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Abstract. Recent advances in microelectronics have made feasible the
deployment of sensor networks for a variety of monitoring and surveil-
lance tasks. In such tasks the state of the network is evaluated either
at regular intervals at a base-station, which constitutes a centralized lo-
cation where the data collected by the sensor nodes can be collected
and processed, or continuously through the use of, potentially multiple,
continuous queries. In order to increase the network lifetime, multiple
techniques have been proposed in order to reduce the data transmitted
in the network, since the data communication often constitutes the main
source of energy drain in sensor networks. In this work we discuss several
data reduction techniques that can be applied for energy-efficient query
processing in sensor network applications. All of our proposed techniques
seek to identify and take into account the characteristics of the collected
data. Depending on the nature of the monitoring application at hand,
the targeted data characteristics may range from simply monitoring the
variance of a node’s measurements to identifying spatio-temporal corre-
lations amongst the values collected by the sensor nodes.

1 Introduction

Recent advances in wireless technologies and microelectronics have made fea-
sible, both from a technological as well as an economical point of view, the
deployment of densely distributed sensor networks [61]. Although today’s sen-
sor nodes have relatively small processing and storage capabilities, driven by the
economy of scale, it is already observed that both are increasing at a rate similar
to Moore’s law.

In applications where sensors are powered by small batteries and replacing
them is either too expensive or impossible (i.e., sensors thrown over a hostile
environment), designing energy efficient protocols is essential to increase the
lifetime of the sensor network. Since radio operation is by far the biggest factor of
energy drain in sensor nodes [18], minimizing the number of transmissions is vital
in data-centric applications. Even in the case when sensor nodes are attached to
larger devices with ample power supply, reducing bandwidth consumption may
still be important due to the wireless, multi-hop nature of communication and
the short-range radios usually installed in the nodes.
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Data-centric applications thus need to devise novel dissemination processes for
minimizing the number of messages exchanged amongst the nodes. Nevertheless,
in densely distributed sensor networks there is an abundance of information
that can be collected. In order to minimize the volume of the transmitted data,
we can apply two well known ideas aggregation and approximation in order to
exploit spatio-temporal correlations in the readings obtained by the nodes in the
network.

In-network aggregation is more suitable for exploratory, continuous queries
that need to obtain a live estimate of some (aggregated) quantity. For example,
sensors deployed in a metropolitan area can be used to obtain estimates on
the number of observed vehicles. Temperature sensors in a warehouse can be
used to keep track of the average and maximum temperature for each floor of
the building. Often, aggregated readings over a large number of sensors nodes
show little variance, providing a great opportunity for reducing the number
of (re)transmissions by the nodes when individual measurements change only
slightly (as in temperature readings) or changes in measurements of neighboring
nodes effectively cancel out (as in vehicle tracking applications).

Approximation techniques, in the form of lossy data compression are more
suitable for the collection of historical data through long-term queries. As an
example, consider sensors dispersed in a wild forest, collecting meteorological
measurements (such as pressure, humidity, temperature) for the purpose of
obtaining a long term historical record and building models on the observed
eco-system [2[4267]. Each sensor generates a multi-valued data feed and of-
ten substantial compression can be achieved by exploiting natural correlations
among these feeds (such as in case of pressure and humidity measurements).
In such cases, sensor nodes are mostly “silent” (thus preserving energy) and
periodically process and transmit large batches of their measurements to the
monitoring station for further processing and archiving.

While the preferred method of data reduction, either by aggregation or by
approximation, of the underlying measurements can be decided based on the
application needs, there is a lot of room for optimization at the network level
as well. Sensor networks are inherently redundant; a typical deployment uses
a lot of redundant sensor nodes to cope with node or link failures [4]. Thus,
extracting measurements from all nodes in the network for the purpose of an-
swering a posed query may be both extremely expensive and unnecessary. In
a data-centric network, nodes can coordinate with their neighbors and elect a
small set of representative nodes among themselves, using a localized, data-driven
bidding process [35]. These representative nodes constitute a network snapshot
that can, in turn, answer posed queries while reducing substantially the energy
consumption in the network. These nodes are also used as an alternative means
of answering a posed query when nodes and network links fail, thus providing
unambiguous data access to the applications.

This article proceeds as follows. Section Pl provides a brief overview of the char-
acteristics of sensor nodes. Section B] presents our Self-Based Regression (SBR)
algorithm for the compression of historical measurements in sensor
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network applications, while Section ] presents our framework for the approx-
imate evaluation of continuous aggregate queries. Section [l presents our tech-
niques for creating a network snapshot that can be used to efficiently evaluate
queries about the observed values of the sensor nodes, while Section [ presents
some related work in the area of sensor networks. Finally, Section [0 contains
concluding remarks and future directions.

2 Characteristics of Sensor Nodes

Depending on the targeted application, sensor nodes with widely different char-
acteristics may be used. Even though the processing and memory capabilities of
sensor nodes are still limited, in recent years they have increased at a rate similar
to Moore’s law. On the other hand, the amount of energy stored in the batteries
used in such nodes has exhibited a mere 2-3% annual growth. Since replacing
the sensor batteries may be very expensive, and sometimes impossible due to
their unattended deployment, unless the sensors are attached to and powered
by a larger unit, designing energy-efficient protocols is essential to increase the
lifetime of the sensor network.

The actual energy consumption by each sensor node depends on its current
state. In general, each sensor node can be in one of the following states:

— low-duty cycle, where the sensor is in sleep mode and a minimal amount of
energy is consumed.

— idle listening, where the sensor node is listening for possible data intended
for it.

— processing, where the sensor node performs computation based on its ob-
tained measurements and its received data.

— receiving/transmitting, where the sensor node either receives or transmits
data or control messages.

The cost of processing can be significant but is generally much lower than the
cost of transmission. For example, in the Berkeley MICA nodes sending one bit
of data costs as much energy as 1,000 CPU instructions [41]. For long-distance
radios, the transmission cost dominates the receiving and idle listening costs.
For short-range radios, these costs are comparable. For instance, in the Berkeley
MICA2 motes the power consumption ratio of transmitting/receiving at 433MHz
with RF signal power of 1mW is 1.41:1 [64], while this ratio can become even
larger than 3:1 for the same type of sensor when the radio transmission power
is increased [54]. To increase the lifetime of the network, some common goals
of sensor network applications are (in order of importance) to maximize the
time when a node is in a low-duty cycle, to reduce the amount of transmitted
and received data, and to reduce the idle listening time. We note here that
reducing the size of the transmitted data results in multiple benefits, since this
also corresponds to a reduction of not only control messages, but also leads to
fewer message collisions and retransmissions. Moreover, nodes that refrain from
transmitting messages may switch to the low-duty cycle mode faster, therefore
further reducing their energy drain.
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Fig. 1. Example of two correlated signals Fig. 2. XY scatter plot of Industrial (X
(Stock Market) axis) vs Insurance (Y axis)

3 A Lossy Compression Framework for Historical
Measurements

Many real signals observed by the sensors, such as temperature, dew-point, pres-
sure etc. are naturally correlated. The same is often true in other domains. For
instance, stock market indexes or foreign currencies often exhibit strong corre-
lations. In Figure [I] we plot the average Industrial and Insurance indexes from
the New York stock market for 128 consecutive days. Both indexes show similar
fluctuations, a clear sign of strong correlation. Figure [2 depicts a XY scatter
plot of the same values. This plot is created by pairing values of the Industrial
(X-coordinate) and Insurance (Y-coordinate) indexes of the same day and plot-
ting these points in a two-dimensional plane. The strong correlation among these
values makes most points lie on a straight line. This observation suggests the
following compression scheme, inspired from regression theory. Assuming that
the Industrial index (call it X) is given to us in a time-series of 128 values,
we can approximate the other time-series (Insurance: Y) as Y’ = a x X + b.
The coefficients a and b are determined by the condition that the sum of the
square residuals, or equivalently the Ly error norm ||Y’ — Y|z, is minimized.
This is nothing more than standard linear regression. However, unlike previous
methods, we will not attempt to approximate each time-series independently
using regression. In Figure [Tl we see that the series themselves are not linear, i.e.,
they would be poorly approximated with a linear model. Instead, we will use
regression to approximate piece-wise correlations of each series to a base signal
X that we will choose accordingly. In the example of Figure [2 the base signal
can be the Industrial index (X) and the approximation of the Insurance index
will be just two values (a, b). In practice the base signal will be much smaller
than the complete time series, since it only needs to capture the “important”
trends of the target signal Y. For instance, in case Y is periodic, a sample of
the period would suffice.



Exploiting Spatio-temporal Correlations for Data Processing 49

Sensor Base Station

Base Signal Base Signal Updates Base Signal Update Log

- 1] -
MBase

Measurements Compressed Sensor Data Updates Sensor Data Update Log
VLTI I TT
2T (1] LIT1]
NOITITTTIITTIITTT] (ITT11] [TTTT]

M

Fig. 3. Transfer of approximate data values and of the base signal from each sensor to
the base station

3.1 The SBR Framework

In the general case, each sensor monitors N distinct quantities Y;, 1 < ¢ <
N. Without loss of generality we assume that measurements are sampled with
the same rate. When enough data is collected (for instance, when the sensor
memory buffers become full), the latest NxM values are processed and each row
i (of length M) is approximated by a much smaller set of B; values, i.e. B; <
M. The resulting “compressed” representation, of total size equal to Zf\[:l B;,
is then transmitted to the base station. The base station maintains the data
in this compact representation by appending the latest “chunk” to a log file.
A separate file exists for each sensor that is in contact with the base station.
This process is illustrated in Figure Bl Each sensor allocates a small amount of
memory of size Mp,se for what we call the base signal. This is a compact ordered
collection of values of prominent features that we extract from the recorded
values and are used as a base reference in the approximate representation that is
transmitted to the base station. The data values that the sensor transmits to the
base station are encoded using the in-memory values of the base signal at the
time of the transmission. The base signal may be updated at each transmission
to ensure that it will be able to capture newly observed data features and that
the obtained approximation will be of good quality. When such updates occur,
they are transmitted along with the data values and appended in a special log
file that is unique for each sensor.

The Self-Based Regression algorithm (SBR) breaks the data intervals Y; into
smaller data segments

Llk..l) = (Yi[k],... Y;i[l])

and then pairs each one to an interval of the base signal of equal length. As
discussed below, the base signal is simply the concatenation of several intervals
of the same length W extracted from the data. The data interval I; is shifted
over the base signal and at each position s we compute the regression parameters
for the approximation
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and retain the shift value s = s* that minimizes the sum-squared error of the
approximation. The algorithm starts with a single data interval for each row
of the collected data (Y;). In each iteration, the interval with the largest error
in the approximation is selected and divided in two halves. The compressed
representation of a data interval I;[k..l] consists of four values: the shift position
s* that minimizes the error of the approximation, the two regression parameters
a,b and the start of the data interval k in Y;. The base station will sort the
intervals based on their start position and, thus, there is no need to transmit
their ending position. Given a target budget B (size of compressed data) we can
use at most B/4 intervals using this representation.

3.2 Base Signal Construction

We can think of the base signal as a dictionary of features used to describe the
data values. The richer the pool of features we store in the base signal the better
the approximation. On the other hand, these features have to be (i) kept in the
memory of the sensor to be used as a reference by the data-reduction algorithm
and (ii) sent to the base station in order for it to be able to reconstruct the
values. Thus, for a target bandwidth constraint B (number of values that can be
transmitted), performing more insert and update operations on the base signal
implies less bandwidth remaining for approximating the data values, and, thus,
fewer data intervals that can be obtained from the recursive process described
above.

We can avoid the need of transmitting the base signal by agreeing a-priori
on a set of functions that will be used in the regression process. For instance,
a set of cosine functions (as in the Distinct Cosine Transform) can be used
for constructing a “virtual” base signal that does not need to be communicated.
Similarly, using the identity function X [i] = i reduces the compression algorithm
to standard linear regression of each data interval. However, such an approach
makes assumptions that may not hold for the data at hand. In [II] we have
proposed a process for generating the base signal from the data values. The
key idea is to break the measurements into intervals of the same length W.
Each interval (termed candidate base interval) is assigned a score based on the
reduction in the error of the approximation obtained by adding the interval to
the base signal. Using a greedy algorithm we can select the top-few candidate
intervals, up to the amount of available memory Mpqs.. Then a binary-search
process is used to eventually decide how many of those candidate intervals need
to be retained.

The search space is illustrated in Figure @ for three real data sets, discussed
in [II]. The figure plots the error of only the initial transmission as the size of
the base signal is varied, manually, from 1 to 30 intervals. We further show the
selection of the binary-search process. For presentation purposes, the errors for
each data set have been divided by the error of the approximation when using
just one interval. We notice that initially, by adding more candidate intervals
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to the base signal the error of the approximation is reduced. However, after a
point, adding more intervals that need to be transmitted to the base station
leaves insufficient budget for the recursive process that splits the data, and thus,
the error of the approximation is eventually increased.

3.3 Analysis and Evaluation

For a data set containing n = N x M measurements to approximate the complete
SBR algorithm takes O(n!-?) time and requires linear space, while its running
time scales linearly to the size of both the transmitted data and the base signal.
The algorithm is invoked periodically, when enough data has been collected.
Moreover, our work [I1] has demonstrated that, after the initial transmissions,
the base signal is already of good quality and few intervals are inserted in it. This
provides us with the choice not to update the base signal in many subsequent
invocations, thus reducing the algorithm’s running time, in these cases, to only
a linear dependency on n.

To illustrate the accuracy achieved by the SBR algorithm against standard
approximation techniques such as Wavelets, Histograms and the Discreet Co-
sine Transform (DCT), we used in [I1], among other data sets, a weather data
set that contains the air temperature, dewpoint temperature, wind speed, wind
peak, solar irradiance and relative humidity weather measurements obtained
from a station in the university of Washington, and for the year 2002. For this
data set we selected the first 40,960 records and then split the data measurements
of each signal into ten files of 4,096 values each, in order to simulate multiple
transmissions. We then varied the compression ratio (size of the transmitted
data over the data size n) from 5% to 50% and present in Table[I] the total sum
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Table 1. Total SSE Varying the Compression Ratio for the Weather Data Set

Weather Data

Compression (245,760 total values)
Ratio SBR  Wavelets DCT Histograms
5% 317,238 519,303 8,703,192 7,661,293
10% 103,633 200,501 4,923,294 3,375,518
15% 54,219 125,449 3,515,698 2,219,533
20% 30,046 87,118 2,643,220 1,471,421
25% 18,600 63,105 2,198,455 946,735
30% 11,558 46,833 1,598,451 594,644
35% 7,161 35275 1,366,211 410,208
40% 4,603 26,824 1,112,117 288,127
45% 2,964 20,502 905,422 236,947
50% 1,861 15,762 768,568 160,079

squared error achieved by all techniques. In all cases, SBR produces significantly
more accurate results than the other approximations.

3.4 Extensions

In [I4] we present extensions to the basic SBR scheme that we describe here.
These extensions allow the nodes to organize in groups based on an adaptation
of the HEED protocol [65] and elect within each group a group leader that
instruments the execution of each SBR instance in the nodes of its group and
also handles the final transmission of the compressed data to the base station.
This form of localized processing allows the nodes to exploit spatial correlations
and results in a reduction of the error of the approximation by at least an order of
magnitude compared to the case when nodes individually compress and transmit
their data.

4 Approximate In-Network Data Aggregation

The data aggregation process in sensor networks consists of several steps. First,
the posed query is disseminated through the network, in search of nodes col-
lecting data relevant to the query. Each sensor then selects one of the nodes
through which it received the announcement as its parent node. The resulting
structure is often referred to as the aggregation tree. Non-leaf nodes of that tree
aggregate the values of their children before transmitting the aggregate result
to their parents. In [40], after the aggregation tree has been created, the nodes
carefully schedule the periods when they transmit and receive data. The idea is
for a parent node to be listening for values from its child nodes within specific
intervals of each epoch and then transmit upwards a single partial aggregate for
the whole subtree.
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Fig. 5. Error Filters on Aggregation Tree

In order to limit the number of transmitted messages and, thus, the energy
consumption in sensor networks during the computation of continuous aggregate
queries, our algorithms install error filters on the nodes of the aggregation tree.
Each node N; transmits the partial aggregate that it computes at each epoch
for its subtree only if this value deviates by more than the maximum error E;
of the node’s filter from the last transmitted partial aggregate. This method
allows nodes to refrain from transmitting messages about small changes in the
value of their partial aggregate. The E; values determine the maximum deviation
E Tot; of the reported from the true aggregate value at each node. For example,
for the SUM aggregate, this deviation at the monitoring node is upper bounded
(ignoring message losses) by: > . E;.

A sample aggregation tree is depicted in Figure[5l As our work [12] has demon-
strated, allowing a small error in the reported aggregate can lead to dramatic
bandwidth (and thus energy) savings. The challenge is, of course, given the maxi-
mum error tolerated by the monitoring node, to calculate and periodically adjust
the node filters in order to minimize the bandwidth consumption.

4.1 Algorithmic Challenges

When designing adaptive algorithms for in-network data aggregation in sensor
networks, one has to keep in mind several challenges/goals. First, communicating
individual node statistics is very expensive, since this information cannot be
aggregated inside the tree, and may outweigh the benefits of approximate data
aggregation, namely the reduction in the size of the transmitted data. Thus, our
algorithm should not try to estimate the number of messages generated by each
node’s transmissions, since this depends on where this message is aggregated
with messages from other nodes. Second, the error budget should be distributed
to the nodes that are expected to reduce their bandwidth consumption the most
by such a process. This benefit depends on neither the magnitude of the partial
aggregate values of the node nor the node’s number of transmissions over a
period, but on the magnitude of the changes on the calculated partial aggregate.
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Isolating nodes with large variance on their partial aggregate and redistributing
their error to other nodes is crucial for the effectiveness of our algorithm [12].
Finally, in the case of nodes where the transmitted differences from their children
often result in small changes on the partial aggregate value, our algorithm should
be able to identify this fact. We deal with this latter challenge by applying the
error filters on the calculated partial aggregate values and not on each node’s
individual measurements. For the first two challenges, we collect a set of easily
computed and composable statistics at each node. These statistics are used for
the periodic adjustment of the error filters.

4.2 Algorithm Overview

Every Upd epochs all nodes shrink the widths of their filters by a shrinking factor
0 < shrinkFactor < 1. After this process, the monitoring node has an error bud-
get of size E Global x (1—shrinkFactor), where E Global is the maximum error
of the application, that it can redistribute recursively to the nodes of the network.
Each node, between two consecutive update periods, calculates its potential gain
as follows: At each epoch the node keeps track of the number of transmissions
Cishrink that it would have performed with the default (smaller) filter at the
next update period of width shrinkFactor x W;, where W; = 2 x E;. The node
also calculates the corresponding number of transmissions Cegpand With a larger
filter of width W; +dW and sets its potential gain to Gain; = Csprink — Cezpand-
This process is illustrated in Figure [l The cumulative gain of a node’s subtree
is then calculated as the sum of the cumulative gains of the node’s children and
the node’s potential gain. This requires only the transmission of the cumulative
gains (a single value for each node) at the last epoch before the new update pe-
riod. The available error budget is then distributed top-down proportionally, at
each node, to each subtree’s cumulative gain. In this process, nodes that exhibit
large variance in their partial aggregate values will exhibit small potential gains
and, thus, their error will gradually shrink and be redistributed to nodes that
will benefit from an increase in their error filter.

We note here that the dual problem of minimizing the application maxi-
mum error given a bandwidth or energy constraint is also very interesting. This
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problem is discussed in [I3] and is more complicated, though, because the con-
trolled quantity at each node (the width of its error filter) is different from the
monitored quantity (the bandwidth/energy consumption) and the bandwidth
needs to be carefully computed, monitored and then disseminated amongst the
sensor nodes.

4.3 Experimental Evaluation

We used a balanced aggregation tree with 5 levels and a fan-out of 4 (341 nodes
overall), where all the nodes collected measurements relevant to the query. In
the first experiment, the measurements of all the nodes followed a random walk
pattern, each with a randomly assigned step size in the range (0. .. 2]. To capture
the scenario where nodes update their measurements with different frequencies,
20% of the nodes update their measurements at each epoch, while the remaining
sensors make a random step with a fixed probability of 1% during an epoch.
In Figure [ we plot the total number of messages in the network (y-axis) for
40,000 epochs when varying the error constraint E Global from 100 to 2,000
(8% is terms of relative error). Depending on E Global, our PGA (Potential
Gains Adjustment) algorithm results in up to 4.8 times fewer messages than an
adaptation of the algorithm proposed by Olston in [45], that we termed BBA,
and up to 6.4 times fewer messages than a uniform allocation policy (Uni) where
the error is partitioned uniformly amongst all nodes. These differences arise from
the ability of PG A to place, judiciously, filters on passive intermediate sensor
nodes and exploit negative correlations on their subtree based on the computed
potential gains. Algorithm B BA may also place filters on the intermediate nodes
(when the residual mode is used) but the selection of the widths of the filters
based on the burden scores of the nodes was typically not especially successful
in our experiments.
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5 Design of Data-Centric Sensor Networks

Sensor networks are inherently dynamic. Such networks must adapt to a wide
variety of challenges imposed by the uncontrolled environment in which they
operate. As nodes become cheaper to manufacture and operate, one way of
addressing the challenges imposed on unattended networks is redundancy [4].
Redundant nodes ensure network coverage in regions with non-uniform commu-
nication density due to environmental dynamics. Redundancy further increases
the amount of data that can be mined in large-scale networks.

Writing data-driven applications in such a dynamic environment can be daunt-
ing. The major challenge is to design localized algorithms that will perform most
of the processing in the network itself in order to reduce traffic and, thus, pre-
serve energy. Instead of designing database applications that need to hassle with
low-level networking details, we envision the use of data-centric networks that
allow transparent access to the collected measurements in a unified way. For
instance, when queried nodes fail, the network should self-configure to use re-
dundant stand-by nodes as in [I8], under the condition that the new nodes
contain fairly similar measurements, where similarity needs to be quantified in
an application-meaningful way [35]. This can be achieved using a localized mode
of operation in which nodes coordinate with their neighbors and elect a small set
of representative nodes among themselves. Such a set of representatives, termed
network snapshot [35], has many advantages.

— The location and measurements of the representative nodes provide a picture
of the value distribution in the network. By choosing an error metric (such
as sum-squared or relative error) and using different threshold values to
express similarity amongst the sensor node measurements we can obtain
different snapshots of the network at different resolutions, depending on the
error threshold used.

— The network snapshot can be used for answering user queries in a more
energy-efficient way. The data reduction techniques that we discussed in
Sections Bl and @ aim at reducing the flow of data in the network by either
suppressing update messages or compressing long data streams. The net-
work snapshot is an orthogonal optimization that can further reduce energy
drain during query processing by reducing the number of nodes that need to
respond to user queries. When a user query can tolerate a small error in the
computation, the network can use the representative nodes and compile a
quick answer from only a fraction of the nodes that a normal query execution
would require. We call such queries snapshot queries.

— An elected representative node can take over for another node in the vicinity
that may have failed or is temporarily out of reach. Because selection of
representatives is quantitative this allows for a more accurate computation
than when representatives are selected based only on proximity.

— A localized computation of representative nodes can react quickly to changes
in the network. For instance, nodes (including the representatives) may fail
at random. It is important that the network can self-heal in the case of
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node-failures or some other catastrophic events. In a data-driven mode of
operation, we are also interested in changes in the behavior of a node. In such
case the network should re-configure and revise the selected representatives,
when necessary. What is important is that, as we demonstrate in [35], these
computations can be performed in the network with only a small number
(up to six) of exchanged messages among the nodes.

5.1 Snapshot Overview

A sensor node N; maintains a data model for capturing the distribution of values
of the measurements of its neighbors. This is achieved by snooping (with a small
probability) values broadcast by its neighbor node N; in response to a query
or, by using periodic announcements sent by NN;. One may devise different data
models, with varying degrees of complexity, for this process. In [TTI35] we have
proposed modeling the correlations amongst the measurements of the nodes
using linear regression. Regression models are simple both in terms of space and
time complexity. As is demonstrated in [35], our algorithms can operate when the
available memory for storing these models in the sensor is as small as a few bytes.
Furthermore, by modeling the correlations amongst the values of the nodes we
avoid making assumptions on the distribution of the data values collected by
the sensors that may not hold in practice. The only assumption made is that
values of neighboring nodes are to some extent correlated. This is true for many
applications of interest like collection of meteorological data, acoustic data etc,
as discussed in Section [3

Using the data model it maintains, sensor node N; provides an estimate & of
the measurement z; of its neighbor N;. Given an error metric d() and a threshold
value T', node N; can represent node N; if d(x;, ;) < T. Function d() is provided

by the application. Some common choices include (i) relative error: d(z;,&;) =
;=25

max(s,lxjﬂ)’ where s > 0 is a sanity bound for the case x;=0, (ii) absolute error:

d(xj,2j) = |z; — ;| and (iii) sum-squared error: d(z;, ;) = (z; — &;)°.

Through a localized election process (see [35] for details) the nodes in the
network pick a set of representative nodes of size ni. Depending on the threshold
value T, the error metric and the actual measurements on the sensors, n; can be
significantly smaller than the number of nodes in the network. An example of this
process is demonstrated in Figure [8 where the representatives for a simulated
network of 100 nodes are shown. Dark nodes in the Figure are representative
nodes. There are lines drawn from a node N; to a node N; that IV; represents.
Nodes with no lines attached to them represent themselves (the default choice).

An aggregate computation like SUM can be handled by the representative
nodes that will in-turn provide estimates on the nodes IN; they represent using
their models. Another scenario is to use the representative of a node on an aggre-
gate or direct query, when that node is out-of-reach because of some unexpected
technical problem or due to severe energy constraints. Thus, query processing
can take advantage of the unambiguous data access provided by the network. Of
course, one can ignore the layer of representatives and access the sensors directly,
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Fig. 8. Example of Network Snapshot

at the penalty of (i) draining more energy, since a lot more nodes will have be
to accessed for the same query and (ii) having to handle within the application
node failures, redundancy etc.

The selection of representatives is not static but is being revised overtime in
an adaptive fashion. An obvious cause is the failure of a representative node. In
other cases, the model built by N; to describe x; might get outdated or fail, due
to some unexpected change in the data distribution. In either case, the network
will self-heal using the following simple protocol. Node N; periodically sends a
heart-beat message to its representative N; including its current measurement.
If N; does not respond, or its estimate &; for x; is not accurate (d(z;, ;) > T)
then Nj; initiates a local re-evaluation process inviting candidate representatives
from its neighborhood, leading to the selection of a new representative node
(that may be itself). This heart-beat message is also used by N; to fine-tune its
model of Nj.

Under an unreliable communication protocol it is possible that this process
may lead to spurious representatives. For instance node IN; may never hear the
messages sent by node /N; due to an obstacle in their direct path. It may thus
assume that it still represents node N; while the network has elected another
representative. This can be detected and corrected by having time-stamps de-
scribing the time that a node N; was elected as the representative of N; and using
the latest representative based on these time-stamps. In TinyOS nodes have an
external clock that is used for synchronization with their neighbors [40]. In lack
of properly synchronized clocks among the sensor nodes, one can use a global
counter like the epoch-id of a continuous query. This filtering and self-correction
is performed by the network, transparently from the application.
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5.2 Examples of Snapshot Queries

Recent proposals [40l63] have suggested the use of SQL for data acquisition and
processing. The obvious advantage of using a declarative language is greater flex-
ibility over hand-coded programs that are pre-installed at the sensor nodes [41].
In addition embedded database systems like TinyDB can provide energy-based
query optimization because of their tight integration with the node’s operations.

Basic queries in sensor networks consist of a SELECT-FROM-WHERE clause
(supporting joins and aggregation). For instance, in our running example of
collecting weather data a typical query may be

SELECT loc, temperature

FROM sensors

WHERE loc in SHOUTH_EAST_QUANDRANT
SAMPLE INTERVAL 1sec for 5min

USE SNAPSHOT

This is an example of a drill-through query, sampling temperature readings
every 1 second and lasting 5 minutes. For this example we assume that each
node has a unique location-id loc and that nodes are location-aware, being able
to process the spatial filter “in SHOUTH EAST QUANDRANT”. Location can
be obtained using inexpensive GPS receivers embedded in the nodes, or by proper
coordination among the nodes, using techniques like those proposed in [50J52].
Location is a significant attribute of a node in an unattended system. For many
applications like habitat monitoring, spatial filters may be the most common
predicate.

The new extension presented in the query above is the USE SNAPSHOT
clause, denoting that the query may be answered by the representative set of
nodes. An example of an aggregate query that is using the snapshot for comput-
ing the average and maximum temperature readings in the same area is given
below

SELECT avg(temperature), max(temperature)
FROM sensors

WHERE loc in SHOUTH_EAST_QUANDRANT
SAMPLE INTERVAL 1sec for 5min

USE SNAPSHOT

5.3 Evidence of Savings During Snapshot Queries

We used a simulated network of 100 sensor nodes, randomly placed ina [0...1)x
[0...1) two-dimensional area. For each node, we generated values following a
random walk pattern, each with a randomly assigned step size in the range
(0...1]. The initial value of each node was chosen uniformly in range [0...1000).
We then randomly partitioned the nodes into K classes. Nodes belonging to the
same class ¢ were making a random step (upwards or downwards) with the same
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Table 2. Reduction in number of nodes participating in a spatial snapshot query

K=1 K=100

Transmission Range Transmission Range
Query Range 0.2 0.7 0.2 0.7
1% 11% 29% 3% 7%
10% 38% 7% 16% 24%
50% 52% 91% 23% 49%

probability Pp,evc[i]. These probabilities were chosen uniformly in range [0.2. .. 1]
(we excluded values less than 0.2 to make data more volatile).

We tested aggregate queries over random parts of the network. For each query
a sink node was chosen randomly. Then, using the flooding mechanism described
in [40] an aggregation tree was formed, rooted at the sink node. The sensor nodes
N; whose measures were aggregated using that tree, were chosen using spatial
predicate “location; in [x — V;/,ac + VQV] X [y — Vg,y + VQV]”, where (z,y) is a
random point in the [0...1) x [0...1) plane.

We created a random set of 200 such queries and executed each query in the
set twice: once as a regular query and once as a snapshot query. We counted
the number of nodes participated in each execution, denoted as Ny eguiar and

regular —Nsnapshot

Ninapshot respectively. In Table[2lwe show the savings N provided

Nregutar
on the average by the snapshot queries (the error threshold was one). We note
that when snapshot queries are used, a non-representative node may still be
used for routing the aggregate and this is included in the numbers shown. We
made two runs, one with a single class and another when each node was on a
class of its own (K=100). We varied the size W of the range queries as shown in
the table. We further tested two transmission ranges for the nodes. The shorter
transmission range results in more representatives and taller aggregation trees,
as more hops are required to reach the sink node. In Table 2] we can see that
snapshot queries provide substantial savings in terms of the number of nodes
participating in a query, especially on large spatial queries. For all runs, the
aggregation tree was created using the vanilla method of [T0J40]. One can modify
the protocol to favor (when applicable) representative nodes for routing the
messages. This will result in further reduction in the number of sensor nodes
used during snapshot queries than those presented in Table

6 Related Work

In recent years, there has been a significant body of work in the area of sen-
sor networks. For instance, the networking aspects of wireless sensor nodes is a
topic that has intrigued the networking community. Because of the unattended
operation of sensor networks, nodes must be able to co-operate to perform the
task at hand. Some of the most important topics addressed include network
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self-configuration [AIB565], discovery [I8[27] and computation of energy-efficient
data routing paths [6I28/3940J55/57165].

In the database community there are ongoing projects for infusing database
primitives in the operations of these networks. For instance, TinyDB [41] and
Cougar [63] have suggested the use of SQL for data acquisition and process-
ing. The obvious advantage of using a declarative language is greater flexibility
over hand-coded programs that are pre-installed at the sensor nodes [I]. In-
network data aggregation is another topic that has created a flurry of propos-

s [T2IT6IT9I30040053063]. The main idea is to build an aggregation tree, which
partial results will follow. With proper synchronization [40], non-leaf nodes of
the tree aggregate the values of their children before transmitting a single ag-
gregate result to their parents, thus substantially reducing the flow of messages
in the network. Alternative, gossip-based techniques have also been investigated
in [333]. In [T0/35] the authors have also looked at the problems of packet loss
and node failures during data processing. Recently, proposals for combining data
modeling with data acquisition in order to help reduce the cost of query pro-
cessing have been suggested [T7I35I37]. For example, [I737] build probabilistic
models of the observed data and then use these models to probe the sensors for
their measurements in a limited amount of epochs, depending on the confidence
of the constructed model. Distributed storage management is another topic that
brings together the networking and database communities [T6I2TU51].

Many of these fundamental techniques have been devised to support event-
based monitoring applications. For example, in animal tracking, an event such as
the presence of an animal can be determined by matching the sensor readings to
stored patterns [31]. The authors of [62] propose an event detection mechanism
based on matching the contour maps of in-network sensory data distributions.
In [47], kernel-based techniques are used to detect abnormal behavior in sensor
readings. In [26] the authors describe the implementation of a real system based
on Mica2 motes for surveillance of moving vehicles. In [36] a framework for
computing user-defined events that are in proximity is presented.

Query processing in sensor networks has some connection with the work on
continuous queries in data streams [7129J44I59/66]. The work of [46] studies the
trade-off between precision and performance when querying replicated, cached
data. In [45] the users register continuous queries with strict precision constraints
at a central stream processor, which, in turn installs filters at the remote data
sources. These filters adapt to changes in the streams to minimize update rates.
Online algorithms for minimizing the update cost while the query can be an-
swered within an error bound are presented in [34]. The authors of [9] study a
probabilistic query evaluation method that places appropriate confidence in the
query answer to quantify the uncertainty of the recorded data values.

There is a vast related literature on approximate processing techniques. The
AQUA project explored sampling-based techniques for building synopses and
using them to provide approximate answers at a fraction of the time that a real
answer would require [22]. Histograms are used by query optimizers to estimate
the selectivity of queries, and recently in tools for providing fast approximate
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answers to queries [23[24I3248[19/58]. Wavelets are a mathematical tool for the
hierarchical decomposition of functions, with applications in image and signal
processing [56]. More recently, Wavelets have been applied successfully in an-
swering range-sum aggregate queries over data cubes [60], in selectivity estima-
tion [43] and in approximate query processing [BITBI20/25]. The Discrete Cosine
Transform (DCT) [I] constitutes the basis of the mpeg encoding algorithm and
has also been used to construct compressed multidimensional histograms [3§].
Linear regression has been recently used in [§] for on-line multidimensional anal-
ysis of data streams.

7 Conclusions and Future Directions

We have described several techniques for the reduction of the transmitted data in
several sensor network applications, ranging from the communication of histori-
cal measurements to answering approximate aggregate continuous and snapshot
queries. While these techniques aim to prolong the lifetime of the network, there
are several issues that need to be additionally addressed. Little work has been
done on the optimization of multiple concurrent continuous queries over sensor
networks. The work of Olston et al. in [45] may provide some helpful solutions
in this area. Moreover, in the presence of nodes with different transmission fre-
quencies, as in the case of approximate aggregate query processing, several com-
munication and synchronization algorithms may need to be revisited [63]. For
example, the selection of the aggregation tree is often performed by assuming
equal frequency of transmissions by all nodes. However, it might be more ben-
eficial to prevent nodes that exhibit large variance in their measurements from
appearing in lower levels of the tree, since such nodes often trigger transmissions
on their ancestors as well. Such optimizations may lead to even larger energy
savings.
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