comput-
ing the influence sets of multiple candidate products, the emphasis
of [15, 12] is on the selection of the proper candidates after the
dominance relationships among products have been determined.
A Greedy Algorithm. Unfortunately, processing k-MAC queries
is non-trivial. This problem can be reduced to the more general
maximum k-coverage problem. Thus, even if we consider the much
simpler problem where all the influence sets of all candidates have
been computed, an exhaustive search over all possible k-cardinality
subsets of Q is NP-hard. Based on the complexity of computing
the subset of k products, we now seek an efficient, greedy algo-
rithm for this problem. Our solution is based on the generic k-stage
covering algorithm provided in [8], developed for finding efficient
approximate solutions to the maximum k-coverage problem.

LEMMA 3. (from [8]) k-stage covering algorithm returns an
approximate solution to the maximum k-coverage problem that is
guaranteed to be within a factor 1−1/e from the optimal solution.

We now show how we can adapt the k-stage covering algorithm
for the k-MAC problem. kGSA (k-stage Greedy Selection Algo-
rithm) takes as input a set of candidate products Q and their associ-
ated influence sets and returns a set Q′ ⊆ Q, |Q′| = k that contains
the candidates which formulate a (1− 1/e)-approximate solution
to the k-MAC query. kGSA proceeds in iterations, by adding one
candidate into Q′ during each iteration. All candidates are exam-
ined at each iteration, and kGSA selects the one that, if added in
Q′, results in the largest increase of the joint influence score of
Q′. In case multiple candidates contribute equally to the increase
of IS(Q′), kGSA applies a second criterion; it selects the candidate
with the minimum sum of distances from its respective reverse sky-
lines (customers). The intuition is that a candidate product that is
closer to a user’s preferences would more likely increase user sat-
isfaction. kGSA terminates after k iterations and returns Q′.

5. REVERSE SKYLINE PROCESSING FOR
MULTIPLE QUERY POINTS

Solving the k-MAC problem requires processing all candidates,
in order to first determine their influence sets. The kGSA algorithm
can then be used to solve the k-MAC problem.

A straightforward way to process multiple candidates would be
to apply either BRS or RSA for each candidate individually. How-
ever this approach is very inefficient in terms of I/O accesses, be-
cause it requires accessing each entry ep (ec) several times, if ep
(ec) appears in the priority queues of more than one candidate.
Our bRSA algorithm. We now introduce our bRSA algorithm,
which aims at eliminating the drawbacks of the baseline approach
by exploiting I/O commonalities and by offering shared processing
among candidates. bRSA utilizes in its core the RSA algorithm that
we presented in Section 3. Note that, apart from k-MAC queries,
bRSA can be applied for any query type that requires joint process-
ing of multiple reverse skyline queries.

bRSA efficiently processes candidates in parallel, by grouping
them in batches, in such a way that grouped candidates benefit by
the processing of other group members. A primary goal of bRSA is
to save duplicate I/O accesses, by using entries that have been ex-
panded during an iteration of the RSA subcomponent for one group

member, in order to prune entries that appear in the local priority
queues of other group members as well. In particular, whenever
an entry ex is expanded, all local priority queues in which ex ap-
pears are appropriately updated. Hence, each disk page is accessed
only once per batch. Additionally, in order to further optimize the
processing of group members, bRSA maintains a list of currently
found product points, that will expectedly have large pruning po-
tential for other group members, based on Lemma 1. We will refer
to these points as vantage points and we will explain their use in
the following where we discuss bRSA execution in detail.

Note that we cannot safely assume that all the necessary data
structures that bRSA utilizes (local priority queues, skyline sets for
each candidate, list of vantage points etc.) will actually fit in main
memory. Based on the memory capabilities of the hardware and
worst case estimates of the amount of customer and product entries
in EP and EC, let us assume that G candidates (where G� |Q|) fit
in main memory and can be simultaneously processed. Using worst
case estimates does not have a severe impact in the performance of
bRSA; in fact, as we demonstrate experimentally, it is better to keep
G to fairly modest values (i.e., up to 10 candidates). Larger batch
sizes may result in increasing processing cost for the maintenance
of local priority queues and significantly more dominance checks
which gradually eliminates the benefit from shared processing.

Candidates in proximity in the multidimensional space are more
likely to benefit from shared processing. Hence, as a preprocess-
ing step, bRSA partitions the candidate set into d|Q|/Ge batches
based on a locality preserving hashing method, such as the Hilbert
space filling curve.3 Then, bRSA picks one candidate at a time in
a round robin fashion (Line 5), and executes a single iteration of a
modified version of the RSA algorithm for that candidate, termed
Batch-RSA. Batch-RSA extends RSA to be efficiently used on a
batch setting. We now present the differences of Batch-RSA com-
pared to its single point counterpart. First, whenever an entry ex
is expanded, all local priority queues in which ex appears are ap-
propriately updated. Further, when a leaf product entry, say pi, is
discovered (Line 12), the algorithm decides whether pi should be
inserted to a buffer HP that contains vantage points, i.e. those that
will be used for pruning by other candidates (Line 17). Intuitively,
product points that reside closer to a candidate, will dominate the
largest possible space and their pruning power will be maximized.
Thus, we implemented HP as a priority queue on the minimum Eu-
clidean distance, among the candidates inside the batch. If HP is
full, the most distant point in HP, is replaced with pi. Vantage
points (essentially their respective midpoints) are used addition-
ally to skyline points when checking each customer entry for dom-
inance (second condition in OR clause of Line 5), hence avoiding
some of the subsequent I/Os.

6. EXPERIMENTAL EVALUATION
All algorithms examined in our experiments were implemented

in C++ and executed on a 2.0 GHz Intel Xeon CPU with 4 GB
RAM running Debian Linux. The code for the BRS algorithm was
thankfully provided to us by the authors of [25].
6.1 Experimental Setup

We used a publicly available generator [1] in order to construct
different classes of synthetic data sets, based on the distribution
of the attributes’ values; i.e., uniform (UN), anti-correlated (AC)
and correlated (CO). Due to space limitations, in the following we
plot the results primarily for uniform (UN) data sets. Experiments
involving AC and CO data, as well as combinations among them
(e.g., uniformly distributed products and anti-correlated customers)
3Other clustering techniques might also be applicable

Algorithm 2: bRSA
Input: Q a set of candidates, TP R-tree on products, TC R-tree on customers
Variables: EP(qi) priority queue on products for qi, EC(qi) priority queue on

customers for qi, RSKY (qi) reverse skylines for qi, SKY (qi) midpoint
skylines of qi, G j batches with |G j |= G

1 begin
2 partition Q into d|Q|/Ge batches→ G j ;
3 foreach G j do
4 while (RSKY (qi) for all qi ∈ G j have not been found) do
5 selectCandidate→ qi;

/* Process qi until IS(qi) has been
completely determined */

6 if EC(qi) 6=∅ then
7 Batch-RSA (qi, G j , TP, TC , EP(qi), EC(qi), RSKY (qi),

SKY (qi), HP);

Function Batch-RSA
Input: G a group of candidates, TP R-tree on products, TC R-tree on customers,

EP(qi) priority queue on products for qi, EC(qi) priority queue on
customers for qi, RSKY (qi) reverse skylines of qi, SKY (qi) midpoint
skylines of qi, HP priority queue on product leaf entries (vantage points)

Output: RSKY (qi) reverse skylines of qi
1 begin
2 while EC(qi) 6=∅ do
3 dominated := false;
4 EC(qi).pop()→ ec;
5 if dominated(ec, SKY (qi)) OR dominated(ec, HP) then
6 dominated := true; continue;

7 if ec is a non-leaf entry then
8 Expand ec for all relevant qi, insert children into EC(qi);

9 else
10 foreach ep ∈ EP(qi) do
11 mid point(ep,qi)→ m;
12 if ec is dominated by m then
13 if ep is a leaf entry then
14 if (dominated(m, SKY (qi)) == false) then
15 SKY (qi).push(m);

16 HP.push(ep);
17 dominated := true; break;

18 else
19 Expand ep for all relevant qi, insert children into

EP(qi);

20 EP(qi).remove(ep);

21 if (dominated == false) then
22 RSKY (qi).push(ec);

23 return RSKY (qi);

generally follow similar trends. We also evaluated our algorithms
on two real world data sets. The NBA data set (NBA) consists of
17,265 5-dimensional points, representing the average values of a
player’s annual performance with respect to the number of points
scored, rebounds, assists, steals and blocks. The household data set
(HOUSE), consists of 127,930 6-dimensional points, representing
the percentage of an American family’s annual income spent on 6
types of expenditure: gas, electricity, water, heating, insurance, and
property tax. In order to generate customer and candidate sets, we
added Gaussian noise to actual points. For both synthetic and real
data sets we normalized all attribute values to [0,10000] and for
each data set, we built an R-tree with a page size equal to 4KB.

We compared the performance of our RSA and bRSA algorithms
with the state-of-the-art BRS algorithm for evaluating both reverse
skyline and k-MAC queries. For BRS and RSA, we measured the
total CPU time and I/O operations required for processing (i) a
workload of |Q| reverse skyline queries, and (ii) a k-MAC query
given an input of |Q| candidate products. The bRSA algorithm ap-
plies only for the k-MAC query. In particular, we measured:
• The number of I/Os (separately on product and customer en-

tries). For each data set, one memory buffer equivalent to 100
pages (12.5% of the data set size) was allocated for caching, fol-
lowing a Least Recently Used (LRU) cache replacement policy.
• The time spent on CPU.
• The total query processing time, consisting of the time spent

on CPU plus the I/O cost, where each random page access was
penalized with 1 millisecond.

Recall that for the reverse skyline query type, both BRS and RSA
process query points sequentially. For evaluating k-MAC queries,
we modified both algorithms by adding (i) a preprocessing step that
presorts candidates based on their Hilbert hash value, and (ii) a final
step that greedily outputs the best candidates using our kGSA algo-
rithm. In our experiments the measured processing time required
for both steps was negligible compared to the time required for the
algorithm execution. Further, it is important to emphasize that none
of the algorithms is affected by the value of k, since they first have
to determine the influence sets of all candidates, and then greedily
select the optimal k-subset based on kGSA.

In each experiment we vary a single parameter while setting the
remaining to their default values. The default values for both prod-
uct and customer data set cardinalities were set to 100,000, the de-
fault data dimensionality was set to 3, the default domain range of
each attribute was [0, 10000], the default batch size was set to 10,
and the default buffer size was set to 12.5% of the data set size.
6.2 Experimental Results
Sensitivity Analysis vs. Data Dimensionality. We first vary the
dimensionality of the data sets from 2 to 5 and examine the perfor-
mance of all algorithms. Figures 6(a)-6(b) show the results for the
number of I/Os and the total processing time, respectively, in loga-
rithmic scale. The corresponding numbers for the BRS and RSA al-
gorithms are also presented, for clarity, in Figure 6(c). As expected
(refer to the complexity analysis in Section 3), BRS becomes pro-
hibitively expensive for data with more than 3 dimensions. In par-
ticular, BRS requires 3.35 times more CPU time than RSA even in
2 dimensions, and is about 46 times slower in terms of CPU time,
and 13.5 times slower in terms of total processing time in the 5-
dimensional data set. Figure 6(k) shows an analogous behaviour of
the algorithms in anti-correlated data. We also experimented with
higher dimensionalities, e.g., for D = 6, BRS took ∼15 hours to
finish, whereas RSA terminated in 20.2 minutes. However, we did
not include these results in the plots due to space limitations. Our
experiments with real data sets show that BRS is impractical for
higher dimensions, which justifies our motivation for a more ef-
ficient reverse skyline algorithm. It is important to notice that in
higher dimensionalities the I/O cost of BRS is dominated by the
CPU cost (note that Figures 6(a)-6(b) are in logarithmic scale). To
understand why BRS escalates poorly with D recall that the sizes
of SKY (L) and SKY (U), which are maintained by BRS, increase
rapidly with the data dimensionality [2]. Finally, our bRSA algo-
rithm achieves significant performance gains with respect to both
BRS and RSA in all settings. Note that our remaining sensitivity
analysis using synthetic data sets, utilizes a modest value (D = 3),
which is a favorable setting for BRS. Obviously, the benefits of our
algorithms over BRS were significantly more in higher dimensions.
Sensitivity Analysis vs. Data Set Size. We then perform a sen-
sitivity analysis with respect to the size of the product data set.
Notice the different behavior of the two algorithms with respect to
the type of I/Os (Figure 6(d)), due to the different visiting orders
followed; generally BRS entails more accesses on the products in-
dex, whereas RSA requires more customer I/Os. In terms of I/Os,
RSA exhibits similar performance with BRS in the case where the
product and customer data have the same size (100K both). How-
ever, as the number of products increases, the strategy followed

 1K

 10K

 100K

 1M

 10M

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

N
um

be
r o

f I
/O

s

of Dimensions
2 3 4 5

Product I/Os
Customer I/Os

(a) I/Os vs. Dimensionality (UN)

BR
S−

KM
A

C
RS

A
−K

M
A

C
BR

SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SAPr

oc
es

si
ng

 ti
m

e
(s

ec
)

of Dimensions
2 3 4 5

CPU cost
I/O cost

 1
 10

 100
 1K

 10K
 100K

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y

(b) CPU cost vs. Dimensionality (UN)

2-D data 3-D data 4-D data 5-D data

BRS RSA BRS RSA BRS RSA BRS RSA

I/O cost (sec) 20.7 23.3 179.9 156.0 687.6 555.0 1404 1161

CPU cost (sec) 18.4 5.5 76.9 23.2 1222.6 106.2 20042 428

Total cost (sec) 39.1 28.8 256.8 179.2 1910.2 661.2 21446 1589

2-D data 3-D data 4-D data 5-D data

BRS / RSA BRS / RSA BRS / RSA BRS / RSA

I/O cost ratio 0.89 1.15 1.24 1.21

CPU cost ratio 3.35 3.32 11.51 46.81

Total cost ratio 1.36 1.43 2.89 13.50

(c) RSA & BRS costs vs. Dimensionality (UN)

BR
S−

KM
A

C
RS

A
−K

M
A

C
BR

SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

N
um

be
r o

f I
/O

s

of Products
10K 100K 500K 1M

Product I/Os
Customer I/Os

 0
 50K

 100K
 150K
 200K
 250K

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y

(d) I/Os vs. |P| (UN)

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SAPr

oc
es

si
ng

 ti
m

e
(s

ec
)

of Products
10K 100K 500K 1M

CPU cost
I/O cost

 0
 50

 100
 150
 200
 250
 300
 350

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

(e) CPU cost vs. |P| (UN)

10K 100K 500K 1M

BRS RSA BRS RSA BRS RSA BRS RSA

I/O cost (sec) 223.6 226.5 179.9 156.0 198.9 125.0 235.5 118.5

CPU cost (sec) 62.7 28.6 76.9 23.2 87.9 22.0 98.8 22.9

Total cost (sec) 286.3 255.1 256.8 179.2 286.8 147.0 334.3 141.4

10K 100K 500K 1M

BRS / RSA BRS / RSA BRS / RSA BRS / RSA

I/O cost ratio 0.99 1.15 1.59 1.99

CPU cost ratio 2.19 3.32 3.99 4.32

Total cost ratio 1.12 1.43 1.95 2.36

(f) RSA & BRS costs vs. |P| (UN)

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

N
um

be
r o

f I
/O

s

of Customers
10K 100K 500K 1M

Product I/Os
Customer I/Os

 0
 100K
 200K
 300K
 400K

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

(g) I/Os vs. |C| (UN)

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SAPr

oc
es

si
ng

 ti
m

e
(s

ec
)

of Customers
10K 100K 500K 1M

CPU cost
I/O cost

 0
 100
 200
 300
 400
 500
 600

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

(h) CPU cost vs. |C| (UN)

10K 100K 500K 1M

BRS RSA BRS RSA BRS RSA BRS RSA

I/O cost (sec) 122.4 60.6 179.9 156.0 291.0 284.1 405.8 402.4

CPU cost (sec) 41.6 8.5 76.9 23.2 98.1 48.1 121.5 77.0

Total cost (sec) 164.0 69.1 256.8 179.2 389.1 332.2 527.3 479.4

10K 100K 500K 1M

BRS / RSA BRS / RSA BRS / RSA BRS / RSA

I/O cost ratio 2.02 1.15 1.02 1.01

CPU cost ratio 4.91 3.32 2.04 1.58

Total cost ratio 2.37 1.43 1.17 1.10

(i) RSA & BRS costs vs. |C| (UN)

BR
S−

KM
A

C/
P1

RS
A

−K
M

A
C/

P1
BR

SA
/P

1
BR

S−
KM

A
C/

P2
RS

A
−K

M
A

C/
P2

BR
SA

/P
2

BR
S−

KM
A

C/
P1

RS
A

−K
M

A
C/

P1
BR

SA
/P

1
BR

S−
KM

A
C/

P2
RS

A
−K

M
A

C/
P2

BR
SA

/P
2N

um
be

r o
f I

/O
s

Bu�er Size/Dataset Size
6.25% 12.5% 25%

Product I/Os
Customer I/Os

 0
 40K
 80K

 120K
 160K

BR
S−

KM
A

C/
P1

RS
A

−K
M

A
C/

P1
BR

SA
/P

1
BR

S−
KM

A
C/

P2
RS

A
−K

M
A

C/
P2

BR
SA

/P
2

(j) I/Os vs. Cache Size (UN)

BR
S−

KM
A

C
RS

A
−K

M
A

C
BR

SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SAPr

oc
es

si
ng

 ti
m

e
(s

ec
)

of Dimensions
2 3 4 5

CPU cost
I/O cost

 1
 10

 100
 1K

 10K
 100K

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y

(k) CPU cost vs. D (AC)

BR
S−

KM
A

C
RS

A
−K

M
A

C
BR

SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SAPr

oc
es

si
ng

 ti
m

e
(s

ec
)

of Products
10K 100K 500K 1M

CPU cost
I/O cost

 0
 50

 100
 150
 200
 250

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y
BR

S−
KM

A
C

RS
A

−K
M

A
C

BR
SA

BR
S−

RS
KY

RS
A

−R
SK

Y

(l) CPU cost vs. |P| (AC)

Figure 6: Experiments with Synthetic Data

by RSA proves to be more efficient in terms of the total I/O ac-
cesses required. Moreover, w.r.t. the processing cost (Figure 6(e)),
RSA is significantly faster than BRS, and scales better as |P| grows
larger. Again, the corresponding numbers for the BRS and RSA
algorithms are also presented, for clarity, in Figure 6(f). Finally,
our bRSA algorithm is the most efficient algorithm for the case
of k-MAC queries remaining essentially unaffected by the size of
the product data set. Figure 6(l) shows an analogous behaviour of
the algorithms in anti-correlated data, with the times being slightly
smaller, as shown by the scale of the y-axis. In Figures 6(g)-6(h)
we then plot the I/O and CPU costs when varying the size of the
customer data set. As illustrated, RSA and BRS require roughly
the same number of I/Os for large numbers of customers. This is
predictable since RSA processes one customer entry per iteration,
i.e., the number of iterations required by RSA is O(|C|). Therefore,
in the case when |C| is much larger than |P|, the visiting strategy
followed by BRS would be a more reasonable choice. However,
even in this worst case scenario, RSA exhibits better overall per-
formance than BRS algorithm, due to the significant lower process-
ing cost (Figures 6(h)-6(i)). Again, our bRSA algorithm is notably
faster than both single point algorithms.

Sensitivity Analysis vs. Memory Size. For this experiment we
compare the number of page accesses required by each algorithm
with respect to the memory size allocated for caching. We varied
cache (buffer) size from 50 pages (corresponding to 6.25% of the
data set size) up to 200 pages (25% of available memory). We also
experimented with two different cache replacement policies. For
the first policy, namely P1, we followed a LRU strategy. Addi-
tionally, motivated by the intuition that entries with higher levels in
the R-tree will be accessed more frequently, we also used a buffer
that maintains pages in descending order of their tree level (P2).
Figure 6(j) plots the number of I/Os required for different cache
sizes and cache replacement policies. As depicted, regardless of the
memory size and strategy used, both RSA and bRSA algorithms are
more efficient in terms of disk accesses. Further, notice that LRU
was slightly more efficient for the cache size that we used in our
default scenario (12.5% of the data set size).
Sensitivity Analysis vs. Batch Size. We then investigate the per-
formance of our bRSA algorithm with respect to the batch size G.
We set each batch to contain from 5 to 100 candidates and plotted
the results in Figures 7(a)-7(b). As expected, larger batch sizes
result to fewer total I/O operations, since more pruning can be

 30K
 40K
 50K

5 10 20 50 100

N
um

be
r o

f I
/O

s

Batch Size

Product I/Os
Customer I/Os

 0
 10K
 20K

(a) I/Os vs. Batch Size (UN)

 60
 80
 100
 120
 140
 160

5 10 20 50 100

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Batch Size

CPU cost
I/O cost

 0
 20
 40

(b) CPU cost vs. Batch Size (UN)

 1

 10

 100

 1000

 10000

5% 20% 40% 60% 80% 100%

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Output Percentage (%)

BRS
RSA

(c) CPU cost vs. number of reported
results (UN)

 0

 20

 40

 60

 80

 100

1% 20% 40% 60% 80% 100%E
x
e

c
u

ti
o

n
 T

im
e

 P
e

rc
e

n
ta

g
e

 (
%

)

Output Percentage (%)

BRS
RSA

(d) CPU cost/Total cost (%) vs.
number of reported results (UN)

Figure 7: Varying the Batch Size (left), Progressiveness of Reported Results (right)

 0
 100
 200
 300
 400

B
R

S−
R

SK
Y

R
SA

−R
SK

Y

B
R

S−
K

M
A

C

R
SA

−K
M

A
C

B
R

SA

B
R

S−
R

SK
Y

R
SA

−R
SK

Y

B
R

S−
K

M
A

C

R
SA

−K
M

A
C

B
R

SAPr
oc

es
si

ng
 ti

m
e

(s
ec

)

of Products
K01K1

CPU cost
I/O cost

(a) CPU cost vs. |P| (NBA)

 0
 100
 200
 300
 400

B
R

S−
R

SK
Y

R
SA

−R
SK

Y

B
R

S−
K

M
A

C

R
SA

−K
M

A
C

B
R

SA

B
R

S−
R

SK
Y

R
SA

−R
SK

Y

B
R

S−
K

M
A

C

R
SA

−K
M

A
C

B
R

SAPr
oc

es
si

ng
 ti

m
e

(s
ec

)

of Customers
K01K1

CPU cost
I/O cost

(b) CPU cost vs. |C| (NBA)

B
R

S−
K

M
A

C
/P

2
R

SA
−K

M
A

C
/P

2
B

R
SA

/P
2

B
R

S−
K

M
A

C
/P

1
R

SA
−K

M
A

C
/P

1
B

R
SA

/P
1

B
R

S−
K

M
A

C
/P

2
R

SA
−K

M
A

C
/P

2
B

R
SA

/P
2N

um
be

r o
f I

/O
s

Buffer Size/Dataset Size
6.25% 12.5% 25%

Product I/Os
Customer I/Os

 0

 100K

 200K

 300K

B
R

S−
K

M
A

C
/P

1
R

SA
−K

M
A

C
/P

1
B

R
SA

/P
1

B
R

S−
K

M
A

C
/P

2
R

SA
−K

M
A

C
/P

2
B

R
SA

/P
2

B
R

S−
K

M
A

C
/P

1
R

SA
−K

M
A

C
/P

1
B

R
SA

/P
1

(c) I/O cost vs. Cache Size (NBA)

R
SA

−R
SK

Y
B

R
S−

K
M

A
C

R
SA

−K
M

A
C

B
R

SA

B
R

S−
R

SK
Y

R
SA

−R
SK

Y
B

R
S−

K
M

A
C

R
SA

−K
M

A
C

B
R

SAPr
oc

es
si

ng
 ti

m
e

(s
ec

)

of Products
1K 10K 100K

CPU cost
I/O cost

 0

 4,000

 8,000

 12,000

B
R

S−
R

SK
Y

R
SA

−R
SK

Y
B

R
S−

K
M

A
C

R
SA

−K
M

A
C

B
R

SA

B
R

S−
R

SK
Y

(d) CPU cost vs. |P| (HOUSE)

B
R

SA

B
R

S−
R

SK
Y

R
SA

−R
SK

Y
B

R
S−

K
M

A
C

R
SA

−K
M

A
C

B
R

SA

B
R

S−
R

SK
Y

R
SA

−R
SK

Y
B

R
S−

K
M

A
C

R
SA

−K
M

A
C

B
R

SAPr
oc

es
si

ng
 ti

m
e

(s
ec

)

of Customers
1K 10K 100K

CPU cost
I/O cost

 0
 4,000
 8,000

 12,000
 16,000

B
R

S−
R

SK
Y

R
SA

−R
SK

Y
B

R
S−

K
M

A
C

R
SA

−K
M

A
C

(e) CPU cost vs. |C| (HOUSE)

B
R

S−
K

M
A

C
/P

2
R

SA
−K

M
A

C
/P

2
B

R
SA

/P
2

B
R

S−
K

M
A

C
/P

1
R

SA
−K

M
A

C
/P

1
B

R
SA

/P
1

B
R

S−
K

M
A

C
/P

2
R

SA
−K

M
A

C
/P

2
B

R
SA

/P
2N

um
be

r o
f I

/O
s

Buffer Size/Dataset Size
6.25% 12.5% 25%

Product I/Os
Customer I/Os

 0

 1M

 2M

 3M

B
R

S−
K

M
A

C
/P

1
R

SA
−K

M
A

C
/P

1
B

R
SA

/P
1

B
R

S−
K

M
A

C
/P

2
R

SA
−K

M
A

C
/P

2
B

R
SA

/P
2

B
R

S−
K

M
A

C
/P

1
R

SA
−K

M
A

C
/P

1
B

R
SA

/P
1

(f) I/O cost vs. Cache Size (HOUSE)

Figure 8: Experiments with Real Data

shared among candidates, whereas the processing cost increases.
Interestingly, when the batch size becomes larger than a thresh-
old, the total processing cost (cost of disk accesses plus CPU time)
increases, due to the growing cost of maintaining all local prior-
ity queues and the significantly more dominance checks required
thereof. As showcased by the experiments, keeping fairly small
batch sizes (∼10 candidates) maximizes the efficiency of bRSA.
Progressiveness. Finally, we compare the progressiveness of RSA
and BRS algorithms on a workload consisting of |Q| reverse skyline
queries. x-axis represents the percentage of reverse skyline results
found so far compared to the total influence score. y-axis plots
the time required to report the corresponding percentage of results,
both in absolute time (Figure 7(c)) and as a percentage of the total
time spent (Figure 7(d)). Both figures demonstrate that RSA is
notably more progressive than BRS, especially for reporting the
first query results. In particular, RSA outputs the first 5% of the
reverse skylines in 1/10th of the time needed by BRS, which can be
particularly important for applications that require a quick response
or when the complete output is not useful.
Experiments with Real Data. Figures 8(a)-8(c) and 8(d)-8(f) re-
port our experimental findings on the NBA and HOUSE data sets
respectively. The results are in accordance with our experiments on
synthetic data sets. Moreover, the performance gains achieved by
RSA are higher in real data sets (especially vs. |C|), partly due to
the higher data dimensionality (5 and 6 dimensions respectively),
which results to more points belonging to the influence set (on av-
erage 196 points in HOUSE data set vs 11 points in UN data set).

7. RELATED WORK
Market research is a systematic, objective collection and anal-

ysis of data about a particular target market by taking into ac-
count factors such as products, competition and customers behav-
ior. The work of [9] proposed formulating several economically
incentivised applications (e.g., potential customers identification,
product feature promotion, product positioning) as optimization
problems taking a data mining perspective. In the context of database
research, DADA [10] was the first of a series of works in the field
proposing various queries by capitalizing on the dominance rela-
tionships among products and customer preferences.

Several works [5, 11, 25, 18, 6, 3] focus on identifying the po-
tential customers of a product. In order to provide an insight on the
product against the competition, [13, 24, 23] address the problem
of discovering and promoting the best product features. Another
practical application is how to design new products, such that they
will maximize the expected utility, a problem known as product po-
sitioning [20, 19, 21, 12, 15]. The utility function may incorporate
various factors such as the number of expected product buyers [19,
21, 12, 15], the actual profit (price minus production cost) [10, 20,
21, 15] or the number and features of other competitive products
[10, 12]. Other works [20, 21] seek profitable packages formed by
combining individual products, e.g., a flight and a hotel room, such
that the profit gain of the package is maximized.

With regards to the number of expected customers, one problem
is how to best model user preferences. One way is to assume that
a weight vector capturing the importance of different product fea-
tures (attributes) has been determined for each customer, through a

preference learning process. Based on this assumption, each prod-
uct is assigned a score by applying the weight vector known for the
user. Then, the products that score higher are those that would be
more attractive to the respective user. This is the approach taken in
top-k queries [7]. [18] tackled the reverse problem of discovering
the most attractive products by introducing reverse top-k queries.

However, the weight vector formulation is often too difficult to
come up with in real life [17]. A more natural way to model prefer-
ences is by allowing users to directly specify their preferred product
attribute values. Taking this approach, both products and user pref-
erences can be represented as points in a multidimensional space.
In such a scenario, different notions of user satisfaction have been
proposed. One option is to allow users to specify the worst accept-
able value for each dimension [15]; all products having better val-
ues from the specified ones are considered as satisfactory. An im-
portant limitation of such a formulation is that it cannot be used for
’subjective’ types of attributes. Further, there is no metric of how
relevant each product is w.r.t. the actual user preferences. Thus,
another option is to measure product attractiveness based on how
close the product attribute values are to the user-preferred ones. In
order to find the k most attractive products for a customer c ∈C we
can issue a kNN(c) query [16] on the product data set. However, in
several real applications it could be hard to find an appropriate dis-
tance function, because different dimensions might have different
weights which depend on the preferences of each user.

With the goal to overcome the limitations of top-k and kNN
queries, skylines have been widely used for multi-criteria decision
analysis and for preference queries. The skyline query returns the
set of not dominated objects, corresponding to the Pareto optimal
set, which will always include the top-1 result for any monotone
preference function. [4] introduces skyline queries in databases,
also presenting various external memory algorithms. In order to
capture subjective attributes, the dynamic skyline [14] returns all
products that are ‘attractive’ according to a user’s preferences.

Viewing the problem from a manufacturer’s perspective, [5] in-
troduces the reverse skyline query, which returns all customers that
would find a product as ‘attractive’, and proposes a branch-and-
bound extension of the BBS algorithm [14] that reduces the search
space. [11] improves upon [5] by providing tighter pruning rules
based on midpoint skylines (Section 2.2) and presents algorithms
for calculating reverse skylines on uncertain data. [25] proposes the
BRS algorithm (Section 2.3), which exploits additional optimiza-
tions for precise data. [6] considers non-metric attribute domains
and proposes non-indexed algorithms to efficiently calculate the in-
fluence set in that case, whereas [22] studies how to process reverse
skylines energy-efficiently in a wireless sensor network.

In this work, we formulate customers identification by follow-
ing a reverse skyline approach, where we consider both subjective
dimensions and competition. We focus on providing a more effi-
cient and progressive algorithm for single-point reverse skylines.
Further, we extend our methods for multiple query points, with ap-
plications to the k-MAC query. The methods proposed in [12, 15]
cannot be applied onto our setting, because they assume the same
product dominance relationships holding for all users and that they
can be calculated by executing only one skyline query. However,
this is not true when each user has his preferred attribute values.
8. CONCLUSIONS

In this work, we studied two classes of queries involving cus-
tomer preferences with important applications in market research.
We first proposed the RSA algorithm for reverse skyline query eval-
uation. We then developed a batched extension of our RSA algo-
rithm that significantly improves upon processing multiple queries
individually, by grouping contiguous candidates, exploiting I/O com-

monalities and enabling shared processing, and applied this batched
extension to solve the k-MAC query. Our experimental study on
both real and synthetic data sets demonstrates that (i) RSA is sig-
nificantly more efficient, scalable and progressive than the BRS al-
gorithm for the reverse skyline problem, and (ii) that our proposed
batched algorithm is the best choice for the k-MAC query.
Acknowledgments This research has been co-financed by the Eu-
ropean Union (European Social Fund - ESF) and Greek national
funds through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework (NSRF)
- Research Funding Program: Thales. Investing in knowledge soci-
ety through the European Social Fund. The authors would also like
to thank Prof. Dimitris Papadias for his support during the early
stages of this research work.

9. REFERENCES
[1] http://randdataset.projects.postgresql.org.
[2] J. Bentley, K. Clarkson, and D. Levine. Fast linear expected-time

algorithms for computing maxima and convex hulls. In SODA, 1990.
[3] T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz,

S. Zhang, and A. Züfle. Inverse queries for multidimensional spaces.
In SSTD, 2011.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, 2001.

[5] E. Dellis and B. Seeger. Efficient computation of reverse skyline
queries. In VLDB, 2007.

[6] P. Deshpande and D. P. Efficient reverse skyline retrieval with
arbitrary non-metric similarity measures. In EDBT, 2011.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, 2001.

[8] D. Hochbaum and A. Pathria. Analysis of the greedy approach in
problems of maximum k-coverage. NRL, 45, 1998.

[9] J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. A
microeconomic view of data mining. Journal of Data Mining and
Knowledge Discovery, 2(4), 1998.

[10] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. Dada: a data cube for
dominant relationship analysis. In SIGMOD, 2006.

[11] X. Lian and L. Chen. Monochromatic and bichromatic reverse
skyline search over uncertain databases. In SIGMOD, 2008.

[12] C.-Y. Lin, J.-L. Koh, and A. L. Chen. Determining k-most
demanding products with maximum expected number of total
customers. TKDE, 2012.

[13] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a
crowd: Selecting attributes for maximum visibility. In ICDE, 2008.

[14] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. TODS, 30(1), 2005.

[15] Y. Peng, R. C.-W. Wong, and Q. Wan. Finding top-k preferable
products. TKDE, 2012.

[16] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD, 1995.

[17] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative
skyline. In ICDE, 2009.

[18] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse
top-k queries. In ICDE, 2010.

[19] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Identifying
the most influential data objects with reverse top-k queries. PVLDB,
3(1), 2010.

[20] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. PVLDB, 2(1), 2009.

[21] Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k profitable
products. In ICDE, 2011.

[22] G. Wang, J. Xin, L. Chen, and Y. Liu. Energy-efficient reverse skyline
query processing over wireless sensor networks. TKDE, 24(7), 2011.

[23] T. Wu, Y. Sun, C. Li, and J. Han. Region-based online promotion
analysis. In EDBT, 2010.

[24] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in
multi-dimensional space. PVLDB, 2(1), 2009.

[25] X. Wu, Y. Tao, R. C.-W. Wong, L. Ding, and J. X. Yu. Finding the
influence set through skylines. In EDBT, 2009.

